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Using et e~ annihilation data corresponding to an integrated luminosity of 6.32 fb~! collected at center-
of-mass energies between 4.178 and 4.226 GeV with the BESIII detector, we perform the first amplitude
analysis of the decay D] — KgK+7r0 and determine the relative branching fractions and phases for
intermediate processes. We observe an a-like state with mass of 1.817 GeV in its decay to KgK * for the
first time. In addition, we measure the ratio {B[D} — K*(892)°K*]/B[D} — K°K*(892)*]} to be
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2.35+0442

T093stat == 0.104y. Finally, we provide a precision measurement of the absolute branching fraction

B(D{ — K3K'7°) = (1.46 £ 0064, + 0.05) %.

DOI: 10.1103/PhysRevLett.129.182001

The constituent quark model describes mesons as bound
qq states grouped into SU(3) flavor multiplets. In this
scenario, the f(500) and f(980) are often classified as
the ground states of the scalar mesons with isospin-zero and
the a((980) meson is taken as their isospin-one partner. The
f0(1370), fo(1500), and aq(1450) are then considered to
be the corresponding radially excited states. Within the next
higher set of excitations, however, which includes the
fo(1710) and fy(1770), the meson with isospin-one
[i.e., the ao(1710)] has been proposed but has not yet
been well established [1-6]. The f,(1710) is often con-
sidered to be a likely candidate for a glueball or K*K*
molecule. Although the recent measurement of the branch-
ing fraction (BF) ratio B[f(1710) — un']/B[fo(1710) —
nx] [7,8] supports the hypothesis that the f,(1710) has a
large glueball component, one decisive way to determine
whether the f(1710) is a glueball or K*K* molecule is to
search for and investigate its isospin-one partner.

The BABAR experiment reported a new resonance
[called ay(1700) in its paper] with a mass of 1704 + 5, +
2.5 MeV/c? and a width of 110 + 154, + 11, MeV on
the 775 mass spectrum of the process 5, — #7777 [9]. In
addition, the BESIII experiment reported interference
between the f(1710) and a neutral a state in amplitude
analyses of Dy — K9K%z" and Df —» K*K~z" [10,11].
These facts inspire some exciting questions, such as
whether these two new observed a’s are in a set of isospin
triplet or two irrelevant resonances, and whether a new
al — KYK* decay can be found to establish the
whole picture. Reference [2] predicts the product BF
of D} = ag(1710)* 2% with ay(1710)* — K$K* to be
(1.3+£0.4) x 1073, and Refs. [5,6] also expect that the
K 21( T invariant mass distribution of this process will reveal
the ao(1710)" signal. However, Ref. [12] claims that the
new aj) observed in the D decays is more suitable as the
isospin-one partner of the X(1812) and forms a Regge
trajectory along with a((980) and ay(1450), which sug-
gests the possibility of allotting them into a family of scalar
mesons with isospin-one. Therefore, an amplitude analysis
of Df — K%K *z° provides an ideal opportunity to study
the new aj — K%K decay and is crucial to pin down the
nature of the new ay(s) [called ay(1817) in this Letter].

The internal quark structure of the light scalar mesons,
like the ay(980), have also been the source of much
theoretical speculation. They have been considered to be
93, 994 g, KK, etc. The coupling constants, Gagm ad gy k>
are predicted by various models [13—15] and therefore serve

as important experimental constraints on theoretical models.
Combining an analysis of D] — K$K*z° with a previous
measurement of D] — ztz% [16], we can determine the
ratio {B[ay(980) — KK]/B[ay(980) — nz|}. This is a key
experimental input for the calculation of the coupling
constants of the a,(980) and helps determine its quark
composition [13-15,17-21].

Furthermore, Ref. [22] predicts that B[DJ —
K*(892)°K™*] is greater than B[D] — K°K*(892)"], but
the current experimental uncertainties are too large to verify
this [23]. In an analysis of D{ — K9K*z°, we can measure
the BFs of both modes simultaneously. Thus, the correlated
systematic uncertainties arising from the masses and widths
of the resonances, the model parameters, and the common
backgrounds can be considered and reduced.

Because of its large BE, the Cabibbo-favored Dy —
K9K*7° decay is one of the golden decay channels of the
Dy . This decay can be used as a reference channel for other
decays of the DY meson and it is important for our
understanding of BY decays to final states involving the
D mesons [23]. The CLEO experiment measured the
absolute BF of the D — K%K z° decay to be (1.52 =+
0.094y £ 0.2055)% [24], using 586 pb~" of ete™ colli-
sions recorded at a center-of-mass energy of 4.17 GeV.

In this Letter, we present the first amplitude analysis and
a more precise measurement of the BF for the decay D] —
K9K7° using 6.32 fb~! of data collected with the BESIII
detector at center-of-mass energies between 4.178 and
4.226 GeV. Charge-conjugated modes are implied through-
out this Letter.

The BESIII detector [25,26] records symmetric e*e™
collisions provided by the BEPCII storage ring [27]. The
cylindrical core of the BESIII detector covers 93% of the
full solid angle and consists of a helium-based multilayer
drift chamber (MDC), a plastic scintillator time-of-flight
system (TOF), and a CsI(Tl) electromagnetic calorimeter
(EMC), which are all enclosed in a superconducting
solenoidal magnet providing a 1.0 T magnetic field. The
end cap TOF system was upgraded in 2015 using multigap
resistive plate chamber technology [28].

Simulated data samples produced with a GEANT4-based
[29] Monte Carlo (MC) package, which includes the
geometric description of the BESIII detector and the
detector response, are used to determine detection efficien-
cies and to estimate backgrounds. The beam energy spread
and initial state radiation (ISR) in the e'e™ annihilations
are simulated with the generator KKkMC [30]. The inclusive
MC sample includes the production of open charm
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processes, the ISR production of vector charmonium(-like)
states, and the continuum processes incorporated in KKMC
[30]. The known decay modes are described with EVTGEN
[31] using BFs taken from the Particle Data Group [23],
and the remaining unknown charmonium decays are
generated with LUNDCHARM [32]. Final state radiation
(FSR) from charged final state particles is incorporated
using PHOTOS [33].

We reconstruct the process ete™ — DitD7y — yDI Dy
using both single-tag (ST) and double-tag (DT) candidate
events [34]. An ST candidate is an event where only the Dy
meson is reconstructed through particular hadronic decays
(tag modes) without any requirement on the remaining
measured tracks and EMC showers. A DT candidate is an
event where the D7 is reconstructed through DY —
K%K *z° in addition to the Dy being reconstructed through
the tag modes. Eight tag modes are used: Dy — K‘;K‘,
K'Kn~, K"K n~n°, KK 7~ n*, KK nn~, nn nt,
771, and K=z~ 7", The selection criteria for the final state
particles, transition photon, and the D candidates are the
same as Refs. [35-37]. The K9, 7°, #, and 5’ mesons are
reconstructed through Kg —atn, 1’ = yy, n = yy, and
7 — nTrn decays, respectively.

An eight-constraint kinematic fit is applied to the DT
candidates to select signal events for the amplitude analy-
sis. The total four-momentum is constrained to the four-
momentum of the e™ e~ system, and the invariant masses of

the K9, 7°, Dy, and D) candidates are constrained to
their corresponding known masses [23]. Within each event,
the candidate with the minimum y? from the kinematic fit
is chosen. The invariant mass of the signal D is then
required to be within (1.930,1.990) GeV/c?>. A ninth
constraint, on the mass of the signal DY, is then added
to the kinematic fit to guarantee all candidates lie inside the
allowed phase space. There are 1050 DT events obtained
for the amplitude analysis with a signal purity of
(94.7 £0.7)%, which is determined from a fit to the
invariant mass distribution of the signal D candidates.

The intermediate resonance composition is determined
using a unbinned maximum-likelihood fit. The likelihood
function is described by a signal probability density
function (PDF), [M(p;)|*, incoherently added to a back-
ground PDF, denoted as B [36-38]. The signal amplitude
M is constructed based on the isobar model formulation
[39]. The background PDF is constructed from inclusive
MC samples using RooNDKeysPdf [40]. RooNDKeysPdf
is a kernel estimation method [41] implemented in RooFit
[40], which models the distribution of an input dataset as a
superposition of Gaussian kernels. The likelihood function
is then written as

r— H[ ef s |M Pk)|2R3 (l—fs)B(P//f)R3
elM( Pk |2R3dpk feB(pZ)depk

o (GeVHc?)
8]

2
K
o (GeVHc?)
&

2
K

s
s

05 05

Y.y ‘
0.5 1 1.5 2 0.5 1 1.5 2

M3, (GeVic) M3, (GeVic)

FIG. 1. The Dalitz plot of M2 K00 versus M2 P for the decay
D — K3K* 2 from (a) the data sample and (b) the inclusive
MC sample generated based on the results of the amplitude
analysis. The black curve indicates the kinematic boundary.

where ¢ is the acceptance function, the index k runs
over selected events, p/ represents the four-momenta of
the final particles in the kth event, f, is the signal purity,
and R; is an element of three-body phase space. The
normalization integral in the denominator is calculated by
MC integration [36].

The signal amplitude M is a coherent sum of the ampli-
tudes for the intermediate processes, M = > ¢,.A,,, where
n indicates the nth intermediate state. The complex
coefficient c, equals p,e with magnitude p, and phase
¢,. The amplitude A4, is the product of the spin factor [39],
the Blatt-Weisskopf barriers of the intermediate state
and the D] meson [42], and the relativistic Breit-
Wigner function [43] to describe the propagator for the
intermediate resonance. Note that a Flatté formula [44]
coupled to KK and K*K* for the ay(1817)" propagator
should be a better model. However, the relativistic Breit-
Wigner function is still used due to the limited experimental
statistics and lack of knowledge about coupling con-
stants [45].

The M? K020 versus M> pa) Dalitz plot, shown in Fig. 1,
reveals there is a strong contribution from the process
D — K*(892)°K™, which appears as the horizontal band
around 0.8 GeV?/c*. Besides this dominant intermediate
process, other possible intermediate resonances are consi-

dered, including the K{(700), K*(892), K*(1410),
K§(1430), K3(1430), K*(1680), a((980), a»(1320),
ao(1450),  ay(1700), ap(1817), p(1700), and the
(K7)gwave (using the LASS parametrization [46] and the

K matrix [47]). Each possibility is added to the fit one at a
time. Various combinations of these resonances are tested as
well. The statistical significance of each amplitude is
calculated based on the change of the log-likelihood with
and without this amplitude after taking the change of the
degrees of freedom into account. If the significance of a
newly added amplitude is greater than 5o, this amplitude is
kept, otherwise it is dropped. During the fit, f is fixed and
the magnitudes and phases of all intermediate processes are
floating and are measured with respect to those of the
D — K*(892)°K™. The mass and width of the a,(1817)*
are free, those of the a((980) ™ are fixed to the values given in
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FIG. 2. The projections of the Dalitz plot onto (a) M KOK*» (b) M go 0, and (c) M g+ ,0. The data samples are represented by points with
error bars, the fit results by blue lines, and backgrounds by black lines. Colored dashed lines show the components of the fit model.
Because of interference effects, the fit results are not necessarily equal to the sum of the components.

Ref. [48], and those of all other resonances are fixed to their
known values [23].

Five intermediate processes, Df — K*(892)°K*, D} —
K*(892)*KY, D —ay(980)*z°, Dy - K*(1410)°K ", and
D — ay(1817)"x°, are eventually retained as the optimal
set. The mass projections of the fit result are shown in Fig. 2.
The contribution of the nth intermediate process relative to
the total BF is quantified by a fit fraction (FF) defined as
FF, = [|p,A,|?R3dp;/ [ |IM[*Rsdp;. The ratio { B[D} —
K*(892)°K*]/B[Di — K°K*(892)%]} = 235708 +
0.104y is calculated as the quotient of their FFs, where
correlations are accounted for in the systematic and statistical
uncertainties. The phases and FFs for the intermediate
processes are listed in Table 1. The mass and width of the
ao(1817)" are (1.817 % 0.008, £ 0.020,,,) GeV/c? and
(0.097 £ 0.022, + 0.0154,) GeV/c?, respectively.

Some tests are made to further clarify the existence of the
ao(1817)". First, the recoil of the Kj(700) may cause an
enhancement at the high end of the KgK * spectrum, but the
shape of the K{(700) does not match the distribution of
data and has a significance less than 30. Second, the log-
likelihood value of a fit with the K{j(700) included and the
ao(1817)" excluded decreases by 40 compared to the
nominal fit. In addition, even though the p(1700)* and
the a,(1700)" peak at the same position as the aq(1817)"
in the K‘;K * spectrum, the log-likelihood value is worse by

70 units when these resonances are included instead of
the aq(1817)7.

TABLE 1.

The differences between the results of the nominal fit and
the following alternative fits are assigned as the systematic
uncertainties for the amplitude analysis. To estimate the
systematic uncertainty related to resonances, the masses
and widths of the K*(892)°, K*(892)", a((980)", and
K*(1410)° are varied by their uncertainties [23]. The
uncertainty associated with Blatt-Weisskopf barriers are
studied by varying the radii by =1 GeV~!. The uncertainty
caused by background is studied by increasing or decreas-
ing f, within its statistical uncertainty, and by varying
the proportion of MC background components according
to the uncertainties of their cross section measurement.
The intermediate resonances with statistical significances
less than 5S¢ are included in the fit one by one and the
largest difference with respect to the baseline fit is taken
as the systematic uncertainty. The acceptance of the
detector is examined by repeating the amplitude analysis
fit with different particle-identification and tracking effi-
ciencies according to their uncertainties. The total uncer-
tainties are determined by adding all the contributions in
quadrature.

To measure the absolute BF of the process
Dy — KYK* 7% we use the same event selection criteria
as those for the amplitude analysis, except that the
momentum of the final state z* originating from the signal
D7 meson is required to be greater than 0.1 GeV/c to
remove soft pions from D** decays, and the best candidate
strategy is changed. The best ST candidate from the tagged
D7 is chosen using the recoiling mass closest to the known

Phases, FFs, BFs, and statistical significances (o) of intermediate processes with the final state K2K+ﬂ0. The first and

second uncertainties are statistical and systematic, respectively. Because of interference effects, the total of the FFs is not necessarily

equal to 100%.

BF (1073)

Amplitude Phase (rad) FF (%) o
D — K*(892)°K™ 0.0 (fixed) 327+£22+19 477 £0.38 £0.32 > 10
D} - K*(892)+K‘§ —-0.16 £0.12 £0.11 139+1.7£1.3 2.03 +0.26 +0.20 > 10
D} — ay(980)* z° —-0.97 +£0.27 £0.25 77+£17+18 1.12+£0.25 £0.27 6.7
D — K*(1410)°K+ 0.17 £0.15+0.08 6.0+14+1.3 0.88 +0.21 +0.19 7.6
D} = ay(1817)*2° -2.554+0.21 £0.07 23.6t£34+£20 344 +£0.52+0.32 > 10
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FIG. 3. Fits to (a)~(h) the M, distributions of the ST
candidates of various tag modes and (i) the Mg, distribution
of the DT candidates. The data samples are represented by points
with error bars, the total fit results by blue solid lines, and
backgrounds by violet dashed lines. The pairs of pink arrows
indicate the signal regions.

D" mass [23] per tag mode. The best DT candidate is
chosen using the average mass of the tagged Dy (M,,) and
the signal D (My;,) closest to the known D, mass per tag
mode. The BF of the Df — KYK*z° decay is deter-
mined by

DT
B(Df — KK+ 7°) = L (2)
o aNSTeR /et

a,sig

where a represents various tag modes. The ST yield for tag
mode a, N3", is obtained from fits to the M,,, distributions
of the ST candidates from the data sample, as shown in
Figs. 3(a)-3(h). The MC-simulated shape convolved with a
Gaussian function is used to model the signal shape while
the background shape is parametrized by a second-order
Chebyshev function. The MC-simulated shapes of D™ —
K3n~ and Dy — natn~n~ decays are added to the
Chebyshev functions in the fits to Dy — K3K~ and
Dy — 7717/, respectively, to account for peaking back-
ground. The DT yield, Ng;, is determined from the fit
to the M, distribution of the DT candidates from the data
sample, as shown in Fig. 3(i), in which the signal shape is
the MC-simulated shape convolved with a Gaussian func-
tion and the background shape is described by the MC-
simulated background shape. The inclusive MC samples
with D — K%K *z° events generated based on the ampli-
tude analysis are studied to determine the ST efficiencies
e;" and DT efficiencies €](;,. The total ST yield of all tag
modes and the DT yield are 531217 + 2235 and 985 =+ 40,
respectively. The BF of the Df — K%Kz’ decay is
determined to be (1.46 & 0.064, & 0.054)%. The BFs

for various intermediate processes are calculated with B; =
FF; x B(D} — K9K*z°) and the results are listed in
Table I.

The systematic uncertainties on the BF measurement
from the following sources are studied. The uncertainty in
the total number of the ST Dy mesons is assigned to be
0.4%, including the changes of the fit yields when varying
the signal shape, background shape, and taking into
account the background fluctuation in the fit. The uncer-
tainty associated with the background shape in the fit to the
Mg, distribution is estimated to be 1.9% by replacing the
nominal background shape with a second-order Chebyshev
function. The uncertainty for the K9 reconstruction effi-
ciency is estimated to be 1.5% by using control samples of
J/w — KYK "z~ and pKOK"n~ decays. The K™ particle-
identification and tracking efficiencies are studied with
ete” - K"K n"zn~ events. The data-MC differences of
the K™ particle-identification and tracking efficiencies are
assigned as systematic uncertainties, which are both 1.0%.
The systematic uncertainty of the z° reconstruction effi-
ciency is investigated by using a control sample of the
process ete” — KTK ztz~ 2" and a 2.0% systematic
uncertainty is assigned. The systematic uncertainty caused
by the amplitude analysis model is studied by varying the
parameters in the amplitude analysis fit according to the
covariance matrix. The change of signal efficiency, 0.7%, is
set as the corresponding systematic uncertainty.

In summary, this Letter presents the first amplitude
analysis of the decay D — KK *7" using 6.32 fb~! of
ete™ annihilation data taken at center-of-mass energies
between 4.178 and 4.226 GeV. The BF of D] — K{K*z°
is determined to be (1.46 £ 0.06, & 0.05)%, which is
consistent with the CLEO result [24]. The precision is
improved by a factor of 2.8.

The phases and the FFs of intermediate states are
listed in Table I. The statistical significance of D] —
ay(1817)* 2% is found to be greater than 10c. The mass
and width of the ay(1817)" are measured to be (1.817 +
0.008, & 0.0204y5) GeV/ ¢ and (0.097 £ 0.0224,+
0.015y) GeV/ c?, respectively. Along with the observed
enhancement at the K9KY mass threshold in D] —
KKz [10], our result supports the existence of a
new a, triplet. The BF of Di — a¢(1817)*z° with
ao(1817)" — KYK™ is roughly consistent with the pre-
diction [2] assuming the a(1817)" meson is the candidate
isospin-one partner of the f,(1710) meson, proposed by
Refs. [1-6]. However, the mass is about 100 MeV/c?
greater than the predicted value. This higher mass may
imply instead that this ag-like state is the isospin-one
partner of the X(1812) [12]. A more sophisticated study of
this ay-like state is expected in a simultaneous amplitude
analysis of D] — K3K*7° and K%Kz ™" in the future.

In addition, the ratio {B[D} — K*(892)°K*]/B[D} —
K°K*(892)*]} is determined to be 2.351053, £ 0.104.
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The contribution of D — a((980)z° is also observed.
Using B[D{ — a((980)*z°] [16], we determine the
ratio  {B[ap(980)" — K°K*]/B[ay(980)" — zty]} =
(13.7 & 3640 % 4.2431)%.
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