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We suggest a novel resolution for a decades old mystery—what happens when a positron scatters off a
minimal grand-unification-theory monopole in an s wave, a puzzle first discussed by Callan in 1983. Using
the language of on shell amplitudes and pairwise helicity we suggest that the final state contains two up
quarks and a down quark in an entangled “pairwise” multiparticle state—the only particle final state that
satisfies angular momentum and gauge charge conservation. The cross section for this process is as large as
in the original Rubakov-Callan effect, only suppressed by the QCD scale. The final state we find cannot be
seen in Callan’s truncated 2D theory, since our new pairwise state appears only in more than two
dimensions.
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Introduction.—The scattering of electrically charged
fermions with magnetic monopoles is a very peculiar
process [1]. Until recently the theoretical understanding
of these processes faced three major difficulties:
(i) Weinberg [2] found that the scattering amplitudes are
not Lorentz invariant, (ii) multiparticle scattering states
with both electric and magnetic charges carry additional
angular momentum in the gauge field [3,4] and cannot be
written as tensor products of Wigner’s one-particle states,
and (iii) the analysis of the scattering of grand unified
theory (GUT) monopoles seemingly led to the conclusion
that one must either give up on conservation of gauge
charges or accept the existence of fractional particles [5].
The Lorentz violation problem was resolved by all orders

resummation in Ref. [6] and order-by-order for the special
case of monopoles bound with antimonopoles in Ref. [7].
The problem with multiparticle states was resolved by the
inclusion of an additional quantum number called pairwise
helicity [8,9]. In this Letter, we will present a resolution of
the final problem.
To understand the essence of the final problem regarding

the scattering of GUT monopoles it is helpful to recall a
surprising fact about U(1) theories with magnetic mono-
poles and massless, oppositely charged Weyl fermions.
When one of the Weyl fermions scatters with the monopole

in such a theory, angular momentum conservation forbids
forward scattering in the lowest partial wave. Instead,
the massless fermion must flip its chirality [10] by turning
into the Charge conjugation × Parity (CP) conjugate of the
other fermion. We can embed this simple theory into a ‘t
Hooft-Polyakov model [11] with an SU(2) gauge group and
twoWeyl doublets (An even number of doublets is required
to avoid the Witten global anomaly.). This theory has an
SU(2) flavor symmetry, which is perfectly consistent with
the helicity flip process if the flavor flips as well. Things
become more subtle in a model with four doublets where
the helicity flip process is forbidden by an SU(4) global
symmetry. The global symmetry allows processes with one
fermion initial state scattering into three fermion final states
as well as processes where [5] two incoming fermions
scatter to two outgoing fermions [12]. The proton decay
catalyzed by the latter type of process produces the leading
observational bounds on the relic density of GUT monop-
oles in the Universe [13].
Callan [5] was the first to study the scattering of a

positron off a GUT monopole. The problem reduces to the
four flavor ‘t Hooft-Polyakov model in a limit where some
gauge couplings are dropped, implying again that there
have to be at least three fermions in the final state.
Truncating to 2D and reformulating the problem in terms
of solitons, Callan concluded [5,14] that there was no
possible three fermion final state that preserved all of
the gauge quantum numbers. As noticed by Witten, the
truncated theory produced half solitons (also known as
“semitons”) in the final state [5], which they identified with
“half particles” in the full theory. With the fermion masses
set to zero these states, if they existed, would have to be true
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asymptotic final states far from the monopole, where
perturbation theory can be reliably applied. Since these
states cannot arise in perturbation theory, Callan suggested
[5] that there could be some kind of statistical under-
standing where charge conservation is violated in individ-
ual events but is conserved on average. However this
explanation was never fully embraced, since gauge invari-
ance of the full 4D theory does not allow for such a
probabilistic conservation.
The aim of this Letter is to find the form of the amplitude

for this process by making use of helicity amplitudes and
pairwise helicity. We will indeed be able to identify the
unique form of the amplitude that preserves all gauge
quantum numbers, angular momentum, and the approxi-
mate global flavor symmetry. As in the helicity-flip process
discussed above, forward scattering is forbidden, and
surprisingly the unique out-state comprises three fermions
in a novel quantum state called a “pairwise” state [8,9].
In this “pairwise” final state, the spins of the fermions
combine with the angular momentum in the gauge field into
a total J ¼ 0 partial wave. This amplitude corresponds to
the lowest dimensional operator without derivatives in the
low-energy effective theory. Thus we find that mono-
poles can produce fermions in a “pairwise” quantum state
in an overall J ¼ 0 partial wave, with a cross section
satisfying the s-wave unitarity bound.
Rubakov-Callan interactions.—Consider the minimal

SU(5) GUT monopole obtained by embedding the standard
‘t Hooft-Polyakov monopole [11] into the SUð2ÞM ⊂
SUð5Þ generated by Ti

M ¼ diagð0; 0; τi; 0Þ. Far away from
the monopole, the full SU(5) gauge symmetry is broken by
a Higgs in the adjoint of SU(5) to the standard model (SM)
gauge group which includes the Uð1ÞM generated by T3

M.
The monopole configuration is invariant under the com-
bined rotations generated by L⃗þ T⃗, where L⃗ is the orbital
angular momentum operator and T⃗ is the vector of SUð2ÞM
generators Ti

M. In the SU(5) GUT, every generation of SM
fermions is embedded in a 5̄ and a 10. Under SUð2ÞM, these
decompose into four doublets:

�
e

−d̄3

�
;

�
ū1

u2

�
;

�
−ū2

u1

�
;

�
d3

ē

�
; ð1Þ

where the upper and lower components have charge
eM ¼ � 1

2
under Uð1ÞM, and all other fermions are

SUð2ÞM singlets. We labeled the particles by the corre-
sponding left-handed fields; the right-handed particles
correspond to Hermitian conjugates of these fields. Here
the 1,2,3 label global color charge, which is broken in the
vicinity of the monopole. Furthermore, in this Letter,
we take the monopole to have charge gM ¼ −1 for
consistency with Rubakov’s notation [15]. This means that
q ¼ eMgM ¼ −1=2 for e; ū1; ū2; d3 while q ¼ 1=2 for
d̄3; u2; u1; ē. In the early ’80s, Rubakov and Callan [12]

independently derived a remarkable feature of fermion-
monopole scattering. When a pair of u1 þ u2 quarks is
incident on the monopole, there are seemingly two possible
outgoing states which conserve all SM quantum numbers—
the initial state itself (i.e., forward scattering), and the state
d3

† þ e†. Rubakov and Callan showed that the J ¼ 0 partial
wave cannot undergo forward scattering. Instead, the
incoming u1, u2 in this partial wave are converted to
d3

† þ e†, thus violating the baryon number (B).
To see this effect, both Rubakov and Callan focused on a

truncated theory in which one only retains the J ¼ 0 partial
wave for each fermion. Famously [12], in this truncated
theory, fermions with q ¼ −1=2 exist only as incoming
waves, while those with q ¼ 1=2 exist only as outgoing
waves. In particular, this implies that forward scattering is
always forbidden. Note that the Hermitian conjugates of the
fields in Eq. (1) have the opposite charge and helicity so e†

is also an outgoing wave. Consequently, monopoles induce
a B-violating process with a cross section saturating the
J ¼ 0 unitarity bound. When QCD confinement is taken
into account, this leads to monopoles catalyzing proton
decay with a QCD scale cross section, counter to the naive
intuition that the cross section is suppressed by the
scattering energy over the GUT scale. In other words,
monopole induced B-violation is a nondecoupling process.
In comparison, the standard B-violating processes in SU(5)
GUT are mediated by the X and Y GUT bosons and are
suppressed by ðE=MGUTÞn; n ¼ 2–4 and so are negligible
compared with monopole catalysis. The leading observa-
tional bounds on the relic density of GUT monopoles in the
Universe are then derived from proton-neutron decay
catalyzed by monopole capture in neutron stars [13].
Monopole catalysis and pairwise helicity.—In Ref. [8],

the most general form of the S matrix for the scattering of
monopoles and charges was constructed. The main take-
away from this construction is that the multiparticle
asymptotic states of the S matrix are not tensor products
of single particle states. In particular, under Lorentz trans-
formations, they pick up an extra little group phase for
every monopole-charge (or dyon-dyon) pair. For example,
consider a two-particle state where each particle has electric
and magnetic charges ðei; giÞ and spin si. This state
transforms as

UðΛÞjpi; pj; si; sj; qiji
¼ eiqijϕijDs0i;si

Ds0j;sj
jΛpi;Λpj; s0i; s

0
j; qiji; ð2Þ

Here U(Λ) is the unitary representation of the Lorentz
transformation Λ, while the Dab represent single particle
little group factors. The extra “pairwise little group” phase
eiqijϕij is unique to multiparticle states involving monopoles
and charges (or any other mutually nonlocal particles). The
pairwise helicity qij is half integer since it labels charges
under the pairwise little group, which is a compact U(1) [8].

PHYSICAL REVIEW LETTERS 129, 181601 (2022)

181601-2



It has a natural interpretation as the quantity

qij ¼ eMigMj − eMjgMi; ð3Þ

which is quantized in half integer units by the Dirac-
Zwanziger-Schwinger quantization condition [16].
A more detailed definition of electric magnetic multi-

particle states was given in Ref. [9]. The transformation
rule [Eq. (2)] implies additional constraints on scattering
amplitudes involving monopoles—the functional form of
the scattering amplitude has to be such that

AðΛp1;…;Λpn;Λk1;…;ΛkmÞ
¼ e−i

P
qijϕijÃðp1;…; pn; k1;…; kmÞ; ð4Þ

where Ã is the amplitude A times all of the single particle
little group transformations Di. To construct amplitudes
with the required transformation rule Ref. [8] defined new
spinor-helicity variables called “pairwise spinors,” denoted
by jp♭�

ij i, defined for each pair of particles in the in or out-
state. For completeness, we repeat the definition of the
standard massless spinor-helicity variables, as well as the
pairwise spinor-helicity variables in the Supplemental
Material [17]. The spinors have pairwise helicity � under
the pairwise little group associated with the particles i and
j. In other words, they transform as

Λ̃jp♭�
ij i ¼ e�i

2
ϕðpi;pj;ΛÞjΛp♭�

ij i
½p♭�

ij jΛ̃ ¼ e∓i
2
ϕðpi;pj;ΛÞ½Λp♭�

ij j; ð5Þ

where Λ and Λ̃ are Lorentz transformations acting in vector
and spinor spaces respectively. Finally, the pairwise spinors
have the important property that they align with some of
the standard spinor helicity variables in the massless limit.
In particular,

hip♭þ
ij i ¼ ½ip♭þ

ij � ¼ 0

hjp♭−
ij i ¼ ½jp♭−

ij � ¼ 0: ð6Þ

The vanishing of these contractions plays a central role in
explaining the peculiarities of the Rubakov-Callan effect.
To see the relation between pairwise helicity and the

Rubakov-Callan effect, let us consider an incoming state
involving the massless fermions u1, u2, both with electric
charge eM ¼ −1=2 and a scalar monopoleM with magnetic
charge gM ¼ −1. Let us now focus on the s-wave partial
amplitude involving in and out states with total angular
momentum J ¼ 0. In this case the amplitude splits into an
incoming and and outgoing part, each one depending only
on the incoming-outgoing momenta and with all spinor
indices contracted (since J ¼ 0). As qu1;M ¼ qu2;M ¼ −1=2,
the incoming part of the amplitude is

½u1p♭−
u1;M�½u2p♭−

u2;M�; ð7Þ

where jp♭−
ui;M� are pairwise spinors,while ½uij are the standard

massless spinor helicity variables. To see that this in-state
transforms correctly, note that the jp♭−

ui;M� each carry pairwise
helicity−1=2 under the ui;M pairwise little group, while the
½uij transform like a helicity 1=2 under the single particle
little group for ui, which is suitable since incoming left-
handed fermions carry helicity 1=2 in our all-outgoing
convention. In contrast, outgoing left-handed fermions carry
helicity −1=2 in this convention. Note that pairwise helicity
is not flipped between incoming and outgoing particles [8].
We can now easily see why there cannot be forward

scattering in this process. Let us try to represent the would-
be out-state relevant for forward scattering, i.e., involving
the same u1, u2. The out part of the amplitude has to be

hu1p♭þ
u1;M

ihu2p♭þ
u2;M

i: ð8Þ

Note that the sign on the pairwise spinors is flipped so as to
preserve their pairwise helicity under j� → ji. However, this
expression vanishes by [Eq. (6)]. There cannot be forward
scattering of fermions on a monopole in the lowest par-
tial wave.
Having established that there is no forward scattering for

the Rubakov-Callan in-state, we now turn to write down the
only possible final state (There are technically other valid,
anomalous, and baryon number violating processes that
respect the SU(4) flavor symmetry. These correspond to the
two disjoint processes u1 þ u2 þM → e† þ d̄3† þM and
M → M þ any set of fermions with

P
charges ¼ 0.

Since the Rubakov-Callan process is already a subprocess
of this possibility, we will only address the pure Rubakov-
Callan amplitude, as it leads to the inclusive cross section
for monopole catalysis.) which respects all SM quantum
numbers, as well as the overall SU(4) flavor symmetry.
This out-state involves the fermions e†; d3†. The corre-
sponding outgoing part of the amplitude is

½e†p♭−
e†;M�½d3†p♭−

d3†;M�: ð9Þ

It transforms correctly under the pairwise little group, since
qe†;M ¼ qd3†;M ¼ 1=2. Since this is the only possible out-
state, we have a simple derivation of the Rubakov-Callan
amplitude

ARubakov−Callan ∝ ½u1p♭−
u1;M�½u2p♭−

u2;M�½e†p♭−
e†;M�½d3†p♭−

d3†;M�:
ð10Þ

The overall cross section for the process satisfies the
s-wave unitarity bound, and so should be proportional to
4πp−2

c where pc is the center of mass momentum. When
taking QCD confinement of the incoming quarks into
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account, the incoming quarks are confined to within a
distance of Λ−1 of each other, and the cross section
becomes OðΛ−2Þ.
Taking aim at a 40 year old mystery.—When a positron ē

scatters off of a GUT monopole, forward scattering is again
forbidden by angular momentum conservation, while the
flavor symmetry constrains the out-state to have three (mod
4) fermions. The only possible out-state with three fermions
which conserves all quantum numbers is

ū1† þ ū2† þ d̄3†: ð11Þ

Despite this, Callan argued that this final state is impos-
sible, since in the presence of the monopole, the d̄3† cannot
exist in a one-particle outgoing partial wave with J ¼ 0.
Starting with a truncated 2D theory including only fer-
mions in one-particle J ¼ 0 waves, Callan then applied 2D
bosonization to represent the fermions as solitons. He then
found that the 2D final state consists of four semitons, or
“half particles.” For the initial state of an ē he found the
semitonic final state 1=2ðe† þ ū1† þ ū2† þ d3Þ. Since “half
particles” do not exist in the 4D theory Callan suggested the
interpretation that half the time one would produce a
positron, and half the time one would produce a proton.
These proposed individual processes do not conserve SM
gauge charges, but would do so on average.
The semiton puzzle posed by Callan has since been

analyzed by many authors within the framework of a 2D
effective theory on the half line r ≥ 0. Sen [18] claimed
that conservation laws ensure that there are no monopole
processes allowed with one fermion in the initial state and
three fermions in the final state. If this were true then there
would either have to be processes with more fermions
(3 mod 4) or a mechanism that prevented single fermions
from encountering a monopole. Note, however, that the
conservation laws that Sen used are only valid in the 2D
truncated theory which leaves out the possibility of pair-
wise multiparticle final states. Within the effective 2D
framework, the puzzle has been boiled down to finding
the correct boundary condition imposed on the 2D fermions
by the monopole collective coordinate. Polchinski [19]
showed that the dyon collective coordinate can be effec-
tively integrated out, leaving an effective “dyon” boundary
condition which is nonlinear in the 2D fermions [20]. This
problem has been systematically analyzed by Affleck and
Sagi [21] and more recently by Boyle Smith and Tong [22],
by applying Cardy’s method relating boundary conditions
and boundary states in a 2D conformal field theory with
boundary [23]. In the particular case of four fermionic
flavors without gauge interactions, Maldacena and Ludwig
[24] identified an SO(8) global symmetry and showed that
the dyon boundary condition linearizes upon the use of SO
(8) triality. The extensive work done within the effective 2D
theory effectively solved the unitarity puzzle within the
effective 2D theory—and showed that the semiton picture is

essentially correct. Nevertheless, it is still far from clear
how this 2D solution lifts to a physical 4D solution. In
particular, it is not clear what happens in the GUT
monopole process where the fermions have chiral non-
Abelian charges that break the SO(8) symmetry. Moreover,
it is not clear that the truncated 2D theory indeed captures
all of the relevant degrees of freedom of the dimensionally
reduced 4D theory. Indeed, if semitons existed in 4D they
would violate Dirac charge quantization.
Kitano and Matsudo [25] suggested that the semitons

should be identified in the 4D theory with a “pancake”
soliton: a domain wall bounded by a string. These pancakes
are supposed to be heretofore unknown asymptotic states of
the gauge theory. For this to be a consistent interpretation in
the massless fermion limit, the pancake would also have to
have arbitrarily small energies since the incoming positron
energy can be arbitrarily small.
Using the pairwise helicity formalism, we are able for the

first time to propose a simple 4D final state for positron-
monopole scattering. This final state does, in fact, consist of
the fermions in Eq. (11), which conserve all of the SM
quantum numbers and respect the approximate SU(4)
flavor symmetry. The novelty here is that the final state
fermions are in a “pairwise” quantum state, which is by
definition not a tensor product of single particle states. In an
entangled pairwise state, the helicity of one fermion can
combine with field angular momentum arising from one of
the other particles. This allows the multiparticle state to be
in an overall J ¼ 0 state, even though none of the
individual fermions is in a one-particle J ¼ 0 state. The
amplitude for this process is

Aē ∝ ½ēp♭−
ē†;M�½ū1†p♭−

ū1†;M�½ū2†p♭þ
d̄3†;M

�½d̄3†p♭−
ū2†;M� − ð1 ↔ 2Þ:

ð12Þ

Note that we cannot arrange a similar balancing of
helicity and field angular momentum when there are only
two fermions in the final state. This can be seen by
considering the following setup. First, focus on the case
where the monopole is heavy and static, and work in
monopole rest frame, where the fermion momenta back-to-
back along the z-axis (without loss of generality). By
definition, the flat momenta are also back to back along the
z-axis—and so the contraction of a flat spinor with the
regular spinor of the opposite particle gives exactly zero.
For finite monopole masses there could be a contribution
that is suppressed by the monopole mass, but this cannot
saturate the unitarity bound.
Note that truncating to 2D is equivalent to demanding

that each one of the outgoing fermions is in an individual
J ¼ 0 partial wave, which in the on shell language means
that each single particle spinor ½ēj; ½ū1†j; ½ū2†j; ½d̄3†j has to
be contracted with its own pairwise spinor. In particular,
that means that the correct final state [Eq. (12)] is missed in
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the 2D truncated theory. Moreover, ½d̄3†p♭þ
d̄3†;M

� ¼ 0 by
Eq. (6), and so the truncated 2D theory seems to not have
any allowed final state for this process.
Finally, we can extend our analysis of monopole cataly-

sis processes to an arbitrary gauge groupGwith Lie algebra
g andNF fermions. Note that in an anomaly free theory, our
method will always yield a valid out-state for any valid in-
state. This is because the cancellation of the gravitational
anomaly guarantees that the sum of Uð1Þj charges of all
fermions in the theory vanishes for all Uð1Þj in the Cartan
subalgebra c of g. Hence for any valid Jtot ¼ 0 in-state there
will be a valid Jtot ¼ 0 out-state which conserves all
charges in c and leads to an amplitude which respects
the global (In that we mean that NF flavors appear as
external legs, as in an ’t Hooft vertex.) SUðNFÞ. Sometimes
there will be more than one such out-state; for example, in
the SU(5) GUT setup we find the possibility of the
Rubakov-Callan process accompanied by any set of fer-
mions with the sum of charges equal to 0. Conversely, if the
theory has a gravitational anomaly, it means that there are
some fermions that do not fall into anomaly free multiplets.
Take one of these to be the in-state (if there is not one in the
presence of the monopole we can always consider scatter-
ing with an antimonopole). Then the scattering does not
have a valid, charge conserving out-state such that the
amplitude respects SUðNFÞ.
Challenges and future work.—Our proposed solution

[Eq. (12)] to the monopole unitarity puzzle is based entirely
on shell reasoning; it is the only 4D final state (up to
fermion pair production) which conserves all SM quantum
numbers and respects angular momentum selection rules,
expressed in terms of pairwise helicity. However, we did
not demonstrate that our suggested state is indeed produced
by the monopole. In fact, there is a potential difficulty in the
dynamical generation of our final state by the monopole
since there is an angular momentum barrier for one-particle
states. Still, this apparent impediment relies on a non-
relativistic quantum mechanical picture of fermions cova-
riantly coupled to the background field of a static
monopole. It is not clear to us whether this picture fully
captures the dynamics of the soft photon cloud sourced by
the monopole and the fermions, along with its associated
angular momentum [26]. To check this, one would have to
time evolve our proposed pairwise out-state using the full
quantum field theory Hamiltonian of monopole QED [27].
Applications.—Since cross sections that saturate partial

wave unitarity grow with the inverse of the initial momen-
tum one might naively expect that the positron scattering
process we have discussed would lead to an arbitrarily large
cross section for B violation in GUT theories. In fact the
growth is cut off at energies E < ΛQCD, as happens for the
Rubakov-Callan processes. There is, however, an important
distinction between the two.At energies lower thanΛQCD the
cross section for the Rubakov-Callan process remains fixed
atσhadronicRC ∼ κΛ−2

QCD,where κ is an unknownQCD-dependent

Oð1Þ coefficient. This is because the incoming state for this
process involves both a u1 and a u2 that arrive to the
monopole confined within a distance of ∼Λ−1

QCD inside the
proton. In contrast, the B-violating cross section for positron-
monopole scattering becomes zero at low energies. This can
be seen as follows.Once the initial energy is below the sumof
the monopole and proton masses, the final state of three
quarks cannot hadronize into a proton. In the monopole rest
frame the three quark statewill carry the initialmomentumof
the positron. Once the separations of the quarks reaches the
QCD scale, the quarks will be forced to travel in the same
direction, so two of the quarks will have their momentum
flipped by QCD interactions. Since QCD also breaks
chirality, their chirality can also be flipped, and they can
become in-state for a second interaction with the monopole.
Twoquarks scattering on themonopole produce an antiquark
and a lepton. The antiquark can annihilatewith the remaining
quark to produce two photons or a lepton-antilepton pair.
Thus below theproton threshold there is noBviolation, aswe
expect from energy conservation, and the B-violating cross
section is cut off at the QCD scale.
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