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We present a new operational framework for studying “superpositions of spacetimes,” which are of
fundamental interest in the development of a theory of quantum gravity. Our approach capitalizes on
nonlocal correlations in curved spacetime quantum field theory, allowing us to formulate a metric for
spacetime superpositions as well as characterizing the coupling of particle detectors to a quantum field. We
apply our approach to analyze the dynamics of a detector (using the Unruh-deWitt model) in a spacetime
generated by a Banados-Teitelboim-Zanelli black hole in a superposition of masses. We find that the
detector exhibits signatures of quantum-gravitational effects corroborating and extending Bekenstein’s
seminal conjecture concerning the quantized mass spectrum of black holes in quantum gravity. Crucially,
this result follows directly from our approach, without any additional assumptions about the black hole
mass properties.
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Introduction.—Black holes continue to captivate phys-
icists from a diverse array of backgrounds, from cosmology
and astroparticle physics to quantum field theory and
general relativity. Because of the extreme gravitational
environments they generate, they are considered primary
candidates for studying regimes in which quantum gravity
effects are present [1–3]. Indeed, the discoveries of
Hawking radiation [4] and black hole evaporation [5] gave
rise to the well-known information paradox [6–9] and an
entire field seeking its resolution, which aptly illustrates the
existing conflicts between quantum theory and general
relativity.
Bekenstein [10–12] was among the first to recognize that

a complete theory of quantum gravity must account for the
treatment of black holes as quantum objects. His key
insight was in demonstrating that the black hole horizon
area, and hence its mass, is an adiabatic invariant, with an
associated discrete quantization [13] and evenly spaced
energy levels [14]. These pioneering studies have given rise
to the burgeoning research field of quantum black holes
[15–20].
The existence of mass-quantized black holes implies that

they may also exist in superpositions of mass eigenstates. A
mass-superposed black hole is an example of a quantum
superposition of spacetimes; since the different masses
individually define a unique classical solution to Einstein’s
field equations, the resulting amplitudes of the mass
superposition correspond to associated “spacetime states.”

Understanding the effects that arise in such spacetime
superpositions is an important stepping stone toward
developing a complete description of a quantized space-
time. “Top-down” approaches—those seeking to formally
quantize general relativity—date back to the Wheeler-
deWitt equation [21,22], a wave functional of the metric
that offered a conceptual scheme for dealing with super-
positions of spacetime geometries [23,24]. Building upon
this work, canonical quantization techniques were applied
to the metric variables [25,26], leading to the development
of loop quantization [27,28], which in turn has yielded
solutions that include black holes in a superposition of
masses [29–35].
Recently, there has been significant interest in the study

of spacetime superpositions from an operational viewpoint,
grounded in the definition of spacetime events using
physical devices (clocks, rods, and detectors). Examples
include investigations into the resulting quantum causal
structures [36,37], quantum reference frames and the equiv-
alence principle [38–41], and fundamental decoherence
mechanisms [42], along with applications to analog gravity
[43] and tabletop experiments aimed at testing the quantum
nature of gravity [44–46]. A recent investigation developed
an approachwhere a particle detector (modelled as anUnruh-
deWitt detector [47]) evolves in a de Sitter spacetime in
superpositions of spatial translations and curvature to study
the quantum effects arising in such a background [48].
However, the conformal equivalence of de Sitter and
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Rindler spacetime (a uniformly accelerated reference
frame in Minkowski spacetime) meant that even in
such a scenario some of the effects were equivalent to
those experienced by a detector in a superposition
of semiclassical trajectories in Minkowski spacetime
[49,50].
We are thus motivated by a problem of fundamental

interest, namely the detection of genuinely quantum-gravi-
tational effects that do not arise for relativistic quantum
matter in a classical spacetime [51]. In this Letter, we
propose an operational method for constructing and quan-
titatively analyzing effects produced by general spacetime
superpositions, and apply it to the analytically tractable
(2þ 1)-dimensional Banados-Teitelboim-Zanelli (BTZ)
black hole. We show that the black hole mass superposition
elicits novel effects with no direct analog in a classical
spacetime. We obtain a “conditional” metric for the
spacetime superposition, which builds upon approaches
in which correlations in quantum field theory act as a proxy
for spacetime distance [52,53]. These (two-point) field
correlations include those evaluated between the different
spacetime amplitudes in superposition [54,55]. In this way
we are able to calculate the response of a particle detector in
the nonclassical spacetime considered. As the detector
interacts with the Hawking radiation of the black hole,
its response experiences resonances at squared rational
values of the ratio between the superposed mass values.
This effect provides a novel, independent signature that
supports and extends Bekenstein’s conjecture regarding the
discrete mass eigenspectrum of quantum black holes.
Throughout we use natural units: ℏ ¼ kB ¼ c ¼ 8G ¼ 1.
The BTZ black hole.—The BTZ black hole is a (2þ 1)-

dimensional solution to Einstein’s field equations with a
negative cosmological constant Λ ¼ −1=l2, where l is the
anti-de Sitter (AdS) length scale (the BTZ spacetime is
asymptotically AdS) [56–58]. While our method of cou-
pling matter to a superposition of spacetimes applies to
any metric and spacetime dimension, the advantage of
studying the BTZ spacetime first is that its field correlation
functions have analytic closed forms [59–66], whereas in
its (3þ 1)-dimensional counterparts (e.g., Schwarzschild
or Schwarzschild-AdS spacetimes), computationally ex-
pensive mode sums are usually needed.
The BTZ spacetime is obtained as a quotient of AdS-

Rindler spacetime [60,61,67] under the identification
Γ∶ϕ → ϕþ 2π

ffiffiffiffiffi
M

p
(see Supplemental Material [68] for

further details). The line element is

ds2 ¼ −fðrÞdt2 þ fðrÞ−1dr2 þ r2dϕ2; ð1Þ

where fðrÞ¼ðr2=l2−MÞ and ffiffiffiffiffi
M

p
l<r<∞, −∞ < t < ∞,

ϕ ∈ ½0; 2π�. The spacetime has a local Tolman temperature
TL ¼ rH=½2πl2

ffiffiffiffiffiffiffiffiffiffi
fðRÞp �, where R denotes the radial coor-

dinate and rH ¼ ffiffiffiffiffi
M

p
l is the radial coordinate of the event

horizon.

To construct a quantum field theory on this background,
consider an automorphic field ϕ̂ðxÞ, which for the BTZ
spacetime is constructed from an ordinary (massless scalar)
field ψ̂ in (2þ 1)-dimensional AdS spacetime (AdS3) via
the identification Γ, yielding [69]

ϕ̂ðxÞ ≔ 1ffiffiffiffiffi
N

p
X
n

ηnψ̂ðΓnxÞ; ð2Þ

where x ¼ ðt; r;ϕÞ,N ¼ P
n η

2n and η ¼ �1 (correspond-
ing to untwisted and twisted fields respectively). The
Wightman (two-point correlation) function between x, x0 is

WðDÞ
BTZðx; x0Þ ¼

1

N

X
n;m

ηnηmh0jψ̂ðΓn
DxÞψ̂ðΓm

Dx
0Þj0i; ð3Þ

where Γn
D∶ðt; r;ϕÞ → ðt; r;ϕþ 2πn

ffiffiffiffiffiffiffiffi
MD

p Þ in a BTZ space-
time with black hole mass MD. We have assumed that the
field state on the right-hand side of Eq. (3) is the AdS
vacuum state; the thermal properties of the black hole arise
from the topological identifications (see [59] for details of
constructing the BTZ Wightman function as an image sum
of the vacuum AdS Wightman function). Although the
normalization factor N is formally divergent, Eq. (3) is
finite.
We consider the field quantized on a background arising

from superposing BTZ spacetimes with different black hole
masses. The quantum black hole-quantum field system can
be described in the tensor product Hilbert space H ¼
HBH ⊗ HF, where we consider the black hole to be
(without loss of generality) in a symmetric superposition
[70] of two mass states jMAi, jMBi, while the field is in the
AdS vacuum j0i. When coupling a particle detector to the
black hole-quantum field system, we will require correla-
tion functions between the fields on the different ampli-
tudes of the superposition; an analogous procedure (see
Supplemental Material [68]) as in Eq. (3) yields

WðABÞ
BTZ ðx; x0Þ ¼

1

N

X
n;m

ηnηmh0jψ̂ðΓn
AxÞψ̂ðΓm

Bx
0Þj0i; ð4Þ

noting the two different isometries, ΓA, ΓB, corresponding
to the superposed masses, MA, MB, that act on the
coordinates of the field operators.
Particle detectors.—To couple matter to the quantum

black hole-field system, we use the Unruh-deWitt model,
which considers a pointlike two-level system linearly
coupled to the field [47]. In our case, the interaction
Hamiltonian reads

Ĥint: ¼ ληðτÞσ̂ðτÞ
X

D¼A;B

ϕ̂ðxDÞ ⊗ jMDihMDj; ð5Þ

where jλj ≪ 1 is the coupling constant, ηðτÞ is a time-
dependent switching function, and σ̂ðτÞ ¼ ðjeihgjeiΩτ þ
H:c:Þ is the SU(2) ladder operator between the detector’s
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energy eigenstates jgi and jei with energy gap Ω,
jMDihMDj is a projector on the black hole mass, and
ϕ̂ðxDÞ is the field operator for the spacetime associated with
black hole mass MD. This interaction means that for each
mass MD, the field is identified accordingly, i.e.,
ðt; r;ϕÞ → ðt; r;ϕþ 2πn

ffiffiffiffiffiffiffiffi
MD

p Þ. Finally, τ is a proper time
related to the coordinate time t of the BTZ spacetime with
massMD by τ ¼ γDt, where γD ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fðMD;RÞ
p

is a redshift
factor evaluated at the radial coordinate of the detector. We
take the detector to be prepared in its ground state jgi at a
fixed radial coordinate R, which for the superposed black
hole means it is in a superposition of proper distances from
the horizon. The evolution of the system relative to the
coordinate time t is described as

jψðtfÞi ¼ e−iĤ0;Stf Ûðti; tfÞeiĤ0;Sti jψðtiÞi; ð6Þ

where Ĥ0;S is the free Hamiltonian of the whole system,
including the evolution of the mass eigenstates of the black
hole between the initial and final times ti and tf. This
evolution introduces a relative phase between the constitu-
ent states of the superposition. Particular attention must be
paid to the definition of ti and tf. Here, we assume that the
quantum black hole-field-detector system is in a tensor
product with an external “clock state” whose time coor-
dinate defines the evolution of the whole system. For
example, for sufficiently large radial coordinate r, the
fractional difference in proper times of the clock between
two spacetimes with mass MA and MB, respectively, is
ðMB −MAÞl2=2r. Given the finite precision of any physical
clock, such a factorizable clock state can thus be associated
with the proper time of a clock at sufficiently large r. One
should expect a theory of quantum gravity describing
spacetime superpositions to admit these kinds of factoriz-
able clock states, as well as clock states that are entangled
with the spacetime [71].
Returning to Eq. (6), we expand the time-evolution

operator to leading order in the coupling strength

Ûðti; tfÞ ¼ I þ Ûð1Þ þ Ûð2Þ þOðλ3Þ; ð7Þ

where the first- and second-order terms are

Ûð1Þ ¼ −iλ
Z

tf

ti

dτ Ĥint:ðτÞ; ð8Þ

Ûð2Þ ¼ −λ2
Z

tf

ti

dτ
Z

τ

ti

dτ0Ĥint:ðτÞĤint:ðτ0Þ: ð9Þ

We evolve the initial state according to Eq. (6) and then look
at the final state of the detector conditioned on measuring or
projecting the black hole in a mass-superposition basis. This
scenario describes a Mach-Zehnder type interference where
the interferometric paths are associated with different mass
states of the black hole, and yields a detector transition

probability conditioned upon the measurement. If one
considers, for example, a measurement in the symmetric-
antisymmetric superposition basis j�i, then one finds that
the ground and excited state probabilities of the detector are
(see Supplemental Material [68])

Pð�Þ
G ¼ 1

2
½1� cosðΔEΔtÞ�

�
1 −

λ2

2
ðPA þ PBÞ

�
; ð10Þ

Pð�Þ
E ¼ λ2

4
ðPA þ PB � 2 cosðΔEΔtÞLABÞ; ð11Þ

where PD (D ¼ A, B) is the transition probability of a static
detector outside a BTZ black hole with classical mass MD,
while LAB is a cross-correlation term quantifying the
correlations between the fields on the spacetime super-
position. Explicitly,

PD ¼
Z

tf

ti

dτ
Z

tf

ti

dτ0χðτÞχ̄ðτ0ÞWðDÞ
BTZðx; x0Þ; ð12Þ

LAB ¼
Z

tf

ti

dτ
Z

tf

ti

dτ0χðτÞχ̄ðτ0ÞWðABÞ
BTZ ðx; x0Þ; ð13Þ

where χðτÞ ¼ ηðτÞe−iΩτ. We have also defined ΔE ¼
j ffiffiffiffiffiffiffi

MA
p

−
ffiffiffiffiffiffiffi
MB

p j as the energy difference between the black
hole mass eigenstates (where upon restoring factors of cand
G, the energy has the appropriate units of inverse length) and
Δt ¼ tf − ti as the time window over which the interaction
is switched on. Note that the probabilities in Eqs. (10) and
(11), obtained for conditionalmeasurements in the complete
basis j�i, add to unity.
Calculations using the Unruh-deWitt model typically

take Δt → ∞; one integrates over the entire history of the
detector. In this case, the presence of an oscillating phase,
dependent on the mass and time difference, means that this
limit is not well-defined. In our analysis, we consider for
the sake of argument arbitrarily chosen values of tf such
that σ ≪ Δt, where σ is a characteristic timescale for which
the detector interacts with the field. Specifically, we
consider transition probabilities for Gaussian detector
switching functions, ηðτÞ ¼ expð−τ2=2σ2Þ, giving

PD

σ
¼

ffiffiffi
π

p
H0ð0Þ
8

−
i

8
ffiffiffi
π

p PV
Z

tf=2l

−tf=2l

dzX0ð2lzÞH0ð2lzÞ
sinhðzÞ

þ 1

4
ffiffiffiffiffiffi
2π

p P
nη

2n

X
n≠m

Re
Z

tf=l

0

dzX0ðlzÞH0ðlzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βnm− coshðzÞp ; ð14Þ

where X0ðzÞ, H0ðzÞ are functions of the detector and
spacetime parameters derived in the Supplemental
Material [68]. Likewise, the cross term is given by

LAB

σ
¼ Y0P

nη
2n

X
n;m

Re
Z

tf=l

0

dzZ0ðlzÞQ0ðlzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αnm − coshðzÞp ; ð15Þ
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with Y0, Z0ðzÞ, and Q0ðzÞ derived in the Supplemental
Material [68]. The constants αnm, βnm are given by

βnm ¼ 1

γ2D

�
R2 coshð2πðn −mÞ ffiffiffiffiffiffiffiffi

MD
p Þ

MDl2
− 1

�
; ð16Þ

αnm ¼ 1

γAγB

�
R2 cosh½2πðm ffiffiffiffiffiffiffi

MA
p

− n
ffiffiffiffiffiffiffi
MB

p Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MAMB

p
l2

− 1

�
: ð17Þ

In the Supplemental Material [68], we also derive expres-
sions for a compactly supported detector switching.
Results.—We can now analyze the response of the

detector outside the mass-superposed black hole. In
Fig. 1, we have plotted the response of the detector as a
function of the mass ratio of the black hole superposition,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MB=MA

p
. Figure 1(a) shows the conditional transition

probabilities for measurements in the symmetric and
antisymmetric superposition basis, while Fig. 1(b) consid-
ers measurements in the ji�i ¼ ðjMAi � ijMBiÞ=

ffiffiffi
2

p
basis.

The most interesting features are the resonant peaks that
occur at rational values of the square root ratio of the
superposed masses. In Fig. 1(a), we have denoted some of
these ratios with dashed lines. We ascribe this behavior to a
constructive interference effect between the field modes
associated with topologically closed AdS spacetimes,
yielding resonances in the detector response at integer
values of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MB=MA

p
. While we have shown the transition

probability for MB < MA, these resonances also occur for
MB > MA. The effect also occurs for other values of the
square root mass ratio—in Fig. 1(b), we have highlighted
the ratio

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MB=MA

p ¼ ðn − 1Þ=n for n ∈ f3; � � � 8g. To
understand this, note that in Eq. (17), the argument of
coshðxÞ vanishes when m

ffiffiffiffiffiffiffi
MA

p ¼ n
ffiffiffiffiffiffiffi
MB

p
. These “coinci-

dences” occur for terms in the image sum when the ratioffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MA=MB

p
is a rational number, which includes ratios

allowed by Bekenstein’s quantum black hole conjecture.
Specifically, the allowed mass values of the BTZ black
hole, assuming the Bohr-Sommerfeld quantization scheme
for the horizon radius, are given by [20]

rH ¼
ffiffiffiffiffi
M

p
l ¼ n; n ¼ 1; 2;…: ð18Þ

While our construction does not require that the superposed
masses are quantized in integer values, the form of Eq. (17)
explains the origin of the signatory resonances. The
detector responds uniquely to black hole mass super-
positions with mass ratios corresponding to the masses
predicted by Bekenstein’s conjecture. This result provides
independent support for Bekenstein’s conjecture, demon-
strating how the detector’s excitation probability can reveal
a genuinely quantum-gravitational property of a quantum
black hole.
Note also the low-frequency oscillation in the transition

probability as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MB=MA

p
is varied. This behavior arises

from the evolution of the black hole superposition, which
depends on the energy difference between the super-
posed states. As

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MB=MA

p
→ 1, the transition probability

approaches that of a single black hole for a measurement in
jþi, whereas it vanishes for j−i. For measurements in ji�i,
the transition probability approaches half of that of a
detector situated outside the black hole with a classical
mass value MA ¼ MB. In Fig. 1(a), the amplitude of the
oscillation decreases in the limit of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MB=MA

p
≪ 1 or≫ 1

due to the decay of the correlation term LAB.
Metric for spacetime superpositions.—Our approach has

allowed us to study the quantum effects of a spacetime
(black hole) superposition through the calculation of a
physical observable: the transition probability of a detector
coupling to the field. This observable is constructed from
the two-point correlations of the field, which remarkably

FIG. 1. Transition probability of the detector as a function offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MB=MA

p
. The measurement basis corresponding to the relevant

plot is indicated by the legend. In (a), the dashed lines corres-
pond to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MB=MA

p ¼ 1=n where n ¼ f1; � � � 6g. In (b), the
dashed lines correspond to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MB=MA

p ¼ ðn − 1Þ=n where
n ¼ f3; � � � 8g. Moreover, the oscillating cross term in (b) is
π=2 out of phase with that for the black hole measured in the
(anti)symmetric basis. In all plots we have also used l=σ ¼ 5,
R=σ ¼ 25, tf ¼ 5σ, and MAl2 ¼ 2.

PHYSICAL REVIEW LETTERS 129, 181301 (2022)

181301-4



can be done also on a nonclassical spacetime such as that of
a BTZ black hole in superposition of masses. Furthermore,
it is possible to write down the associated spacetime metric
using these correlators. We first review a related argument
relating metric and field correlators by Saravani et al. and
Kempf [52,53]. Recall that in general relativity, spacetime
is described by the pair ðM; σÞ where M is a differentiable
manifold and σðx; x0Þ is the Synge world function (or the
geodesic distance) for two points ðx; x0Þ [72–75]. The latter
contains all the information about a spacetime since it
allows one to reconstruct the metric [72–75]

gμνðxÞ ¼ − lim
x→x0

∂

∂xμ
∂

∂x0ν
σðx; x0Þ: ð19Þ

Since the quantum correlations of a field decay with the
magnitude of the distance between spacetime points, these
studies replaced the notion of proper distance with that of
an appropriate measure of such correlations. In [53], the
Feynman propagator is used, but other objects like the
Wightman function are also suitable. Using the Wightman
function, the spacetime metric can be expressed as

gμν ¼ ϒðdÞ lim
x→x0

∂

∂xμ
∂

∂x0ν
Wðx; x0Þ 2

d−2; ð20Þ

where ϒðdÞ ¼ −ð1=2Þ½Γðd=2 − 1Þ=ð4πd=2Þ�½2=ðd−2Þ� and
d > 2 is the spacetime dimension. (A unique expression
exists for d ¼ 2.) In this context, building a spacetime in
superposition occurs at the level of the field operator. By
taking ϕ̂ðxÞ → ϕ̂ðxÞ ¼ P

D fDϕ̂ðxDÞ (where x ¼ fxDg,P
D jfDj2 ¼ 1 and the relative phases between fD are

determined by the state in which the black hole is
measured), the Wightman function becomes a sum over
all two-point correlators between the fields ϕ̂ðxDÞ, ϕ̂ðxD0 0Þ,
defined with respect to the coordinates of the spacetime
states in superposition. Equation (20) is then modified as
follows, yielding a conditional metric describing a super-
position of spacetimes:

gμν ¼ ΛðdÞ lim
x→x0

∂

∂xμ
∂

∂x0ν
X
D;D0

fDf⋆D0WðxD; x0D0 Þ 2
d−2: ð21Þ

Equation (21) involves correlations between the field
operators parametrized with coordinates covering black
hole spacetimes associated with different masses; it repre-
sents a “conditional metric” effectively seen by a detector in
the quantum superposition of spacetimes.
Conclusion.—In this Letter, we have derived genuine

quantum-gravitational phenomena via a simple particle
detector model in a spacetime with quantum degrees of
freedom. In particular, we have developed an operational
framework for analyzing “superpositions of spacetimes”
via matter (represented by an Unruh-deWitt detector)
coupled to a quantum field. We applied this approach to

study the effects produced by a BTZ black hole in a
superposition of masses. The response of a detector in this
spacetime features “cross-correlations” between the differ-
ent spacetime amplitudes.
The response of the detector is sensitive to the mass ratio

of the superposed black hole, in particular exhibiting
signatory peaks at rational values of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MB=MA

p
. This

description of a quantum-gravitational effect is the first
of its kind, and constitutes a new method for investigating
effects implied by Bekenstein’s conjecture about the
quantization of a black hole’s mass [14]. We also presented
a description of a conditional spacetime metric arising from
such scenarios that is constructed using field correlations as
a measure of distance [52,53]. Finally, while we have
studied the analytically tractable (2þ 1)-dimensional black
hole, there is no obstruction in principle from applying our
approach to more general cases in (3þ 1) dimensions,
which are expected to provide additional insight into this
important problem.
The scheme presented here opens a path to further

understanding important quantum gravity ideas like quan-
tum black holes, spacetime superpositions, and quantum-
gravitational causal structures. Such notions are considered
crucial for a complete description of quantum gravity;
however, they have generally only been considered using
top-down perspectives in the literature. Our approach
allows for the calculation of observables such as the
response of a first-quantized system to quantum fields
without the need for a complete framework of quantizing
gravity. By connecting the notion of quantum field corre-
lations with the superposed spacetime metric, we have also
opened up the possibility of studying the dynamics of
spacetime superpositions and the effects they may induce
on systems such as low-energy particles, which continues
to be a topic of growing interest.
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