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We propose a universal gate set for quantum computing with all-to-all connectivity and intrinsic
robustness to bit-flip errors based on parity encoding. We show that logical controlled phase gate and Rz

rotations can be implemented in parity encoding with single-qubit operations. Together with logical Rx

rotations, implemented via nearest-neighbor controlled-NOT gates and an Rx rotation, these form a
universal gate set. As the controlled phase gate requires only single-qubit rotations, the proposed scheme
has advantages for several cornerstone quantum algorithms, e.g., the quantum Fourier transform. We
present a method to switch between different encoding variants via partial on-the-fly encoding and
decoding.
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Designing quantum computers [1–17] and quantum
algorithms [18–26] is a current grand challenge in science
and engineering, motivated by the prospect of solving
certain problems exponentially faster than any known
classical algorithms [21]. However, the fundamental rules
of quantum mechanics that make this new paradigm
possible also impose fundamental restrictions. In contrast
to classical information, quantum information cannot be
copied, which is known as the no-cloning theorem, but only
propagated [27]. Thus, quantum computers will not be able
to follow the von Neumann architecture [28] with separated
memory and computational unit. As the quantum CPU
serves as memory and computational unit at the same time,
connectivity between any quantum bits on the chip is
required. In current standard approaches to gate-based
quantum computers, either these long-range interactions
are implemented as physical interactions, which limits
scalability, or quantum information is moved on the chip
via SWAP sequences, which requires a large overhead in
gates. Although there are recent approaches toward qubit
routing that address this issue [29,30], exchanging infor-
mation between qubits remains a challenging problem.
In this Letter, we propose a novel universal quantum

computing approach based on the Lechner-Hauke-Zoller
(LHZ) architecture [31], which was originally designed for
quantum annealing. In this parity-based paradigm, each
physical qubit represents the parity of multiple logical
qubits. We extend the LHZ architecture, up to now only

used for solving combinatorial optimization problems, to a
universal quantum computing approach by providing a
universal gate set on parity-encoded states and with that,
open up new possibilities for universal quantum compu-
tation. These extensions include an additional row of data
qubits added to the original LHZ layout to enable control of
single logical qubits. We introduce logical operations, in
particular Rx rotations, to establish a universal gate set in
the logical space. As the parity constraints no longer need
to be enforced throughout the computation, they can be
utilized for error correction.
As it only requires nearest-neighbor interactions between

qubits on a square lattice chip, our proposal can be
implemented on state-of-the-art quantum devices, indepen-
dent of the qubit platform. Suitable platforms are for
example superconducting qubits [15,32–36], neutral atoms
[37–39], or trapped ions [40–43]. We show that the parity
transformation renders diagonal multiqubit operators
between arbitrary logical qubits into single-qubit physical
gates and, in turn, nondiagonal logical operators into
sequences of physical gates. The transformation eliminates
the need for long-range interactions and thus SWAP gates as
illustrated in Fig. 1. Furthermore, redundant encoding
offers the potential for intrinsic tolerance against bit-flip
errors. We additionally present a possibility to choose and
switch between different variants of the parity mapping,
containing subsets of parity qubits tailored to the algo-
rithmic requirements. This allows for further reduction of
computational resources.
The gate set presented here contains operations that

correspond to Rx and Rz rotations and controlled phase
gates acting on logical qubits. Because of the absence of
any connectivity limitations, we expect this approach to
have an impact on the design of next generation quan-
tum devices [44]. The scheme allows for an efficient
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implementation of controlled rotations around the z axis
and is thus advantageous for the quantum Fourier transform
[45] which is the basis of Shor’s factoring algorithm [21] as
well as quantum addition [46]. Implementations of well-
known quantum algorithms in the parity architecture are
shown in detail in the associated publication Ref. [47].
Parity mapping.—The LHZ architecture [31] expands

the Hilbert space of n logical qubits to a Hilbert space of
K ¼ nðn − 1Þ=2 physical qubits (parity qubits, with oper-
ators σ), encoding the parity of pairs of logical qubits (with
operators σ̃) such that for any state jψi in the code space,

σ̃ðiÞz σ̃ðjÞz jψi ¼ σðijÞz jψi; ð1Þ

where the superscripts correspond to qubit labels. The
code space is restricted to configurations corresponding to
valid logical states jψi by K − nþ 1 parity constraints of
the form

Cljψi ≔ σðl1Þz σðl2Þz σðl3Þz ½σðl4Þz �jψi ¼ jψi ð2Þ

where the indices li correspond to pairs of logical indices,
such that in every constraint, each logical index appears an

even number of times. The brackets around σðl4Þz indicate
that a constraint can contain either 3 or 4 qubits. Here, we
use a slightly modified layout compared with the original
LHZ layout, shown in Fig. 2, with an additional row of
physical qubits which have a direct correspondence to
single logical qubits,

σ̃ðiÞz ¼ σðiÞz : ð3Þ

In the following, these additional qubits are referred to as
data qubits. As depicted in Fig. 2, n all-to-all connected
logical qubits are represented by K ¼ nðnþ 1Þ=2 physical

qubits and K − n constraints. The parity constraints gen-
erate the stabilizer of the code space [48], additionally
allowing for detection of bit-flip errors and thus an intrinsic
fault tolerance of the encoding.
Logical qubits and operators.—Next, we introduce the

concept of logical lines denoted as Qi, which have been
identified in a different context in Ref. [49]. A logical line
Qi is defined as the set of all parity qubits containing the
logical index i. In the LHZ architecture, qubits that contain
a particular index are arranged along lines, which are
indicated as solid lines in Fig. 2 to guide the eye. The red
line for example extends from the data qubit (3) to all parity
qubits that contain the index 3, and thus contain all relative
parity information with respect to the logical qubit (3).
For each logical line Qi we define an operator

σ̃ðiÞx ¼ σðiÞx
Y
j<i

σðjiÞx

Y
j>i

σðijÞx ð4Þ

FIG. 2. Illustration of the modified LHZ architecture with
logical lines. Three- and four-body constraints are represented
by light gray triangles and squares between corresponding qubits.
Data qubits with single logical indices are added as an additional
row at the bottom of the architecture to allow direct access to
logical Rz rotations. Colored lines connect all qubits whose labels
contain the same logical index. Logical Rx rotations can be
realized with chains of CNOT gates along the corresponding line.

FIG. 1. Overview over the implementation of a universal gate set in the LHZ scheme. All operations have been decomposed to CNOT

gates and local rotations. Blue lines represent a chain of CNOT gates, while red (darker) and green (lighter) squares depict local Rx and Rz
rotations, respectively. Triple lines correspond to SWAP gates, consisting of 3 CNOT gates each.
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acting on every qubit in the respective line. The operators

σ̃ðiÞx and σ̃ðiÞz commute with all parity constraints and fulfill
the (anti-) commutation relations for Pauli operators

fσ̃ðiÞx ; σ̃ðiÞz g ¼ ½σ̃ðiÞx ; σ̃ðjÞz � ¼ 0 ð5Þ

for i ≠ j. We can therefore identify the operators with Pauli
operators acting on logical qubits, and build arbitrary
logical rotations as

R̃xðαÞ ¼ exp

�
−i

α

2
σ̃ðiÞx

�
ð6Þ

and

R̃zðαÞ ¼ exp

�
−i

α

2
σ̃ðiÞz

�
: ð7Þ

Throughout this Letter, tildes are used to denote operators
with the corresponding action on logical qubits. While a
logical R̃z rotation can be directly implemented using the
respective physical operator on the data qubit, the R̃x
operator on logical qubit (i) given by expression (6) can
be implemented via physical controlled-NOT (CNOT) gates
along the logical line Qi and a physical single-body Rx
rotation, as depicted in Fig. 1 (also see Ref. [50] for details
on efficient implementations of exponentials of multiqubit
Pauli operators). The chosen layout further ensures that all
operators associated with the logical lines can be imple-
mented with local operations and nearest-neighbor CNOT

gates on a square lattice.
Encoding and decoding.—In the following we discuss

the encoding and decoding of arbitrary states from and to
the data qubits. Let us first consider the trivial logical state
j0i⊗n which can be encoded in the LHZ scheme by
preparing all physical qubits in the product state j0i⊗K .
This state fulfills all constraints, and is the joint eigenstate
of the logical σ̃z operators with eigenvalueþ1. Encoding an
arbitrary, unknown quantum state into the LHZ scheme is
less straightforward. Classically, the states of the data
qubits are identical to the corresponding logical qubits
(by definition, a measurement of these qubits in the z basis
corresponds to a measurement of the logical state).
However, they are typically highly entangled with the
other qubits, and simply tracing out the parity qubits would
cause a loss of coherence and therefore phase information.
We thus introduce an encoding and decoding strategy to

add or remove an arbitrary number of parity qubits to or
from the code. Suppose we start with the logical qubits,
each of them encoded in a data qubit. We can now add a
physical qubit ðijÞ corresponding to the parity of qubits (i)
and (j), by initializing this qubit in the state j0i and then
imposing the parity on it with two CNOT gates controlled by
qubits (i) and (j), as shown in Fig. 3(b). This procedure
adds an additional parity qubit to the code and guarantees

that the corresponding constraint C ¼ σðiÞz σðjÞz σðijÞz is
satisfied.
Following this procedure, it is possible to add parity

qubits and constraints by applying this strategy iteratively.
Instead of directly obtaining the parity information from the
data qubits, one can also use the parity qubits included in
local constraints, as for example the plaquettes shown in
Fig. 2: By definition, the parity of all but one qubit of a
constraint is always encoded in the state of the remaining
qubit, i.e.,

σðijÞz σðjkÞz σðklÞz σðliÞz jψi ¼ jψi
⇒ σðijÞz jψi ¼ σðjkÞz σðklÞz σðliÞz jψi:

This transition and the encoding circuits are shown in
Figs. 3(c)–3(d).
Conversely, applying the same gate sequence to a parity-

encoded set of qubits removes the targeted qubit from the
code and projects it to the state of the corresponding
constraint. If the constraint was fulfilled, this is the state j0i.
For a layout as depicted in Fig. 2 with n logical qubits, this
procedure allows encoding and decoding circuits with an
overall circuit depth of nþ 1. The exact circuit is given in
the Supplemental Material [51].
The described procedure does not only offer a way to

build up or collapse the all-to-all connected LHZ scheme,
but also holds the possibility to switch between different
variants of the parity mapping and adapt the number of
parity qubits to the algorithmic requirements during com-
putation. For example, if some interactions are not needed
for a certain algorithm, it is not always necessary to have
the corresponding parity qubits in the code. A reduction in
the number of parity qubits results in shorter logical lines
and thus fewer physical gates. In addition to the two-body
parities as introduced in Eq. (1), it is also possible to encode

(c)

(a)

(d)

(b)

FIG. 3. Encoding and decoding circuits to add or remove a
qubit and the corresponding constraint to or from the code.
(a) Qubit ðijÞ is directly encoded via the adjacent data qubits (i)
and (j) in a three-body constraint, with the circuit (b). (c) Qubit
ðijÞ is encoded using other parity qubits in a four-body constraint,
with the circuit (d). A qubit without a label indicates a qubit
without any parity information, being in the state j0i.

PHYSICAL REVIEW LETTERS 129, 180503 (2022)

180503-3



higher-order k-body parity qubits in the same manner,
when using suitable layouts (see Ref. [47] for more details).
As an example, a three-body parity qubit can be used to
enable a nontrivial interaction between three logical qubits.
Universal gate set.—Single-qubit operations on logical

qubits can be constructed from the operators introduced in
Eqs. (6)–(7) using the decomposition

U ¼ RzðαÞRxðβÞRzðγÞ: ð8Þ
To obtain a universal gate set, an additional two-qubit
entangling gate is necessary. In the LHZ encoding, a native
logical two-qubit operation is obtained by performing a
single Rz rotation on a physical parity qubit,

RðijÞ
z ðαÞ ¼ exp

�
−i

α

2
σðijÞz

�
; ð9Þ

which is stabilizer equivalent (i.e., the same up to the

application of a constraint operator C ¼ σðiÞz σðjÞz σðijÞz ) to the
operator

exp

�
−i

α

2
σðiÞz σðjÞz

�
ð10Þ

and thus effectively performs the two-body operation

exp ½−iðα=2Þσ̃ðiÞz σ̃ðjÞz � on the logical qubits, as is obvious
from Eq. (1). This operation can be transformed to a logical
controlled phase gate CPϕ with local Rz rotations only, as
shown in the following. For the sake of simplicity, qubit
indices are omitted. We start from an operation

e−i
α
2
σz⊗σz ¼ diagðe−iα2; eiα2; eiα2; e−iα2Þ ð11Þ

and the single-body Rz rotation,

RzðθÞ ¼ e−i
θ
2
σz ¼ diagðe−iθ2; eiθ2Þ; ð12Þ

and define

UR ≔ ½1 ⊗ RzðβÞ�e−iα2σz⊗σz ½RzðγÞ ⊗ 1�: ð13Þ

Evaluating Eq. (13) for −α ¼ β ¼ γ ¼ ðϕ=2Þ yields

UR ¼ e−i
ϕ
4 · diagð1; 1; 1; eiϕÞ ¼ e−i

ϕ
4 · CPϕ;

which corresponds, up to a global phase, to the controlled
phase gate CPϕ. Using the identities defined above, this can
be implemented in our scheme with local operations on the
physical parity qubits and data qubits as

CP̃ði;jÞϕ ¼ RðiÞ
z

�
ϕ

2

�
RðijÞ
z

�
−
ϕ

2

�
RðjÞ
z

�
ϕ

2

�
: ð14Þ

Here, i and j are the indices of the involved logical qubits,
and Rz indicates the rotation on the corresponding data or

parity qubit. In particular, for ϕ ¼ π, we obtain the CZ gate
(controlled Z gate). This can in turn be transformed to a
CNOT gate, by applying logical Hadamard gates before and
after the CZ gate on the desired target qubit. The operations
R̃x, R̃z, and CP̃ϕ form a universal gate set in the LHZ
scheme, and we can not only build arbitrary quantum
circuits by applying CNOT gates and controlling local fields
(parameters only occur in single-qubit operations), but also
exploit the comparably simple implementation of a con-
trolled phase gate. The standard gate model requires two
CNOT- and three single-qubit gates to implement a con-
trolled phase gate, as depicted in Fig. 1. Platforms with
limited connectivity typically need a large number of SWAP

gates in addition. In contrast, a logical controlled phase
gate in our approach only requires three parallel single-
body rotations. The required resources for implementing
common gates and gate sequences in our scheme are listed
in Table I. The depth and the gate count for nondiagonal
single-body operations result from the CNOT chains
involved. The main advantage of the encoding clearly
comes from the depth-1 implementation of diagonal gates.
Note that while nondiagonal operations have a higher cost,
their increased weight allows for intrinsic tolerance to bit-
flip errors as an additional advantage.
Following Eq. (8), any local unitary operation U on a

logical qubit (i) can be performed in the LHZ scheme by
performing it on the data qubit (i) and surrounding it by the
CNOT chains as in the logical R̃x rotation,

TABLE I. The number of physical operations needed to
perform logical gates in the parity encoding for n > 4. All
operations were decomposed into CNOT gates and local Rx and
Rz rotations. The spin-flip operator σx is a special case of the Rx
rotation, for which the logical implementation reduces to a
product of single-qubit spin flips which can be performed in
parallel. The unitary U represents an arbitrary nondiagonal
single-qubit operation. A detailed derivation of the given numbers
can be found in Ref. [47].

Required gates in LHZ

Logic gate Single qubit 2 Qubit Depth

Rx 1 2ðn − 1Þ 2⌈n=2⌉þ 1
σx n 0 1
Rz 1 0 1
U 3 2ðn − 1Þ 2⌈n=2⌉þ 1

a

CP 3 0 1
CNOTðc;tÞ 7 2ðn − 1þ jc − tjÞ ≤4⌈n=2⌉þ 3

bQ
m
i¼1 U

ðniÞ
i

c 3m 2nðn − 1Þ 2nþ 3

aFor n ≤ 4, the depth increases by two steps because the Rz
rotations cannot be performed parallel to other operations.

bCan be further optimized depending on the control qubit and
target qubit. For a detailed discussion, see Ref. [47].

cni ≤ n denotes the qubit on which Ui acts, and m ≤ n is the
number of qubits involved. We count consecutive single-qubit
operations as a single time step.
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Ũ ¼ RðiÞ
z ðαÞ|fflfflffl{zfflfflffl}
R̃z

…CNOTðijÞRðiÞ
x ðβÞCNOTðijÞ…|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
R̃x

RðiÞ
z ðγÞ|fflfflffl{zfflfflffl}
R̃z

¼ …CNOTðijÞRðiÞ
z ðαÞRðiÞ

x ðβÞRðiÞ
z ðγÞCNOTðijÞ…

¼ …CNOTðijÞUðiÞCNOTðijÞ…

The circuit depth for this construction is given in Table I.
Fixing the qubit on which the Rx rotations are performed to
the respective data qubit reduces hardware requirements
such that Rx rotations are only ever necessary on the data
qubits, while for the parity qubits, local Rz rotations and
CNOT gates between them are sufficient.
Note that a circuit implementing a product of m ≤ n

logical single-qubit operators can be realized by applying
the decoding circuit, performing the single-body operations
on the data qubits and encoding again with an overall
circuit depth of 2nþ 3 and a CNOT-gate count of 2nðn − 1Þ.
Error correction.—The redundancy of the parity encod-

ing allows for the correction or mitigation of bit-flip errors.
Because all parity constraints commute with any logical
operator, measuring their value does not disturb the logical
state of the system. Constraint measurements can be
performed either with the help of ancillary measurement
qubits in the center of each plaquette [45,52], or by
applying the decoding circuit as in Figs. 3(b) and 3(d)
to each constraint, measuring the decoded qubit, and
encoding it again.
As the transition from one logical basis state to another

flips n physical qubits, it is in principle possible to correct
for multiple errors at a time. For different encoding
variants, for example with a reduced number of parity
qubits, the number of simultaneously correctable errors
depends on the number of qubits in the shortest logical line.
F. Pastawski and J. Preskill successfully demonstrated error
correction via belief propagation on a LHZ chip [53], and
showed that the LHZ encoding is robust against weakly
correlated bit-flip noise. An analysis of the bit-flip error-
correction capability of the LHZ architecture is provided in
the Supplemental Material [51].
To ideally complement the bit-flip tolerance of the LHZ

encoding, it is advisable to use physical qubits which are
intrinsically robust against phase errors [54–57].
Conclusion and outlook.—In conclusion, we have dem-

onstrated a universal gate set implemented in the LHZ
encoding, opening up a new strategy for universal quantum
computation. All gates can be implemented on state-of-the-
art quantum devices that fulfill the comparably low require-
ment of nearest-neighbor connectivity on a square lattice.
Furthermore, the encoding can be dynamically adjusted by
adding or removing parity qubits tailored to the require-
ments of different algorithms. The introduced decoding
scheme can be used to decode the output of optimization
algorithms run in the parity scheme as for example
proposed in Refs. [58–60], in order to further work with

the resulting quantum states. With its availability of
nonlocal and multiqubit operations and the intrinsic
error-correction capability, we expect our work to be a
step toward the next generation of quantum computers.
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