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We consider passive imaging tasks involving discrimination between known candidate objects and
investigate the best possible accuracy with which the correct object can be identified. We analytically
compute quantum-limited error bounds for hypothesis tests on any library of incoherent, quasimono-
chromatic objects when the imaging system is dominated by optical diffraction. We further show that
object-independent linear-optical spatial processing of the collected light exactly achieves these ultimate
error rates, exhibiting scaling superior to spatially resolved direct imaging as the scene becomes more
severely diffraction limited. We apply our results to example imaging scenarios and find conditions under
which superresolution object discrimination can be physically realized.
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Introduction.—Object discrimination is at the heart of
decision making in medical diagnostics, extrasolar
astronomy, and autonomous sensing. For incoherent ima-
ging with large standoff distances, small objects, and/or a
small aperture, optical diffraction impedes accurate dis-
crimination between spatially distinct objects. A classic
heuristic criterion, attributed to Rayleigh, holds that two
objects cannot be discriminated when their distinguishing
features exhibit length scales smaller than the width of the
system’s point-spread-function (PSF) [1]. More quantita-
tively, for hypothesis tests between such “sub-Rayleigh”
objects, the probability of correct identification degrades as
the PSF more severely perturbs the measured images [2].
A paradigm shift for sub-Rayeigh imaging recently

emerged via the calculation of task-specific error bounds
that optimize over all measurements permitted by quantum
mechanics [3]. These “quantum limits” revealed that direct
measurements of the image-plane optical intensity profile
are responsible for the catastrophic degree of error implied
by the Rayleigh criterion, whereas alternative measure-
ments yield far lower error than direct imaging for many
tasks [4–8]. Quantum limits, and “quantum-optimal” mea-
surements that achieve them, were found for specific
hypothesis tests including one-vs-two point source dis-
crimination [9,10] and exoplanet detection [11,12].
However, no general results exist that broadly apply to
real-world object discrimination settings.
This Letter finds quantum limits and quantum-optimal

measurements for generalized sub-Rayleigh object discrimi-
nation, with applicability to subcellular fluorescence
microscopy, exoplanet surveys, pattern recognition in
remote sensing, and many more imaging domains. For
sub-Rayleigh hypothesis tests between any two incoherent,
quasimonochromatic 2D objects, we (1) compute the
quantum Chernoff bound on symmetric discrimination
error, (2) compute the classical Chernoff exponent that

characterizes the error obtained with ideal direct imaging,
(3) quantify a quadratic scaling gap between the two
Chernoff exponents, and (4) identify a quantum-optimal
measurement that employs a predetection spatial-mode
sorting device whose linear-optical design does not depend
on the objects. Remarkably, our results extend to M-ary
discrimination: the same object-independent measurement
is quantum-optimal for any M > 2 sub-Rayleigh objects.
Last, we define Hamming-like distance measures for object
libraries to quantify the realizable advantage over direct
imaging.
Quantum model.—Let the label Hj, j ∈ ½1;M�, denote a

hypothesis corresponding to one of M candidate objects.
Under hypothesisHj, the quantum state ηj on Hilbert space
H describes one temporal mode of a quasimonochromatic
optical field collected by an imaging system. Many natural
thermal sources exhibit ϵ ≪ 1 mean photons per temporal
mode such that multiphoton detection within the optical
coherence time is vanishingly rare [13]. Using a weak-
source Fock expansion ηj ¼ ð1 − ϵÞj0ih0j þ ϵρj þOðϵ2Þ,
where j0ih0j is the vacuum state, the state ρj carries all
spatial information about the jth object [4]. Since ρj models
one photon over multiple orthogonal spatial modes, it can be
mapped onto a Hilbert space spanned by the Fock states of a
single bosonic mode [4]. We denote this Hilbert spaceHð1Þ.
Let an imaging system with a 2D coherent PSF ψðx⃗Þ

relate object- and image-plane position vectors x⃗obj ¼
fxobj; yobjg and x⃗ ¼ μx⃗obj by the transverse magnification
μ. We spatially model the object under hypothesis Hj by a
normalized radiant exitance profile mjðx⃗objÞ. The state of
the collected optical field on Hð1Þ is then [14]

ρj ¼
Z Z

∞

−∞

1

μ2
mj

�
x⃗
μ

�
jψ x⃗ihψ x⃗jd2x⃗; ð1Þ
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where the pure state jψ x⃗i ¼
R R

∞
−∞ ψða⃗ − x⃗Þja⃗id2a⃗ encodes

the effect of the aperture and jx⃗i is a single-photon eigenket
at image-plane position x⃗ [4]. In a basis of orthogonal
vectors jϕmi ¼

R R∞
−∞ ϕmðx⃗Þjx⃗id2x⃗ that span Hð1Þ, where

ϕmðx⃗Þ are orthogonal 2D functions, the density matrix

ρj ¼
X∞
m;n¼0

dj;m;njϕmihϕnj ð2Þ

has elements dj;m;n ¼
R R∞

−∞ μ−2mjðx⃗=μÞcm;nðx⃗Þd2x⃗, where
cm;nðx⃗Þ ¼ hϕmjψ x⃗ihψ x⃗jϕni.
Quantum and classical detection theory.—Consider a

hypothesis test between objects m1ðx⃗objÞ and m2ðx⃗objÞ with
equal prior probabilities (Fig. 1). To decide between
hypotheses H1 and H2, a receiver measures the true state
η⊗M
1 or η⊗M

2 acquired overM temporal modes and applies
a predetermined decision rule on the outcome(s). If the
conditional probability of deciding Hj0 under true hypo-
thesis Hj is PðsayH0

jjHj trueÞ, the average error probabi-
lity Perr ¼ ½PðsayH1jH2 trueÞ þ PðsayH2jH1 trueÞ�=2 is a
symmetric performance metric [15] for that measurement
and decision rule [17]. Optimizing over all such schemes,
the quantum-limited minimum average error probability
Pmin
err ∼ e−ξQM follows an exponential decay whenM ≫ 1,

where the quantum Chernoff exponent (QCE) ξQ quantifies
how efficiently each additional copy of the received state ηj
suppresses the minimum error [18,19]. Under the weak-

source model, this minimum error decays as Pmin
err ∼ e−ξ

ð1Þ
Q N ,

where N ¼ ϵM is the average photon number of η⊗M
j . In

the Supplemental Material [22], we show that the per-
photon QCE [18,19]

ξð1ÞQ ¼ − log ½min
0≤s≤1

Trðρs1ρ1−s2 Þ� ð3Þ

obeys ξQ ≈ ϵξð1ÞQ for weak-source sub-Rayleigh objects.
The most general description of a measurement, a

positive operator-valued measure (POVM), consists of a
set of positive semidefinite operators fΠzgZ onH, linked to
measurement outcomes z in an outcome space Z, that

resolve the identity operator as
P

z∈Z Πz ¼ I [20]. For a
particular measurement performed on η⊗M

j , the mini-
mum average error among all decision rules goes as
Pmin
err;meas ∼ e−ξmeasM, where ξmeas is the Chernoff exponent

(CE) for that measurement [17,21]. For weak sources, the
minimal error of any photon-counting measurement goes as

Pmin
err;meas ∼ e−ξ

ð1Þ
measN [22], where ξmeas ≈ ϵξð1Þmeas in the sub-

Rayleigh regime and where

ξð1Þmeas ¼ − log

�
min
0≤s≤1

X
z∈Zð1Þ

Pðzjρ1ÞsPðzjρ2Þ1−s
�

ð4Þ

is the per-photon CE [17], which depends on the single-

photon outcome probabilities PðzjρjÞ ¼ TrðΠð1Þ
z ρjÞ obtai-

ned by the reduced POVM fΠð1Þ
z gZð1Þ on Hð1Þ with

outcomes z ∈ Zð1Þ.
The quantum and classical statistics are related by the

quantum Chernoff bound ξmeas ≤ ξQ, i.e., the QCE auto-
matically optimizes over the CEs of all POVMs on H⊗M

[27]. A measurement whose CE matches the QCE

(ξð1Þmeas ¼ ξð1ÞQ ) is quantum optimal for the given hypothesis

test. Conversely, a gap (ξð1Þmeas < ξð1ÞQ ) indicates a funda-
mental sub-optimality in the measurement that cannot be
remedied by data postprocessing.
Results: binary object discrimination.—In this section

we compute the QCE ξð1ÞQ for generalized sub-Rayleigh
object discrimination and find a universally optimal meas-

urement for which ξð1Þmeas ¼ ξð1ÞQ . For a preliminary result, if
the object under H1 is a single point source at object-plane
position x⃗1;obj ¼ x⃗1=μ, as in Refs. [9–12], then for any
second object the QCE is [22]

ξð1ÞQ ¼ − log

�Z Z
∞

−∞

1

μ2
m2

�
x⃗ − x⃗1
μ

�
jΓðx⃗Þj2d2x⃗

�
; ð5Þ

where Γðx⃗Þ ¼ hψ Ω⃗jψ x⃗i ¼
R R

∞
−∞ ψ�ða⃗Þψða⃗ − x⃗Þd2a⃗ is the

2D autocorrelation function of the PSF and Ω⃗ ¼ f0; 0g
denotes the origin in the image plane. This quantum limit is

achieved (i.e., ξð1ÞBSPADE ¼ ξð1ÞQ ) by a 2D binary spatial mode
demultiplexing (BSPADE) device [4,28,29] that passively
couples a PSF-matched spatial mode to one shot-noise-
limited photon-counting detector (Π0 ¼ jψ x⃗1ihψ x⃗1 j) and all
other light to a second detector (Π1 ¼ I − jψ x⃗1ihψ x⃗1 j) [22].
Equation (5) is an exact expression for the QCE of
any point-source-vs-known-object hypothesis test, sub-
Rayleigh or otherwise, and BSPADE is always quantum
optimal in this case.
We now generalize to two arbitrary objects m1ðx⃗objÞ and

m2ðx⃗objÞ and obtain analytical results in the sub-Rayleigh
regime. Define γ ¼ μθ=σ as the magnification-scaled geo-
metric ratio between the largest spatial extent among the

(a)

(b)

FIG. 1. Discrimination of two objects m1ðx⃗objÞ and m2ðx⃗objÞ.
(a) Direct imaging. (b) TRISPADE receiver using a spatial-mode
sorter and three shot-noise-limited photon detectors. For a 2D
Gaussian PSF, the sorted modes are shown at right.
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objects (θ) vs the PSF width (σ). The sub-Rayleigh limit
γ ≪ 1 is of greatest interest for superresolution imaging,
as diffraction significantly impairs conventional object
distinguishability below γ ¼ 1 (Fig. 2). We also define
m̃jðx⃗objÞ¼θ2mjðθx⃗objÞ, ψ̃ðx⃗Þ¼σψðσx⃗Þ, and Γ̃ðx⃗Þ ¼ Γðσx⃗Þ
to rescale and nondimensionalize the objects, PSF, and PSF
autocorrelation function, isolating the effect of γ from that
of the object and PSF shapes [22]. We require that the
objects’ 2D centroids coincide at a location known to the
receiver such that the task is object identification and not
localization [30–32] and that the PSF ψðx⃗Þ is even in x and
y (e.g., a circularly symmetric aperture).
To derive the generalized QCE [22], we represent ρj

[Eq. (2)] in a basis of PSF-adapted (PAD) eigenvectors
jϕmi via Gram-Schmidt orthogonalization of the 2D
Cartesian derivatives of the PSF [34–36]. For a Gaussian
PSF ψðx⃗Þ ¼ ð2πσ2Þ−1=2 exp½−ðx2 þ y2Þ=4σ2�, the PAD ba-
sis functions ϕmðx⃗Þ are Hermite-Gauss polynomials [35].
After expanding ρ1 and ρ2 in powers of γ ≪ 1 and trun-
cating to finite dimensions [5], we use operator perturbation
theory [16] to find

ξð1ÞQ ¼ max
0≤s≤1

½ðsm1;x2 þð1− sÞm2;x2 −ms
1;x2

m1−s
2;x2

ÞΓx2

þðsm1;y2 þð1− sÞm2;y2 −ms
1;y2

m1−s
2;y2

ÞΓy2 �γ2þOðγ3Þ;
ð6Þ

where mj;xkyl ¼
R R

∞
−∞ xkobjy

l
objm̃jð⃗xobjÞd2 ⃗xobj are spatial

moments of the object models and Γxkyl ¼
−fRe½∂kþlΓ̃ðx⃗Þ=∂xk∂yl�gx⃗¼Ω⃗ are derivatives of the PSF

autocorrelation function. The QCE in Eq. (6) is our first
main result and represents the quantum limit for discrimi-
nation between any two incoherent objects in the sub-
Rayleigh limit γ ≪ 1. Important features of Eq. (6) include
the Oðγ2Þ scaling of the QCE and the separable contribu-
tions from the object second moments and the second
derivatives of Γ̃ðx⃗Þ. Moreover, the minimization over
powers of infinite-dimensional matrices [Eq. (3)] is
replaced with a simple maximization of a scalar function.
We compute the CE for ideal direct imaging [i.e., infinite

spatial bandwidth, unity fill factor, unity quantum effi-
ciency, Fig. 1(a)] with a zeroless PSF [37] that is separable
in x and y to be [22]

ξð1Þdirect ¼ ð1=32ÞðKx þKyÞγ4 þOðγ5Þ; ð7Þ

with Ka ¼ ðm1;a2 −m2;a2Þ2
R R

∞
−∞ ψa2ðx⃗Þ2=jψ̃ðx⃗Þj2d2x⃗ for

a ∈ ½x; y� and where ψxkylðx⃗Þ ¼ ∂
kþljψ̃ðx⃗Þj2=∂xk∂yl are

derivatives of the incoherent PSF. Eqs. (6) and (7) re-
veal a quadratic scaling suboptimality in direct imaging

—ξð1Þdirect ∼ γ4 vs ξð1ÞQ ∼ γ2—for all binary discrimination
tasks [38]. Alternatively, we analyze a “TRISPADE”
measurement [Fig. 1(b)] [28] that sorts the collected light
between the PSF-matched spatial mode and the first-order
PAD-basis modes in two perpendicular dimensions.
TRISPADE uses linear optics and shot-noise-limited
photodetectors to implement a measurement with the
object-independent projectors Πi ¼ jϕiihϕij, i ∈ ½0; 2�.
The resulting CE ξð1ÞTRISPADE achieves the QCE when γ ≪
1 [22], so TRISPADE is a quantum-optimal measurement
for binary sub-Rayleigh object discrimination.

In Fig. 3 we numerically evaluate ξð1ÞQ , ξð1Þdirect, and

ξð1ÞTRISPADE from Eqs. (3) and (4) for the examples depicted
in Fig. 2. We observe that the lowest-order Oðγ2Þ behavior
of the QCE, found by numerically maximizing Eq. (6), is
an excellent approximation for both the QCE and the
TRISPADE CE throughout the sub-Rayleigh regime
(γ < 1). Meanwhile, Eq. (7) closely follows the Oðγ4Þ
sub-Rayleigh direct imaging CE, illustrating the general
Oðγ2Þ scaling gap. We also find TRISPADE to be robust to
mode-sorter misalignment from the object centroid, retain-
ing the Oðγ2Þ advantage over direct imaging [Fig. 3(c)].
These results suggest that TRISPADE can perform a wide
range of sub-Rayleigh hypothesis tests with substantially
less error than conventional methods.
Results: M-ary object discrimination.—We now extend

our analysis to M > 2 equiprobable objects, such as a
library of quick response (QR) codes [Fig. 2(d)]. TheM-ary

QCE ξð1ÞQ;M ¼ mini≠jξ
ð1Þ
Q;i;j, which characterizes the quan-

tum-limited asymptotic error for discriminatingM states, is

found by minimizing the pairwise QCEs ξð1ÞQ;i;j for each pair
of states fρi; ρjg [39]. The similarly defined M-ary CE

FIG. 2. Simplified object pair examples. (a) Vertical vs
horizontal ellipse. (b) Filled vs hollow nuclear pore [33].
(c) Exoplanet detection. (d) QR code reading. Upper images:
normalized ground truth object irradiance. Lower images:
Gaussian-PSF-convolved image-plane intensity profiles when
γ ¼ 1.
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ξð1Þmeas;M ¼ mini≠jξ
ð1Þ
meas;i;j obeys the multiple quantum

Chernoff bound ξð1Þmeas;M ≤ ξð1ÞQ;M [39]. We have shown
that TRISPADE saturates the quantum limit

(ξð1ÞTRISPADE;i;j ¼ ξð1ÞQ;i;j) for any two states when γ ≪ 1.
Therefore, the TRISPADE measurement, which crucially
does not depend on the candidate states, will always
simultaneously achieve the QCE for all pairs of states in
a library when γ ≪ 1. It follows that TRISPADE satu-
rates the multiple quantum Chernoff bound (i.e.,

ξð1ÞTRISPADE;M ¼ ξð1ÞQ;M) and is therefore a quantum-optimal
measurement for discriminating within any M-object
library in the sub-Rayleigh limit.
Furthermore, we identify “distance” measures that

determine the prefactors of ξð1ÞQ;M ∼ γ2 and ξð1Þdirect;M ∼ γ4

from the minimum distance among all object pairs in a
library. Our measures, which depend on the second
moments (mj;x2 and mj;y2) of the candidate objects, resem-
ble the Hamming distance in linear coding theory, which
quantifies the distinguishability of noise-corrupted code-
words [40]. Approximating Eq. (6) using the quantum
Bhattacharyya bound [41], we find that relative square
roots of object second moments (e.g., ffiffiffiffiffiffiffiffiffimi;x2

p − ffiffiffiffiffiffiffiffiffiffimj;x2
p )

form a distance for the pairwise QCEs, such that M ¼
MxMy quadratically packed objects on a Mx ×My rec-
tangular grid within the 2D space of second moments

[Fig. 4(a)] form an “equidistant” library, i.e., ξð1ÞQ;i;j is the

same for all nearest-neighbor object pairs along either x
or y [22]. Consider an equidistant library of objects
constrained by mx2;min ≤ mj;x2 ≤ mx2;max and my2;min ≤
mj;y2 ≤ my2;max and let M2

x ¼ M2
y ¼ M ≫ 1. Up to a

coordinate rotation [22],

ξð1ÞQ;M ≈
ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffimx2;max
p − ffiffiffiffiffiffiffiffiffiffiffiffiffiffimx2;min

p Þ2Γx2

2M
γ2 þOðγ3Þ; ð8Þ

ξð1Þdirect;M ¼ ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffimx2;max
p − ffiffiffiffiffiffiffiffiffiffiffiffiffiffimx2;min

p Þ2Ψx2

8Mm−1
x2;min

γ4 þOðγ5Þ; ð9Þ

where Ψx2 ¼
R R∞

−∞ ψx2ðx⃗Þ2=jψ̃ðx⃗Þj2d2x⃗. For direct imag-
ing, the differences mi;x2 −mj;x2 constitute a distance

measure for ξð1Þdirect;M [Eq. (7)], so linearly packed objects
form an equidistant library [Fig. 4(b)]. In this case [22],

ξð1ÞQ;M ≈
ðmx2;max −mx2;minÞ2Γx2

8Mmx2;max
γ2 þOðγ3Þ; ð10Þ

ξð1Þdirect;M ¼ ðmx2;max −mx2;minÞ2Ψx2

32M
γ4 þOðγ5Þ: ð11Þ

To unravel the implications of these second-moment
distances, we probe conditions under which the quantum-
optimal TRISPADE receiver achieves a useful per-
formance gain over conventional imaging. Figures 4(c)
and 4(d) depict parametrized regions indicating whe-
ther, to lowest order in γ, the TRISPADE CE exceeds
that of direct imaging by 1 order of magnitude

(i.e., ξð1ÞTRISPADE;M > 10ξð1Þdirect;M) and/or satisfies a threshold

(a) (b)

(c) (d)

FIG. 3. (Q)CEs for the tasks in Fig. 2 with a Gaussian PSF.
Thick lines: lowest-order (in γ) approximations for ξð1ÞQ [Eq. (6)]

and ξð1Þdirect [Eq. (7)]. Thin lines: exact numerical results for ξð1ÞQ

[Eq. (3)], ξð1Þdirect [Eq. (4)], and ξð1ÞTRISPADE [Eq. (4)]. Misalignment

was θ=10 for the misaligned ξð1ÞTRISPADE in c.

(c)(a)

(d)(b)

FIG. 4. (a) and (b) Visualization of generalized object
libraries with quadratically and linearly packed 2D second
moments. (c) and (d) Comparison of the CEs for TRISPADE,
direct imaging, and an error threshold for M-ary object
discrimination with a 2D Gaussian aperture to lowest order
in γ (mx2;min ¼ 0.05, mx2;max ¼ 0.1).
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representing an acceptable application-specific error rate

(i.e., ξð1ÞTRISPADE;M > ξð1Þthresh). We observe that γ determines
the relative improvement over direct imaging, and quadratic
object packing (c) yields the 10x improvement for a larger
slice of the sub-Rayleigh regime than linear packing (d),
highlighting the different distance measures between the

two measurements. Satisfying the error threshold ξð1Þthresh
requires a tradeoff with γ and the number of objects M but
is less sensitive to the second-moment packing configura-
tion of the library.
Finally, in Fig. 5 we ask how many objects can be

distinguished to a desired accuracy with a conventional or
quantum-optimal measurement, which directly relates to
the decision-making power of an imaging system. Using an
equidistant library for both measurements, we solve
Eqs. (8) and (11) for M and find that TRISPADE
distinguishes more objects than direct imaging by an
increasing factor as γ decreases for any threshold error

rate. For instance, at a relaxed threshold ξð1Þthresh ¼ 10−6, i.e.,
higher tolerable error and/or more available photons (inset),
TRISPADE distinguishes 100 objects at γ ¼ 0.28 (vertical
line), while direct imaging cannot identify more than one.
We conclude that TRISPADE significantly increases the
complexity of distinguishable sub-Rayleigh object libraries
without compromising performance.
Conclusion.—Our Letter shows that a simple optical

receiver could enable substantial improvements in decision
making in many superresolution imaging contexts. System
imperfections (e.g., optical losses, mode crosstalk, detector
noise) and limited prior knowledge of the library (e.g.,
object defects, unknown pose) are outside the scope of this
Letter but can only reduce discrimination accuracy from the
ideal case [42,43]. Our quantum limit is therefore a

fundamental lower bound on identification error that can
rule out quantitative regimes of discrimination capability
for future imaging systems.
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