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Time-efficient control schemes for manipulating quantum systems are of great importance in quantum
technologies, where environmental forces rapidly degrade the quality of pure states over time. In this Letter,
we formulate an approach to time-optimal control that circumvents the boundary-value problem that
plagues the quantum brachistochrone equation at the expense of relaxing the form of the control
Hamiltonian. In this setting, a coupled system of equations, one for the control Hamiltonian and another
one for the duration of the protocol, realizes an ansatz-free approach to quantum control theory. We show
how driven systems, in the form of a Landau-Zener type Hamiltonian, can be efficiently maneuvered to
speed up a given state transformation in a highly adiabatic manner and with a low energy cost.
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Introduction.—Engineering a suitable Hamiltonian that
evolves a given initial quantum state into a selected target
state is essential in technologies such as quantum infor-
mation processing [1,2], quantum simulation [3,4], and
quantum sensing [5,6]. Inspired by Pontryagin’s maximum
principle [7,8], this problem has traditionally been
addressed using optimal quantum control theory, where
state transformations are implemented using either open-
loop [9,10] or measurement-based [11–14] protocols. In
most approaches to quantum control, however, the elapsed
time over which the evolution is performed does not enter
as a parameter to optimize and is typically “preset” before
applying any optimization algorithm. Within this frame-
work, the job reduces to parametrically optimizing a fixed
form of the control Hamiltonian to reach maximum fidelity
[15–18].
In a time-optimal version of quantum control theory,

maximum fidelity transformations are sought in the least
possible time to reduce the impact of decoherence, which
rapidly degrades the quality of quantum states in quantum
information processing [19,20]. Following a number of
precursor works [21–25], a formal time-optimal version of
quantum control theory was formulated by Carlini and

coworkers [26–28] in analogy to Bernoulli’s classical
brachistochrone problem [29], and has since then been
referred to as the quantum brachistochrone problem. If the
time evolution has no constraints, the solution to the
quantum brachistochrone problem reduces to finding
the time-independent Hamiltonian that generates maximum
speed of evolution along a geodesic [30–34]. In general,
however, there can be a number of limitations that prohibits
the implementation of such an elementary solution, spe-
cially for open quantum systems [35–37]. In closed
systems, restrictions typically come from the available
forms of the control Hamiltonian, which may yield a
difficult-to-solve boundary-value problem [38]. Even if
the form of the control Hamiltonian can be relaxed,
limitations may still arise in situations where the system
is immersed in an external field that cannot be altered by the
controller. In analogy with the classical problem posed by
Zermelo [29], this last situation has been often called the
quantum Zermelo navigation problem [39–42].
The quantum Zermelo problem has been recently

addressed for systems in a time-independent driving force
and for initial and target states with at most a real overlap
[43,44]. However, a general solution for transforming
between arbitrary states in the presence of a time-dependent
drift Hamiltonian has not been proven. Here, we show that
this problem can be cast in the form of a system of two
coupled equations, viz., one for the control Hamiltonian
and another for the associated duration of the protocol, also
known as the quantum speed limit formula. Importantly, we
do not impose a preset form of the control Hamiltonian in
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our derivation, and hence the resulting scheme lends itself
as an “ansatz-free” approach to quantum control. This is
illustrated for the case of a two-level system immersed in a
Landau-Zener type drift Hamiltonian. In this context, the
proposed control scheme embodies a low energy cost
alternative to so-called transitionless driving [45–47].
Time-optimal control in a time-dependent drift Hami-

ltonian.—The quantum Zermelo navigation problem can be
posed as follows. Given an initial state jψ ii and a time-
dependent drift HamiltonianH0ðtÞ, we aim to find the time-
optimal control Hamiltonian HcðtÞ such that the total
HamiltonianHðtÞ ¼ H0ðtÞ þHcðtÞ drives jψ ii to a desired
final state jψfi in the least possible time τ according to the
time-dependent Schrödinger equation, iðd=dtÞjψðtÞi ¼
HðtÞjψðtÞi (atomic units are used throughout). The form
of the drift Hamiltonian is not manipulable, while the
control Hamiltonian is only constrained to fulfill two
conditions: (i) it has to have a finite energy bandwidth,
and (ii) it is restricted to a subspace of Hermitian operators.
The above problem can be recast in the interaction

picture of quantum mechanics by writing initial and final
states respectively as jψ 0

ii ¼ jψ ii and jψ 0
fi ¼ U†

0ðτÞjψfi,
where U0ðtÞ ¼ T exp ð−i R t

0 H0ðt1Þdt1Þ and T defines the
usual time ordering operator. For the particular case where
initial and final states live in a two-dimensional Hilbert
space H2, a simple derivation of the control Hamiltonian,
H0

cðtÞ ¼ U†
0ðtÞHcðtÞU0ðtÞ, can be obtained using geometric

arguments on the Bloch sphere, as shown in Sec. I of the
Supplemental Material [48]. For a general N-dimensional
setting, we shall adopt an approach in the projective Hilbert
space PðHNÞ [49]. Specifically, we use the Riemannian
metric of Fubini and Study [51,52], which in the interaction
picture reads as

dL2
FS ¼ 4

�hdψ 0jdψ 0i
hψ 0jψ 0i −

jhψ 0jdψ 0ij2
hψ 0jψ 0i2

�

; ð1Þ

with jψ 0ðtÞi ¼ U†
0ðtÞjψðtÞi. Introducing the time-

dependent Schrödinger equation into Eq. (1) allows one
to set the length of the path followed by a normalized
quantum state, i.e.,

LFS ¼ 2

Z
τ

0

ΔH0
cðtÞdt; ð2Þ

where ΔH0
cðtÞ denotes the standard deviation of the control

Hamiltonian H0
cðtÞ. Since the minimum distance path (or

geodesic) between two states lies entirely in the subspace
spanned by these two states [32,53], a state evolving along
this path necessarily reads as

jψ 0ðtÞi ¼ ηðtÞjψ ii þ ζðtÞjψ̄ 0
fi; ð3Þ

where jψ̄ 0
fi¼ð1=

ffiffiffiffiffiffiffiffiffiffiffi
1−s2

p
Þðjψ 0

fi−seiβjψ iiÞ (with hψ ijψ 0
fi ¼

seiβ) is the orthonormalized final state in the interaction
picture. The Fubini-Study distance along a geodesic, Lmin

FS ,

is obtained by inserting Eq. (3) into Eq. (1), integrating
dLFS to obtain LFS and then minimizing this length. This
process yields (see, e.g., Appendix A of Ref. [54])

Lmin
FS ði; f0Þ ¼ 2 arccos ðjhψ ijψ 0

fijÞ: ð4Þ
Now, a state having evolved along a geodesic must obey

LFS ¼ Lmin
FS ði; f0Þ. Furthermore, if we impose the “trans-

versality” condition

hψ 0ðtÞjH0
cðtÞjψ 0ðtÞi ¼ ihψ 0ðtÞj _ψ 0ðtÞi ¼ 0; ð5Þ

then the integrand of Eq. (2) takes its highest value (i.e.,
ΔH0

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hψ 0ðtÞjH02

c ðtÞjψ 0ðtÞi
p

), thereby minimizing the
upper limit of the integral τ. The above transversality
condition allows us to infer a functional form of H0

cðtÞ,
which is given by

H0
cðtÞ ¼ i

�
djψ 0ðtÞi

dt
hψ 0ðtÞj − jψ 0ðtÞi dhψ

0ðtÞj
dt

�

: ð6Þ

To express the above Hamiltonian in terms of initial and
final states we shall first fix the specific form of the state in
Eq. (3). For that, we here define the complex functions
ηðtÞ ¼ cos θðtÞ and ζðtÞ ¼ e−iβ sin θðtÞ [where θðtÞ ¼R
t
0 ΔH

0
cðt0Þdt0] and refer the interested reader to a more

detailed derivation in Sec. II of the Supplemental Material
[48]. Introducing Eq. (3) into Eq. (6) we then obtain

H0
cðtÞ ¼

ivzðtÞffiffiffiffiffiffiffiffiffiffiffiffi
1 − s2

p ðe−iβjψ 0
fihψ ij − eiβjψ iihψ 0

fjÞ; ð7Þ

where we have defined the “velocity” vzðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j _ψ 0ðtÞj2

p
¼

ΔH0
cðtÞ, with the second equality coming from the trans-

versality condition.
The role of the vzðtÞ can be elucidated by noting that, due

to the structure of the Hamiltonian in Eq. (6),
2½ΔH0

cðtÞ�2 ¼ tr½H02
c ðtÞ� ¼ tr½H2

cðtÞ�, where the last equal-
ity follows from the cyclic property of the trace. This
property allows us to write vzðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr½H2

cðtÞ�=2
p

¼
kHcðtÞk, which establishes a clear-cut relation between
the velocity vzðtÞ and the Hilbert-Schmidt (or Frobenius)
norm of the control Hamiltonian, also known as the energy
resource of the control [55,56]. In this respect, by equating
Eqs. (2) and (4) we obtain

R
τ
0 vzðtÞdt ¼ arccos jhψ ijψ 0

fij.
To minimize the protocol time τ, we can further impose

the “full throttle” condition that the energy disposal of the
control is held constant at the maximum attainable value,
i.e., vzðtÞ ¼ vz. This last condition allows us to find an
equation for the protocol time τ. By simply equating
Eqs. (2) and (4) we find

τ ¼ 1

vz
arccos

ffiffiffiffiffiffi
F 0

p
; ð8Þ
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where F 0 ≡ jhψ ijψ 0
fij2 is the fidelity of the process

dictated solely by the drift Hamiltonian. Equation (8)
represents an alternative expression for Bhattacharyya’s
quantum speed limit written in the interaction picture [31].
In particular, in the absence of a drift Hamiltonian
F 0 ¼ jhψ ijψfij2, and then Eq. (8) coincides with the
well-known Mandelstam-Tamm (MT) bound [30], i.e.,

τMT ¼ 1

vz
arccos jhψ ijψfij: ð9Þ

In general, the protocol time τ can be either smaller or
larger than τMT depending on the fidelity of the process
dictated solely by the drift Hamiltonian. Specifically,
comparing Eqs. (8) and (9) yields

τ ≶ τMT if jhψ ijψfij2 ≶ F 0: ð10Þ
If the evolution dictated by the drift Hamiltonian brings the
initial state closer to the final state in a time τ, then it
represents a “favorable wind” and τ < τMT. Contrarily, if
the drift Hamiltonian takes the initial state away from the
final state in a time τ, then it represents an “unfavorable
wind” and τ > τMT. Note, however, that Eq. (8) is in
general a nontrivial function of the energy disposal of the
control vz. That is, whether a drift Hamiltonian embodies a
favorable or unfavorable wind ultimately depends on the
duration of the protocol τ, which in turn is a function of the
energy resource of the control vz. Therefore, a given drift
Hamiltonian H0ðtÞ may represent either a favorable or
unfavorable wind depending on the energy resource of the
control vz.
Time-optimal control of a Landau-Zener model

system.—To assess the performance of the above protocol,
we investigate the time-optimal control for the “simplest
nontrivial quantum problem,” that is, the evolution of a
two-level system under a Landau-Zener (LZ) drift
Hamiltonian as shown in Sec. III of the Supplemental
Material [48]. Here, two states j0ðtÞi and j1ðtÞi, the
diabatic levels, are coupled through a LZ Hamiltonian
[57,58]:

HLZðtÞ ¼ ΓðtÞσz þ ωσx; ð11Þ

(σx;z being the Pauli operators with σxj0ðtÞi ¼ j1ðtÞi)
characterized by the instantaneous adiabatic levels of the
system jgðtÞi and jeðtÞi. In Eq. (11), ω represents the
coupling between the diabatic levels and is kept constant,
and ΓðtÞ is a piecewise-defined function which is chosen to
be either a linear or polynomial function of time:

ΓlinearðtÞ ¼ 4

�
t
τ
− 1=2

�

; for 0 ≤ t ≤ τ; ð12aÞ

ΓpolyðtÞ ¼ a

�
t
τ

�
2

þ b

�
t
τ

�

− 2; for 0 ≤ t ≤ τ; ð12bÞ

with Γðt < 0Þ ¼ −2 and Γðt > τÞ ¼ 2 in both cases. In
Eq. (12b) we picked a ¼ b2=32 and b ¼ −16 −

ffiffiffiffiffiffiffiffiffiffi
1536

p
=2

to find a situation with a “nonfavorable wind” (as will be
clarified later on).
Our goal is to design a control protocol that drives the

system in the least time through the anticrossing point in
such away that at the end of the evolution the final state is the
adiabatic ground state, i.e., jψðτÞi ¼ jgðτÞi. The system is
initially prepared in the adiabatic ground state jψð0Þi ¼
jgð0Þi and, in the absence of a control Hamiltonian, under-
goes tunneling to the excited state jeðtÞi with a finite
probability [57,58]. Alternatively, under the action of the
control Hamiltonian obtained from Eqs. (7) and (8), the
evolution of the initial adiabatic ground state will reach
the target state in the least time and with unit fidelity.
Notably, we do not impose any restriction on the form of the
control Hamiltonian and hence our job is in contrast with
previous works, where a “preset” form of the control
Hamiltonian has been optimized at the price of degrading
either fidelity or speed [18,59–61]. The interested reader can
find more details on the numerical implementation of
Eqs. (7) and (8) in Sec. IVof the SupplementalMaterial [48].
We begin by illustrating the influence of the drift

Hamiltonian in the duration of the control protocol. Our
aim is to show that a given drift Hamiltonian HLZðtÞ may
represent both a favorable and an unfavorable wind
depending on the energy resource of the control vz.
Figure 1(a) shows F 0 as a function of τ for ω ¼ 2, either
for Γlinear or Γpoly. In the figure, the regimes where the top
and bottom inequalities of Eq. (10) are fulfilled can be
readily identified. This can be checked in Figure 1(b),
where we draw the protocol time τ as a function of the
energy resource of the control vz. For large values of vz, the
drift Hamiltonian (no matter whether it is favorable or
unfavorable) is irrelevant, and thus τ ∼ τMT. For lower
values of vz, however, Γpoly may represent a “nonfavorable
wind” and, hence, delay the arrival of the initial state to the
target state as compared to cases with a “favorable wind”
(Γlinear) or no wind, as shown in Sec. Vof the Supplemental
Material [48]. For slow enough processes, the drift
Hamiltonian prevails over the control field and therefore
the protocol time τ becomes always smaller than the MT
bound, τMT, which diverges as vz → 0 as shown in Sec. V
of the Supplemental Material [48].
Next, we assess the adiabaticity of the dynamics dictated

by the control protocol. Specifically, we evaluate the mean
adiabaticity of the overall control process:

Ā ¼ 1

τ

Z
τ

0

AðtÞdt; ð13Þ

where AðtÞ ¼ jhgðtÞjψðtÞij2 quantifies how close the
evolved state of the system is to the instantaneous ground
state of HLZðtÞ. Figure 2(a) shows Ā as a function of τ for
different values of the coupling constant ω. The minimum
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adiabaticity of our method is expected at ω ¼ 0, where the
level crossing induces an exchange of roles between ground
and excited states. In this limit, Eqs. (7) and (8) can be
solved analytically and yield Āmin ≈ 0.82 independently of
the energy resource of the control, as shown in Sec. VI of
the Supplemental Material [48]. By increasing the value
of the coupling constant, the resulting dynamics are more
and more adiabatic, with Ā showing an asymptotic restor-
ing of full adiabaticity for slow processes. We found that for
ω ≥ 10, the resulting dynamics are adiabatic within an error
less than 0.1%.
The above results indicate that quantum systems, in the

form of a LZ type Hamiltonian, can be maneuvered at the
quantum speed limit in a quasiadiabatic manner without
imposing a preset form of the control Hamiltonian. A
relevant question may then be how the proposed control
scheme compares to transitionless driving, where the so-
called counterdiabatic (CD) field, HCDðtÞ, is designed in
such a way that the system is driven precisely through the
adiabatic manifold of the drift Hamiltonian (i.e., ĀCD ¼ 1)
[45–47,62]. We evaluate the energetic cost of implementing
our control scheme and the CD driving field. The notion of
cost has been somewhat loosely employed and hence
different quantifiers probe different aspects of the system’s
energy [63]. Therefore, we are free to choose any

meaningful quantifier that provides a sound basis for
drawing a comparison. Simply determining the average
energy of the control is insufficient as both our protocol and
CD drivings obey the transversality condition in Eq. (5) and
would appear thermodynamically for free. Instead, here we
choose the cost defined by Campbell and coworkers
[55,56,68] and use the Frobenius norm of the total
Hamiltonian to define the cost of the control protocol as

CT ¼ 1

τ

Z
τ

0

kHðtÞkdt; ð14Þ

where kHðtÞk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr½H2ðtÞ�=2

p
and HðtÞ is the total

Hamiltonian including the drift and control fields. As
shown in Fig. 2(b), for very low speed processes the
cost of implementing both protocols converges to the
cost of implementing solely the LZ Hamiltonian
CLZ ¼ ð1=τÞ R τ

0 kHLZðtÞkdt. Imposing full adiabaticity at
higher speeds, however, may result in being orders of
magnitude more expensive than assuming a slightly non-
adiabatic evolution. For example, at ω ¼ 10, implementing
a counterdiabatic driving field can be as costly as ×100 the

FIG. 2. (a) Time-averaged adiabaticity Ā, Eq. (13), as a
function of τ for Γlinear and different values of the coupling
constant ω. Note that the minimum adiabaticity (green solid line)
occurs at ω ¼ 0, where the level crossing induces an exchange of
roles between ground and excited states. (b) Cost (in atomic units,
a.u.) of implementing the proposed (solid lines with markers) and
the counterdiabatic (solid lines without markers) protocols
calculated through Eq. (14). CLZ (dashed lines) denotes the cost
of implementing solely the LZ Hamiltonian. It is clear from the
above panels that imposing full adiabaticity at high speeds may
result in being orders of magnitude more expensive than assum-
ing a slightly nonadiabatic evolution.

(a)

(b)

FIG. 1. (a) Fidelity F 0 as a function of τ, Eq. (8), for ω ¼ 2 and
two different LZ Hamiltonians with Γlinear (solid line) and Γpoly

(dotted line). The dasehd line corresponds to jhgð0ÞjgðτÞij2 ¼
jhψ ijψfij2. (b) Duration of the protocol time τ as a function of the
energy resource of the control vz for the same settings (where a.u.
refers to atomic units). Both regimes in Eq. (10) can be identified
depending on the energy resource of the control for Γpoly.
Contrarily, for Γlinear the LZ Hamiltonian always acts as a
favorable wind.
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cost of implementing our control protocol, which is already
99.9% adiabatic. At lower coupling constants and high
speeds, the cost difference between the two protocols
increases even further while the adiabaticity error in the
proposed protocol is always kept below 20%. Remarkably,
for ω ¼ 0, the CD driving field does not bring the system to
the target state. This is in contrast to the proposed protocol,
which reaches the final state through a highly adiabatic path.
For the above example, the interested reader can find a

detailed comparison of the matrix elements of HcðtÞ and
HCDðtÞ in Sec. VII of the Supplemental Material [48]. Let
us stress, however, that the practical implementation of
HcðtÞ and HCDðtÞ ultimately depends on the physical
system under consideration. In this respect, in Sec. VII
of the Supplemental Material [48] we also provide some
hints on the practical implementation of HcðtÞ for a spin
1=2 in a time-varying magnetic field and a Bose Einstein
condensate in an optical conveyor belt [69,70], both
immersed in a LZ type Hamiltonian.
Conclusions.—To summarize, based on a pure geometric

derivation in a projective Hilbert space, we have presented
an “ansatz-free” approach to time-optimal quantum control.
The analysis of this scheme as applied to the Landau-Zener
model yielded two important conclusions for maximum
speed transformations. First, no “guessed” form of the
control Hamiltonian is required for designing a time-
optimal control protocol that, along with the action of a
time-dependent drift Hamiltonian, drives an initial state to a
target state in the least time and with unit fidelity. The
solution to the system of Eqs. (7) and (8) can be thus
exploited to conceive new, unforeseen, time-optimal con-
trol protocols. Second, quasiadiabatic dynamics with less
than 0.1% deviation from the full adiabatic path can be
attained at the quantum speed limit with an energetic cost
that is orders of magnitude lower than the cost of
implementing a counterdiabatic field. Therefore, the pro-
posed control method lends itself as a “low-cost” alter-
native to transitionless driving. Overall, the quantum
control approach that we establish opens a new avenue
in the search for more time- and energy-efficient control
protocols [71].
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