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We present a minimal non-Hermitian model where a topologically nontrivial complex energy spectrum
is induced by interparticle interactions. Our model consists of a one-dimensional chain with a dynamical
non-Hermitian gauge field with density dependence. The model is topologically trivial for a single-particle
system, but exhibits nontrivial non-Hermitian topology with a point gap when two or more particles are
present in the system. We construct an effective doublon model to describe the nontrivial topology in the
presence of two particles, which quantitatively agrees with the full interacting model. Our model can be
realized by modulating hoppings of the Hatano-Nelson model; we provide a concrete Floquet protocol to
realize the model in atomic and optical settings.
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Non-Hermitian Hamiltonians have been found to host a
rich variety of topological phases [1–14]. While some non-
Hermitian phases are direct analogs of Hermitian phases,
there are many uniquely non-Hermitian phases. These
result when the system has a point gap in the complex
energy plane, which allows for nontrivial winding of the
energy spectrum. Non-Hermitian topology manifests in an
analogous bulk-boundary correspondence known as the
skin effect wherein a macroscopic number of states localize
at the boundary [15–20]. These phenomena have been
primarily investigated as single-particle effects.
Comparatively little work has been done to understand

the role of correlations and interactions in non-Hermitian
topological phases [21–26]. Interactions have played an
important role in Hermitian topological physics, giving rise
to many paradigmatic phases including the fractional
quantum Hall effect and quantum spin liquids. Such
strongly interacting systems have led to many advance-
ments in physics, including developments in gauge theo-
ries. Given the richness of Hermitian interacting systems,
it remains to be seen how analogous non-Hermitian
interactions can enrich the topology of open systems.
Experimentally, two body loss terms are ubiquitous in
optical lattices and photonics with an increasing degree of
control, further motivating investigations of the topology of
many-body open systems.
In this Letter, we report on a minimal 1D non-Hermitian

model exhibiting interaction induced topology. We demo-
nstrate that our model is topologically trivial for a single
particle, but gains a nontrivial winding number in the
complex energy plane for two or more particles. We
characterize the spectrum by the clustering properties of
the eigenstates. This leads us to derive an effective Su-
Schrieffer-Heeger (SSH) model of Doublons with an
emergent sublattice symmetry, which quantitatively cap-
tures the complex energy ring of the full spectrum. The

winding number of the interacting model corresponds
with the winding of this effective model analogous to inter-
action induced topology in Hermitian systems [27–29]. We
conclude by proposing a two-frequency Floquet protocol
that realizes our model as an effective Hamiltonian. As an
intermediate step, this Floquet protocol realizes a Hatano-
Nelson model.
Model.—Our model consists of bosons populating a 1D

chain with hoppings dependent on the gradient of the
density, which can be interpreted as a density-dependent
synthetic dynamical gauge field. The Hamiltonian of our
system is

H ¼
X
j

a†jþ1½−tþ iγRðnjþ1 − njÞ�aj

þ a†j ½−tþ iγLðnj − njþ1Þ�ajþ1 ð1Þ

where aj and a†j are bosonic annihilation and creation
operators, respectively, t is the single particle hopping
parameter, nj is the density operator a†jaj on the jth site,
and γR=L are the couplings to the gauge field for right and
left hoppings. To realize a non-Hermitian model, we take
γR ≠ γ�L in a similar fashion to the Hatano-Nelson
model [30,31]. Descriptions in terms of non-Hermitian
Hamiltonians can be obtained through a postselection
procedure on quantum trajectories [22,32]. Later we
present a concrete experimental protocol combining quan-
tum trajectory and Floquet theory to realize this
Hamiltonian. In the present model, when there is only
one particle present in the system, the density terms are
identically zero. Therefore, for a single particle the
Hamiltonian is Hermitian and corresponds to a free boson.
The single-particle spectrum is shown in Fig. 1(a) which
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reproduces the free boson result for a periodic chain of
length L ¼ 20.
Exact diagonalization.—Let us contrast this result

with the two-particle spectrum shown in Fig. 1(b). We
consider a fixed particle number as the Hamiltonian has
U(1) symmetry. Physically, a particle number is conserved
between quantum jumps during which the non-Hermitian
Hamiltonian description is valid. Here we find that the
energy spectrum consists of a sector where energies are
nearly real and a sector consisting of a ring of complex
energies. We project each eigenstate into the subset of basis
states where particles lie on the same site or adjacent sites,
and find that the states with complex energies largely lie in
this subspace while those with nearly real energies have
almost zero weight in this subspace. To further characterize
this separation we calculate the correlator a†ja

†
kajak for

each eigenstate. Representative correlators for complex
energy states and nearly real energy states are shown as
a function of j for a fixed k in Fig. 2. This correlator
confirms that the states with complex energy occur when
the particles cluster while those with nearly real energies
occur when the particles separate.
The energy spectrum has a point gap indicating the

presence of nontrivial topology. To verify the nontrivial
topology, we calculate the winding number following the

flux insertion procedure outlined in Ref. [33]. We define
HðϕÞ by multiplying e−iϕ (eiϕ) to the boundary hopping
term in the first (second) term of Eq. (1), where ϕ is the
strength of the inserted magnetic flux. We then calculate

1

π
ℑ½∂ϕ ln det½HðϕÞ − δI�� ð2Þ

as a functionϕ, whereℑ½·� stands for the imaginary part, and
I is the identity matrix. The signed number of jumps in this
quantity gives the winding of the phase about the point δ,
chosen to lie within the point gap, in the complex plane. In
Fig. 3, we plot this quantity versus the flux ϕ and clearly see
that it jumps twice as the flux is tuned from 0 to 2π, giving a
winding number of 2 and confirming that the system is
topologically nontrivial when there are two particles.
A nontrivial winding number implies the existence of the

skin effect in the open-boundary geometry. The open-
boundary eigenstates are plotted in Figs. 1(c) and 1(d) for
the one- and two-particle systems respectively. The one-
particle eigenstates are exactly those obtained for a free
Boson model while the two-particle eigenstates demon-
strate a clear skin effect. In fact, all states will localize on
the edge for strong enough gauge coupling. For complete-
ness, we present the energy spectrum in the open-boundary
geometry in Fig. 4, which shows that the spectrum does not
cleanly separate along particle clustering properties as both
particles localize on the edge. Unlike the single-particle

FIG. 2. Four point correlator ha†ja†kajaki for k ¼ 10 with
periodic boundary conditions. The solid line is representative
of states with corresponding energies on the ring while the dashed
line is representative of states with nearly real eigenenergies.

FIG. 1. Summary of key results. Panels (a) and (b) are energy
spectra for periodic boundary conditions plotted in the complex
plane for one and two particles, respectively. For one particle,
the spectrum is real while for two particles, the spectrum is
complex with a point gap. The coloring in panel (b) is obtained
projecting each eigenstate onto the subspace of basis states
where particles lie on the same site or adjacent sites. The red
line is the spectrum obtained from the effective doublon model
described below. Panels (c) and (d) are the real space profiles of
the eigenstates in the open-boundary geometry for one and two
particles respectively. For one particle, eigenstates are typical
standing waves while for two particles we observe a skin effect.
The chosen parameters are t ¼ 1, γL ¼ 1.5, and γR ¼ 0 for a
lattice with 20 sites.

FIG. 3. Plot demonstrating the nontrivial winding number.
A jump from 1 to -1 increases the winding by 1 while a jump
from -1 to 1 decreases the winding by 1.
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Hatano-Nelson model, the spectrum in the open-boundary
condition does not lie on the real axis only; we discuss
below the origin of this complex spectrum.
Effective doublon model.—To understand the topology

of the system, we derive an effective doublon model that
captures the physics of the complex energy ring. We obtain
this by restricting our basis to states where the particles lie
on the same site or on adjacent sites. The effective doublon
model consists of two sublattices; we define sublattice A to
be the set of states with particles on the same site, and
sublattice B to be the set of states with two particles
occupying adjacent sites, as shown in the diagram in Fig. 5.
We define the creation operator of a particle in the jth site
of sublattice A as a†A;j ≡ a†ja

†
j and that of sublattice B as

a†B;j ≡ a†ja
†
jþ1. The resulting effective model is given by the

Hamiltonian

Hdoublon¼
X
j

Ψ†
j;j

�
0 J1
J3 0

�
Ψj;jþΨ†

jþ1;j

�
0 J2
J4 0

�
Ψjþ1;j;

ð3Þ

where Ψ†
j;l ≡ ða†A;j; a†B;lÞ and J1 ¼

ffiffiffi
2

p ð−tþ iγLÞ, J2¼ffiffiffi
2

p ð−tþiγRÞ, J3¼
ffiffiffi
2

p ð−t−iγRÞ, and J4¼
ffiffiffi
2

p ð−t−iγLÞ,
which is an SSH model with asymmetric hoppings on a

chain of length 2L. See the Supplemental Material for more
explicit details on the derivation of the doublon model [34].
We note that the effective doublon model has emergent
sublattice symmetry in which hopping within the same
sublattice is absent. The energy spectrum of this model is
plotted in red in Figs. 1(b) and 4 for periodic and open
boundaries, respectively, demonstrating that key features
of the many-body spectrum are captured by this single-
particle doublon model. The accuracy of the doublon model
increases for stronger density-dependent hopping.
To characterize the topology of this effective theory, we

calculate the winding number of the energy spectrum in
momentum space. The Fourier transform of the effective
Hamiltonian is

X
k

Ψ̃†
k;k

�
0 J1 þ J2e−ik

J3 þ J4eik 0

�
Ψ̃k;k ð4Þ

with Ψ̃k;k ≡ ðãA;k; ãB;kÞ, where ãA;k and ãB;k are the Fourier
transforms of aA;j and aB;j. The details for determining the
topology of such a system with sublattice symmetry are
outlined in Ref. [1] where we have the upper diagonal
matrix Hþ ¼ J1 þ J2e−ik and the lower diagonal matrix
H− ¼ J3 þ J4eik. If the point gap in the many-body system
is well defined, the winding of the full system without
considering the sublattice symmetry is twice the winding of
the doublon Hamiltonian. The doublon model tells us
approximately which points in the complex energy plane
we should consider to find nontrivial winding in the full
many-body system. Additionally, the point gaps in the
many-body system are often larger than in the doublon
effective theory, providing additional points about which
there is nontrivial winding.
In the Hatano-Nelson model, the spectrum under

open-boundary conditions is real implying there exists
an imaginary gauge transformation between the Hatano-
Nelson Hamiltonian and a Hermitian Hamiltonian
[30,31,35]. In general the energy spectrum of Hdoublon
has both imaginary and real energies, implying that the
Hamiltonian cannot be made Hermitian by an imaginary
gauge transformation, i.e., our effective doublon model is
not related to any Hermitian matrix by a similarity trans-
formation. With a similarity transformation similar to the
one used for the ordinary Hatano-Nelson model [35], one
can transform our effective doublon Hamiltonian under an
open-boundary condition to a tridiagonal form:

Hdoublon ∼

0
BBBBB@

0
ffiffiffiffiffiffiffiffiffi
J1J3

p
0 � � �ffiffiffiffiffiffiffiffiffi

J1J3
p

0
ffiffiffiffiffiffiffiffiffi
J2J4

p � � �
0

ffiffiffiffiffiffiffiffiffi
J2J4

p
0 � � �

..

. ..
. ..

. . .
.

1
CCCCCA
: ð5Þ

This matrix is real and symmetric when both
ffiffiffiffiffiffiffiffiffi
J1J3

p
andffiffiffiffiffiffiffiffiffi

J2J4
p

are real, which gives a sufficient condition for the

FIG. 4. Energy spectrum for open-boundary geometry. The
parameters are the same as in Fig. 1, and the coloring of points is
obtained through the same projection method. Red crosses are
obtained from the effective Doublon SSH model.

FIG. 5. Diagram of the effective doublon SSH model. Sub-
lattice A maps to basis states with particles on the same site while
sublattice B maps to basis states with particles on adjacent sites.
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reality of the spectrum. When γL and γR are real, which is
the relevant situation in this Letter, J2J4 ¼ ðJ1J3Þ�, in
which case we numerically confirm that J1J3 > 0 gives the
necessary and sufficient condition for the spectrum being
entirely real.
Floquet protocols.—To realize our model, we have

identified a Floquet protocol whose effective Hamiltonian
can be identified with Eq. (1). This Floquet protocol is
inspired by previous efforts toward realizing Hermitian
density dependent gauge fields in the setting of optical
lattices [36–42]. The system consists of a static Bose-
Hubbard Hamiltonian and a time periodic Hatano-Nelson
model.
We first describe how to realize a Hatano-Nelson model

from a Floquet protocol, which consists of a repeated three
step process as presented in Ref. [43] with total frequency
Ω ¼ 2π=TΩ [44]. The time-dependent Hamiltonian is
given as

HðtÞ ¼ Δ
X
j

ða†jþ1aj þ ajþ1a
†
jÞ þ U

X
j

njðnj − 1Þ þ VðtÞ

ð6Þ

where Δ is the hopping parameter, U is the strength of the
interaction, and VðtÞ is the modulation given by

VðtÞ¼

8>>>>><
>>>>>:

Δ1

P
j
a†jþ1ajþajþ1a

†
j ; 0≤ t <TΩ=3

P
j
iμja

†
jaj; TΩ=3≤ t < 2TΩ=3

0; 2TΩ=3≤ t <TΩ

ð7Þ

corresponding to a free gas of bosons with periodically
modulated hopping and site-dependent loss μj. Note t is
defined mod TΩ. We obtain an effective Hamiltonian to
order 1=Ω as

Heff ¼
X
j

�
Δ −

πΔ1

27Ω
ðμj − μjþ1Þ

�
a†jþ1aj

þ
�
Δ −

πΔ1

27Ω
ðμjþ1 − μjÞ

�
a†jajþ1

þU
X
j

njðnj − 1Þ: ð8Þ

Choosing the site-dependent loss strength to be μj ¼ jμ0,
we obtain a Hatano-Nelson model. A non-Hermitian
Hamiltonian with site-dependent loss can be implemented
in ultracold gases by applying near-resonant light with
position-dependent intensity [45]. Modulating this electric
field in time as proposed above should give rise to the
effective time-dependent Hamiltonian in Eqs. (6) and (7).
By further modulating the hopping of the effective

Hatano-Nelson Hamiltonian, we obtain the desired hopping

as we now show. The full time dependent Hamiltonian is
given by

HðtÞ ¼ Δ
X
j

½a†jþ1aj þ a†jajþ1� þU
X
j

a†jajða†jaj − 1Þ

þ sinðωtÞ
X
j

½ΔRa
†
jþ1aj þ ΔLa

†
jajþ1� ð9Þ

where Δ is the hopping parameter, U is the interaction
strength, ω is the frequency of the drive, and ΔR ≠ Δ�

L
describes a non-Hermitian drive analogous to a Hatano-
Nelson model. We assume ω ≪ Ω so that in the timescale
of 1=ω the system is effectively described by a static
Hatano-Nelson model. From the Magnus expansion
[46,47], we can obtain the effective Hamiltonian to
order 1=ω

Heff ¼
X
j

a†jþ1

�
Δ −

2

iℏω
UΔRðnj − njþ1Þ

�
aj

þ a†j

�
Δ −

2

iℏω
UΔLðnjþ1 − njÞ

�
ajþ1

þ U
X
j

a†jajða†jaj − 1Þ ð10Þ

which maps to our original system with Δ ¼ −t,
γL ¼ ð2=ℏωÞUΔL, and γR ¼ ð2=ℏωÞUΔR. We note here
if one considers this Floquet protocol for fermions instead
of bosons, the Hatano-Nelson model can be realized from
the fast frequency oscillation, but the density-dependent
hopping is absent as particles cannot lie on the same site.
This Floquet protocol introduces an additional interaction
term in the effective Hamiltonian. The physics of our
proposed model remains unchanged for sufficiently small
interaction strength U. See the Supplemental Material for
additional details on our Floquet proposal as well as an
additional Floquet protocol that realizes our model [34].
Besides one-dimensional quantum systems with con-

trolled modulation, such as ultracold atomic gases, the
above protocols can also be realized by mapping the
models to two-dimensional classical systems, where
density-induced Hermitian models have been previously
investigated [27,28].
Conclusion.—We have presented a minimal model

where the interaction induces nontrivial non-Hermitian
topology. The density-dependent non-Hermitian gauge
field played a crucial role in the emergence of two-body
topological phases. Our work paves a way toward under-
standing the role of gauge fields in non-Hermitian many-
body systems. In Hermitian systems, effects of gauge fields
are pronounced in two or higher dimensions, giving rise to
exotic many-body phases such as fractional quantum Hall
phases and topological order. It is therefore of great interest
to extend the study of many-body physics in non-Hermitian
systems under gauge fields to two and higher dimensions,

PHYSICAL REVIEW LETTERS 129, 180401 (2022)

180401-4



in which we expect interplay of topological orders and
non-Hermiticity. The Floquet protocol we provide also
elucidated that such non-Hermitian many-body physics can
be studied in experimentally viable setups under suitable
time modulations. Furthermore, density-dependent gauge
fields are the simplest examples of dynamical gauge fields
where gauge fields do not take externally fixed values. In
Hermitian systems, dynamical gauge fields play a funda-
mental role in understanding a wide variety of systems,
from high-energy to condensed matter physics. Their
relations to non-Hermitian physics have been little
explored; our work opens an avenue toward exploring this
uncharted field.
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