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We present the operational principle for a refrigerator that uses inertial effects in active Brownian
particles to locally reduce their (kinetic) temperature by 2 orders of magnitude below the environmental
temperature. This principle exploits the peculiar but so-far unknown shape of the phase diagram of inertial
active Brownian particles to initiate motility-induced phase separation in the targeted cooling regime only.
Remarkably, active refrigerators operate without requiring isolating walls opening the route toward using
them to systematically absorb and trap, e.g., toxic substances from the environment.
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Introduction.—Many processes in nature allow one to
readily heat up an isolated system. Examples include the
release of heat in chemical reactions occurring, e.g., when
burning wood or gas, inelastic collisions occurring within
resistors when exposed to electric currents, and mass-
energy conversion processes in nuclear power plants and
helium-burning stars. Following the second law of thermo-
dynamics, none of these processes can be reverted, making
us believe that it is impossible to cool down an isolated
physical system. Accordingly, cooling down a target
domain such as the inside of a refrigerator or atoms in a
magneto-optical trap requires that the relevant domain is in
contact with an external bath to which heat can be trans-
ferred via conduction, convection, radiation, or evapora-
tion. Accordingly, developing sophisticated techniques to
transfer heat from a target system to the environment has
been a great challenge of 20th century physics [1–5].
For active systems [6–13], which consist of self-

propelled particles and are intrinsically out of equilibrium,
the second law does not apply to the active particles (but
only to the overall system) [14]. Therefore, in the present
Letter, we ask if it is possible to cool down a system of
active Brownian particles (ABPs) [6,53] in a certain target

region [refrigerator, Fig. 1(a)] in terms of their kinetic
temperature [14] without requiring a mechanism to transfer
energy to particles in the (spatially separated) environment.
To achieve this, we exploit the previous finding that

ABPs can spontaneously phase separate into a dense and a
dilute phase [motility-induced phase separation (MIPS)]
[7,54–73]. While MIPS behaves similar to an equilibrium
phase transition at large scales in the overdamped limit
[59,63,73,74], in the presence of inertia, as relevant for,
e.g., activated dusty plasmas [75,76] or vibrating granular
particles [77–86], the coexisting phases feature different
temperatures, which is, in contrast to clustering in granular
gases caused by inelastic collisions [87–91], a consequence
of self-propulsion and elastic collisions [92,93]. However,
this finding alone is not sufficient to design an active
refrigerator because it leads to a dense and cold phase,
which occurs as randomly distributed clusters that move,
merge, and coarsen and ultimately lead to a uniform
temperature profile when averaging over many realizations
or a long time [Fig. 2(a)].

FIG. 1. Schematic of the active refrigerator (a), which exploits
the peculiar shape of the phase diagram (b). The blue region
represents phase coexistence (MIPS), and the white solid line
represents the newly discovered transition line for inertial ABPs
in comparison with the well-known transition line for over-
damped ABPs (dashed line). Boxes and arrows refer to relevant
parameter regimes discussed in the text.

FIG. 2. Kinetic temperature profiles kBTkinðxÞ ¼ mhjv⃗j2iy=2 in
the steady state averaged over the y coordinate and 20 realizations
with N ¼ 16 000 particles for (a) uniform Pe and (b),(c) nonuni-
form Pe and parameters shown in the key. The yellow dashed line
is a fit of fðxÞ ¼ af2 − tanh½bðxþ cÞ� þ tanh½bðx − cÞ�g=2þ d.
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Thus, to create an active refrigerator, we need to meet the
challenge of finding a mechanism allowing us to initiate
MIPS in the targeted cooling domain only and to localize
the dense phase in that region. To achieve this, one naive
approach could be to implement a nonuniform motility
[94,95] (e.g., through controlling the laser intensity in light-
fueled swimmers [96–99]) such that particles in the
targeted cooling domain show a (large) Péclet number
[(Pe) relative importance of self-propulsion compared to
diffusion] beyond the critical one for the MIPS phase
transition, whereas particles in the environment feature a
(small) subcritical Pe [Fig. 1(b), regime (I)]. However, this
does not work because Pe and the density essentially
behave inversely to each other [7,60] such that locally
increasing Pe decreases the density in the same spatial
region and does not result in a significant temperature
difference [Fig. 2(b)]. Remarkably, however, the opposite
strategy turns out to work in a carefully selected portion of
the phase diagram [Fig. 1(b), regime (II)]: we find that
reducing Pe in the targeted cooling domain by less than 5%
as compared to the environment reduces the kinetic temper-
ature of the ABPs by 2 orders of magnitude. This surprising
finding exploits a remarkable difference between the phase
diagram of inertial ABPs and the well-known phase
diagram of overdamped ABPs: while MIPS occurs in
overdamped ABPs when both Pe and the density are
sufficiently large, in underdamped ABPs, it occurs at
sufficiently large density and intermediate Pe. Thus, when
choosing values of Pe within this intermediate regime in the
targeted cooling domain and higher values in the environ-
ment, the density further increases in the former region,
bringing the system deeper into the MIPS regime and
further away from it outside. That is, inertia is required
twice: first, to induce the two-temperature coexistence
and second, to create the required shape of the phase
diagram.
The resulting active refrigerator exemplifies a funda-

mentally new way to locally cool down a physical system.
Like ordinary refrigerators, it can be used to cool down
other objects. However, as opposed to ordinary cooling
devices, active refrigerators use a self-organized cooling
domain such that no isolating walls are required to separate
the cooling domain from its environment. As a conse-
quence, active refrigerators can, in principle, also be used as
a device to absorb particles from the environment and to
store them for a long time, as we shall see.
Model.—We consider inertial active Brownian particles

[53,69,72,92,100,101] in two spatial dimensions. Each
particle is represented by a (slightly soft) disk of diameter
σ, mass m, and moment of inertia I ¼ mσ2=10 and features
an effective self-propulsion force F⃗SP;i ¼ γtv0p̂iðtÞ, where
v0; p̂i denote the (terminal) self-propulsion speed and the
orientation p̂iðtÞ ¼ ðcosϕiðtÞ; sinϕiðtÞÞ of the ith particle
(i ¼ 1; 2;…; N), respectively. Position r⃗i and orientation
angle ϕi evolve according to dr⃗i=dt ¼ v⃗i and dϕi=dt ¼ ωi,

respectively, where the velocity v⃗i and the angular velocity
ωi in turn evolve as

m
dv⃗i
dt

¼−γtv⃗iþγtv0p̂i−
XN

j¼1
j≠i

∇r⃗iuðrijÞþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTbγt

p
ξ⃗i; ð1Þ

I
dωi

dt
¼ −γrωi þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTbγr

p
ηi: ð2Þ

Here, γt and γr are the translational and rotational drag
coefficients, respectively, and Tb is the temperature of the
bath, e.g., of the liquid or plasma medium surrounding the
particles, which can differ from the kinetic temperature of
the particles [102] and which we treat as constant in our
simulations (see Supplemental Material [14]). The inter-
action potential uðrijÞ, rij ¼ jr⃗i − r⃗jj is modeled by the
Weeks-Chandler-Anderson potential [103] with strength ε

and effective particle diameter σ. Finally, ξ⃗i and ηi denote
Gaussian white noise with zero mean and unit variance. We
define Pe ¼ v0=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2DrDt

p
, where Dt ¼ kBTb=γt and Dr ¼

kBTb=γr denote the translational and rotational diffusion
coefficients, respectively. Note that ABP models like ours
do not explicitly describe the self-propulsion mechanism,
the underlying energy source, or how energy is dissipated
into the bath [53,104]. We discuss possible experimental
realizations below and develop a thermodynamically
consistent picture in the paragraph “where does the energy
flow?”.
In all simulations, we fix m=ðγtτpÞ ¼ 5 × 10−2,

I=ðγrτpÞ ¼ 5 × 10−3, ε=ðkBTbÞ ¼ 10, and σ=
ffiffiffiffiffiffiffiffiffiffiffi
DrDt

p ¼ 1

with the persistence time τp ¼ 1=Dr. We choose γt ¼
γr=σ2 and vary Pe and the total area fraction
φtot ¼ Nπσ2=ð4AÞ, where A ¼ LxLy; Ly=Lx ¼ 0.05,
denotes the area of the simulation box. The Langevin
equations are solved numerically with LAMMPS [105,106]
for up to N ¼ 105 particles using periodic boundary
conditions and a time step Δt=τp ¼ 10−5 (see
Supplemental Material [14] for further details).
Our setup is illustrated in Fig. 1(a): the simulation area is

divided into two regions, in which the particles have
different Péclet numbers PeðxiÞ ¼ v0ðxiÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2DrDt

p
, i.e.,

the self-propulsion speed of each particle depends on its
position according to

v0ðxiÞ ¼
�
v0;in; −x0 < xi < x0
v0;out; else

; ð3Þ

with x0 ≪ Lx. Note that our results are robust with
respect to changes of x0, N, m, v0;in, and v0;out and, in
particular, apply to values of m=ðγtτpÞ used in previous
works [70,72,92,93,107,108] (Figs. S9–S12 in the
Supplemental Material [14]). Initially, all particles are
uniformly distributed in the whole simulation area.
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Active refrigerators.—The goal is now to find Pein and
Peout such that (i) MIPS occurs in the targeted cooling
domain only and (ii) the resulting dense phase stays in that
region. Notice first that, when choosing Pein ¼ Peout, in
each individual realization, we find different kinetic tem-
peratures in coexisting phases, but the ensemble-averaged
(or time-averaged) kinetic temperature profile is uniform
[Fig. 2(a)]. If we choose φtot ¼ 0.5 and Pein > Peout
[regime (I) in Fig. 1(b)] to trigger MIPS in the target
domain only, however, we obtain only a weak temperature
difference (which even goes in the wrong direction),
because the particle density compensates the difference
in Pe (because the residential time of a particle in a small
volume element scales inversely to its speed) as indicated
by the gray arrows in Fig. 1(b) (note that the arrow length
depends on the density of both phases and thus is not
obvious). More generally, when choosing other combina-
tions Pein > Peout and density in the left part of the phase
diagram [Fig. 1(b), regime (I)], we do not observe any
relevant cooling in the target domain. Remarkably, how-
ever, if we choose a comparatively low area fraction of
φtot ¼ 0.35 and Pein ¼ 105 < Peout ¼ 110 [regime (II) in
Fig. 1(b)], we observe that the system undergoes MIPS
exclusively in the target domain and the dense phase
remains in that region (Movie M1 in the Supplemental
Material [14]). This results in a striking cooling effect by
more than 2 orders of magnitude in the cooling domain

from kBhTðoutÞ
kin i=ε ≈ 23.4 to kBhTðinÞ

kin i=ε ≈ 0.147 [Fig. 2(c)],
which is further enhanced when choosing larger Pe
differences and complemented by a significantly lower
entropy production rate in the cooling domain and an
inward flow of kinetic energy (Figs. S3–S5 in the
Supplemental Material [14]).
Phase diagram.—To understand the possible parameter

choices for constructing active refrigerators in detail, we
now discuss the phase diagram of inertial ABPs in the
Pe-φtot plane, which has remained unknown to date. The
key control parameters of the system are ε, Pe, and φtot for
fixedm and I. We additionally fix ε and vary Pe and φtot. To
determine the transition line between the uniform state and
the MIPS regime (Fig. 3), we investigate the distribution of
the local area fraction φloc [67,72,109], which is unimodal
in the uniform regime and bimodal in the coexistence
regime (Fig. S1 in the Supplemental Material [14]).
Interestingly, the transition line does not follow the well-
known relation Pe ∝ 1=φtot, which was found in the over-
damped regime [54,56]. In striking contrast, we find that
Pe ∝ φtot in the large Pe regime (green part of the transition
line in Fig. 3). This relation serves as a crucial ingredient to
construct an active refrigerator. Intuitively, it can be under-
stood to occur as a direct consequence of inertial effects: the
particles bounce back when they collide with each other
and the rebound is much stronger for large Pe than for
moderate Pe. Therefore, to slow down locally, more

collisions are necessary and a larger area fraction is
required at larger Pe to initiate MIPS.
Design rule.—Based on the transition line, we can

formulate the following strategy to realize the active
refrigerator: first, we want to initiate MIPS in the target
domain. This can be achieved by choosing ðPein;φinÞ inside
the MIPS region of the phase diagram for the target
domain. Second, we do not want the system to undergo
MIPS outside the target domain. Hence, we choose
ðPeout;φoutÞ outside the coexistence region. Third, we want
the particle flux that emerges as a consequence of choosing
two different Péclet numbers to bring the system deeper
into the coexistence regime within the target domain but
further away from it outside. Clearly, based on the obtained
detailed knowledge of the phase transition line, the first two
criteria can be easily met by fixing a suitable area fraction
φin ¼ φout ¼ φtot and choosing two Péclet numbers on both
sides of the transition line. However, the third criterion can
only be met by choosing parameter combinations in the
vicinity of the green marked part of the transition line
[regime (II)]. To see this, we will next discuss the particle
flux that emerges when choosing two different Péclet
numbers.
Supportive and counteracting feedback.—Let us first

recall that the mean speed of an ABP decreases with
increasing φtot and increases with increasing Pe (Fig. S2 in
the Supplemental Material [14]). Consequently, when we
have two regions with different Péclet numbers, a lower
density will emerge in the high-Pe region and a larger one
in the low-Pe region. Therefore, the gray arrows in Fig. 1(b)
always point to lower φtot at the high-Pe point and
vice versa.
In regime (I) and, more generally, in the vicinity of

the white part of the transition line in Fig. 3, we need to
choose Pein > Pecritical > Peout to initiate MIPS in the target
domain only. Consequently, the density initially decreases
in that region [Fig. 4(a)]. Interestingly, the area fraction
in the target domain typically decreases to values below
the transition line even for a relatively small Pe difference,
which fully prevents MIPS in the target domain.

FIG. 3. Phase diagram of N ¼ 20 000 inertial ABPs (back-
ground images are steady-state snapshots). The solid line shows
the transition line (see Supplemental Material [14] for details). In
the vicinity of its green part, parameters can be chosen to
construct active refrigerators.
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This surprisingly strong decrease can be viewed as the
result of a positive feedback loop [Fig. 4(b)]: the decrease
of the particle density in the target domain increases the
mean speed of the particles in that region, which further
decreases the particle density in the target domain. Thus, no
cooling occurs within that region (but rather the opposite,
see Fig. 2). In stark contrast, following the peculiar shape of
the phase transition line at large Pe (Fig. 3), the initial
particle flux points in the right direction and gives rise to
the enormous cooling effect for only tiny differences in Pe.
More specifically, when choosing Pein < Pecritical < Peout
[as in regime (II)], the particles are initially faster in the
environment, which enhances the density inside the target
domain where MIPS occurs and further slows down the
particles, which further supports the particle flux from the
environment [Fig. 4(c)].
Where does the energy flow?—The finding of a persis-

tent temperature gradient for the active particles is meas-
urable with a suitable thermometer (Supplemental Material
[14]) and does, of course, not contradict thermodynamics:
heat always flows from hot to cold within the bath (solvent
or gas) that surrounds the active particles. This heat flow
persists in steady state and is maintained by the (external)
energy source driving the system: let us imagine light-
powered Janus colloids in a liquid [6] or a complex plasma
[75,76], where inertia is important. Clearly, in steady state,
when neglecting temperature changes of the particle
material, essentially all the energy that is absorbed by
the active particles from the external light source is
ultimately transferred to the bath. That is, for a uniform
Pe (defocused laser), the particles act as identical heat
sources for the bath. When realizing active refrigerators
with a slightly nonuniform Pe (Peout ≳ Pein), we obtain a
significantly enhanced particle density within the refriger-
ator region and, hence, a comparatively hot solvent. Thus,
Tb is large in regions where Tkin is low, leading to a
persistent bath energy flow from hot to cold (see
Supplemental Material [14] for a minimal model of Tb).
Note that changes in Tb are small compared to changes in

Tkin since the bath has many degrees of freedom. Hence, we
keep Tb constant (as typical for ABP models [6]). (This
argument is, of course, not restricted to light-powered
swimmers but essentially applies also to, e.g., chemically
powered swimmers when considering the fuel as an
external energy source.)
The direction of the bath energy flow can also be

spatially reverted: for Peout ≫ Pein, the bath heats up
stronger outside the refrigerator region because the light
absorption grows faster than the particle density inside,
which cannot exceed close packing [14]. Then, heat flows
into the refrigerator region within the bath but still from hot
to cold.
Absorbing, trapping, and cooling tracers with active

refrigerators.—One unique feature of the proposed active
refrigerators is that they cool down colloidal particles in a
certain region in space without requiring any isolating walls
separating the cooling domain from the environment. Since
the kinetic temperature differences are much larger than the
temperature differences in the underlying bath, active
refrigerators can also be used to absorb sufficiently large
substances from the environment and to trap them for a
long time (Fig. 5). To demonstrate this, we have performed
simulations of inertial ABPs [parameters as in Fig. 2(c)]
and additional passive tracer particles, which may re-
present, e.g., certain toxic substances and are randomly
distributed outside the cooling domain. Remarkably, the
active refrigerator systematically absorbs tracers from the
environment and cools them by 2 orders of magnitude
below the kinetic temperature of tracers outside the
refrigerator domain [Fig. 5(a)]. Note that it can take a
long time before a tracer enters the cooling domain, but
once it is deep inside this region it stays there for a very
long time, as indicated by the exemplary trajectories in
Fig. 5(b) and Movie M2 in the Supplemental Material [14].
Possible experimental realizations.—Active refrigera-

tors can be realized with self-propelled particles featuring
significant inertia and elastic collisions such as activated
microparticles in a plasma [75,76], mesoscopic propellers
such as vibrated granular particles [77–85], drones
[86,110,111], and minirobots [112], and dense animal

FIG. 4. (a) Area fraction in inner and outer regions over time for
regime (I) and (II) (parameters as in Fig. 2). The dashed
horizontal line shows the critical area fraction φcrit: ≈ 0.39 for
Pe ¼ 27. A (b) counteracting [(c) supportive] feedback loop
decreases [increases] the particle density in the target region.

FIG. 5. Absorbing, trapping, and cooling tracers with active
refrigerators. (a) Kinetic temperature of passive tracers inside and
outside the cooling domain. (b) Position (inside or outside the
cooling domain) of four exemplary passive tracers over time
[parameters as in Fig. 2(c), but with Pein ¼ Peout ¼ 0 for passive
tracers and Npassive=N ¼ 0.02].
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collections [113] such as swimming whirligig beetles, as
recently demonstrated in Ref. [114].
Conclusions.—We have proposed a mechanism for an

active refrigerator, which requires inertia not only to create
a temperature difference across coexisting phases but also
to induce the peculiar shape of the MIPS phase transition
line, which we exploit to localize the cooling domain in a
predefined region of space. As their key feature, active
refrigerators create a self-organized cooling domain, in
which active particles feature a much lower kinetic temper-
ature compared to their environment. As they do not require
any isolating walls to separate the cooling domain from its
environment, active refrigerators prove a route toward
possible future applications, e.g., to trap and absorb large
(toxic) molecules or viruses. Overall, we found that the
active-particle subsystem alone does not behave as one
might expect from the laws of thermodynamics, but makes
the bath pay the thermodynamic bill for a self-organized
cooling domain that does not decay. This could be further
explored within microscopic theories [115,116].
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Academic Scholarship Foundation (Studienstiftung des
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Dauchot, E. Frey, and H. Chaté, Long-Range Ordering
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