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High fidelity quantum information processing requires a combination of fast gates and long-lived
quantum memories. In this Letter, we propose a hybrid architecture, where a parity-protected super-
conducting qubit is directly coupled to a Majorana qubit, which plays the role of a quantum memory. The
superconducting qubit is based upon a π-periodic Josephson junction realized with gate-tunable semi-
conducting wires, where the tunneling of individual Cooper pairs is suppressed. One of the wires
additionally contains four Majorana zero modes that define a qubit. We demonstrate that this enables the
implementation of a SWAP gate, allowing for the transduction of quantum information between
the topological and conventional qubit. This architecture combines fast gates, which can be realized
with the superconducting qubit, with a topologically protected Majorana memory.
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Introduction.—Majorana zero-energy modes (MZMs)
[1–5] realized in condensed matter systems [6–14] are
localized at far ends of the system and are expected to be
robust with respect to local perturbations. Topologically
protected Majorana qubits (MQs) encoded in MZM are
hardly disturbed by an environment that acts locally and are
expected to show very long coherence times [3]. Several
schemes for topologically protected quantum information
processing based uponMZMs have been proposed [15–22].
An alternative route, which may be particularly relevant in
the noisy intermediate-scale quantum technology era [23], is
to envision a hybrid architecture combining topologically
protected memories with conventional qubits [24–26]. In
this context, a MQ could serve as a quantum memory or
quantum buffer and a key ingredient is provided by a SWAP
gate that enables quantum state swapping between an
“ordinary” qubit and a topologically protected memory.
Superconducting qubits are a particularly natural candi-

date since solid state realizations of MZMs typically
involve a parent superconductor and are often based on
proximity-induced topological superconductivity. Early
suggestions for interactions between a superconducting
qubit and a MQ were based on a number of different
schemes, including coupling to a flux qubit [27,28], a flux
qubit based readout [29,30], a top-transmon in which
MZMs are moved between the islands of a transmon so
to implement a parity-protected scheme [31], and a
fluxonium based on the 4π-Josephson effect, where a
MQ generates avoided crossing in the spectrum [32].
Other approaches based on transmons have been recently
put forward, suggesting to encode the fermion parity in the
cavity dispersive shift [33,34], or to use the microwave

spectrum to detect the presence of MZMs [35,36]. In this
context, the role of Coulomb effects on an island hosting
MZMs has also been recently considered [37].
In this Letter, we study the coupling between a parity-

protected superconducting qubit (PPSQ) and a MQ and we
present a setup that enables the implementation of a SWAP
gate between the two. A PPSQ is constituted by a super-
conducting island coupled to a reference circuit by a π-
periodic Josephson junction (JJ) described by a cosð2φÞ
energy-phase relation. The latter captures the tunneling of
pairs of Cooper pairs at the junction and preserves the parity
of the Cooper pair number on the island. The MQ is formed
through four MZMs: two of which contained in the super-
conducting island, the other two in the bulk reference, and
their coupling at the junction is provided by the 4π-periodic
Josephson effect. In such a combined system, in the weak
charging regime the charging energy of the superconducting
qubit can distinguish the presence of a single electron in the
island, thus resolving the two states of the MQ. In addition,
the coupling via the 4π-periodic Josephson effect enables
the implementation of a SWAPgatewithout need of braiding
operations on the MQ. In the weak transmon regime the
protocol well adapts to Andreev qubits [38].
An experimental realization of an effective cosð2φÞ

relation has been a long-standing goal and only recently
have PPSQs been realized. Relevant implementations are
based on rhombi of four nominally equal JJs [39–43],
ladders of JJs realizing a current-mirror 0 − π qubit [44],
gatemons realized through semiconducting wires [45–48],
and superinductors obtained through chains of JJs [49–51].
The use of cosð2φÞ Josephson relations have recently been
proposed as a tool for modulating the Josephson potential
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and enhancing coherence times through band engineering
[52]. We focus on the gatemon-based realization, but the
protocol is general and can be realized through any
implementation of PPSQs.
The system.—We consider the system shown in Fig. 1(a)

consisting of a superconducting island coupled to a refer-
ence superconductor via two semiconducting wires that
form two gate-tunable JJs [46,47]. One of the two wires is
assumed to realize a topological superconductor [6,7] and it
is cut in two segments, each hosting a pair of MZMs at its
ends, γi and γ0i for i ¼ 1, 2. The modes γ01 and γ2 overlap
across the junction and produce a bound state whose energy
depends on the gauge invariant superconducting phase
difference φ via the 4π-periodic Josephson effect, as shown
by the dashed lines in Fig. 1(b). The two segments are
assumed to be much longer than the superconducting
coherence length, so that no hybridization takes place
between γi and γ0i in each segment. At the same time, we
keep in the description finite hybridization energies λi, that
well describe the case of anAndreev qubit. TheHamiltonian
describing the coupling among the four MZMs reads

HMZM ¼ iγ01γ2EM cosðφ=2Þ þ iλ1γ1γ01 þ iλ2γ2γ02; ð1Þ
with EM the bare coupling at the junction.
In addition to the MZMs, the two semiconducting

wires are assumed to host also highly transparent
Andreev bound states, that in the absence of magnetic
field are described by an energy-phase relation U iðφiÞ ¼
−Δ

P
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − TðiÞ

n sin2ðφi=2Þ
q

, with i ¼ 1, 2 labeling the

two wires, Δ the induced superconducting gap on the wires

[37], TðiÞ
n the transmission coefficient of the nth conducting

channel, and φi the gauge-invariant phase difference across
the ith junction. The particle-hole symmetric subgap
spectrum of the topological junction is schematically
shown in Fig. 1(b), where the Andreev states (continuous
lines) and the Majorana states (dashed lines) are shown
together. We assume the Andreev and the Majorana state to
be independently tunable through applied electrostatic
gates. A more precise tuning can be experimentally
achieved through a parallel of three wires [53], one of
which realizes a topological superconductor.
Parity-protected superconducting qubit.—The parallel

of two wires yields the effective Josephson energy-
phase relation UðφÞ ¼ U1ðφÞ þ U2ðφx − φÞ, with φx ¼
2πΦx=Φ0 the flux threading the loop in units of
Φ0 ¼ h=2e. It has been shown in Ref. [48] that by setting
U1 ¼ U2 and φx ¼ π all odd harmonics are suppressed and
the junction realizes a π-periodic energy-phase relation
[54]. Focusing on the second harmonic and neglecting all
other exponentially suppressed harmonics, the Hamiltonian
of the PPSQ is specified by the Josephson energy and the
charging energy and reads

H0 ¼ 4ECðn̂ − ngÞ2 − EJ cosð2φ̂Þ: ð2Þ

The gauge invariant phase difference φ̂ and the number of
Cooper pairs n̂ are conjugate variables satisfying ½φ̂; n̂� ¼ i.
Here, EJ is the Josephson energy of the π-periodic element
and EC ¼ e2=2C is the charging energy, with the total
capacitance, C ¼ CJ þ Cg, given by the capacitance of the
JJ, CJ, and the capacitance Cg of a side gate. The latter
enables to control the average offset charge on the island
ng ¼ CgVg=ð2eÞ through a voltage Vg.
In the charge basis the π-periodic Josephson term

is written as cosð2φ̂Þ ¼ 1
2

P
n jnþ 2ihnj þ H:c:, and we

clearly see that it does not couple states differing by an odd
number of Cooper pairs in the superconducting island. We
then define a conserved quantity, labeled by τ ¼ �1,
associated with the parity of the number of Cooper pairs
in the island, which we term boson parity. The Hamiltonian
of the PPSQ is written as H0 ¼ H0þ þH0

−, where

H0
� ¼

X
n�

4ECðn� − ngÞ2Pn� −
EJ

2
jn� þ 2ihn�j þ H:c:;

ð3Þ

with n� even or odd, respectively, Pn� ¼ jn�ihn�j. The
energy levels can be generally written as Eτ

kðngÞ, with k ¼
0; 1; 2;… a principal quantum number. Deep in the
charging regime characterized by EC ≫ EJ, the system
is very sensitive to the presence of additional charge on the
island. The sensitivity persists also in the weak charging
regime, specified by EC=EJ ≲ 1, and the four lowest energy

(a) (b)

(c) (d)

FIG. 1. (a) Circuit of a PPSQ coupled to a MQ. (b) Particle-hole
symmetric subgap spectrum of a gate-tunable JJ containing a
Majorana bound state and three Andreev bound states. (c) Spec-
trum showing the four lowest energy states, versus offset charge
ng ¼ CgVg=ð2eÞ, for EJ=EC ¼ 6 and in units of
ωp ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

32EJEC
p

. (d) Associated wave functions jk; τi, specified
by principal quantum number k and parity τ ¼ �, in the charge
basis showing the even and odd number content.
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levels and their associated wave functions are shown in
Figs. 1(c) and 1(d), respectively, for EJ=EC ¼ 6. By
inspection of Eq. (3) we see that a shift ng → ng þ 2

leaves the Hamiltonian invariant, resulting in an overall 4e
periodicity of the spectrum, as shown in Fig. 1(b). The
crossings at ng ¼ 1

2
; 3
2
are protected by conservation of the

boson parity. Focusing on the four lowest energy states,
the Hamiltonian H0 then reads

H0 ¼
ϵðngÞ
2

τzð1 − σzÞ þ
1

2
½E10 þ ϵ0ðngÞτz�ð1þ σzÞ; ð4Þ

where the Pauli matrices σi span the k ¼ 0, 1 states and the
Pauli matrices τi span the boson parity states. In addition,
we have E10¼ðEþ

1 þE−
1 −Eþ

0 −E−
0 Þ=2, ϵ ¼ ðE−

0 − Eþ
0 Þ=2,

ϵ0 ¼ ðEþ
1 − E−

1 Þ=2. In Fig. 1(c) deviations from a cosðπngÞ
dependence, typical of the transmon regime [55], can be
appreciated in the higher energy levels, allowing for
independent tuning of ϵ and ϵ0 by the offset charge. The
PPSQ is provided by the two lowest energy states,
corresponding to σz ¼ −1, and in order to separate them
from the rest of the spectrum and still keep sensitivity to the
charge on the island an intermediate weak charging regime
EC ≲ EJ is required.
Coupling Hamiltonian.—We now consider the coupling

between the MQ and the PPSQ. The full Hamiltonian reads
H ¼ H0 þHMZM. To properly treat the MQ we introduce
two fermionic operators, ci ¼ ðγi þ iγ0iÞ=2, that allow us to
label states via their occupation number jq1; q2i, with
q̂i ¼ c†i ci. In each sector of the total fermion parity P ¼
eiπðq̂1þq̂2Þ the four MZMs encode a qubit degree of freedom
[19]. We can introduce Pauli operators to span the qubit
states, Pηx ¼ iγ01γ2, ηz ¼ p̂1 ¼ −iγ1γ01, and Pηz ¼ p̂2 ¼
−iγ2γ02. The presence of MZMs in the superconducting
island affects the spectrum of the system through a
constraint in the wave function, that becomes antiperiodic
in case an odd number of electrons is present in the
island, Ψðφþ 2πnÞ ¼ ð−Þnq̂1ΨðφÞ [56]. By performing
the unitary transformation H → U†HU, with U ¼ eiφq̂1=2

[33,36,57,58], the Hamiltonian becomes

H ¼ 4ECðn̂þ q̂1=2 − ngÞ2 − EJ cosð2φ̂Þ − λ1p̂1 − λ2p̂2

þ EM½ðc1c2 − c†2c1Þð1þ eiφ̂=2Þ þ H:c:�: ð5Þ

The coupling between the MQ and the PPSQ appears in
two terms: (i) the charging energy and (ii) the hybridization
term proportional to EM. In each fermion parity sector the
charge q̂1 takes the values 0,1 between the MQ states and
the hybridization energy only differs for the sign of the
coupling in the two fermion parity sectors.
Focusing on the even fermion parity sector (P ¼ 1) and

taking matrix elements between the MQ states j00i; j11i
the Hamiltonian reads

HðngÞ ¼
�

H0ðngÞ − λ EMð1þ eiφ̂Þ=2
EMð1þ e−iφ̂Þ=2 H0ðng − 1=2Þ þ λ

�
: ð6Þ

In the diagonal blocks, in addition to the shift in the offset
charge, a further energy imbalance is provided by the
hybridization energy of the MZMs, λ ¼ λ1 þ λ2. The four
lowest energy states associated to the two bosonic
parity states and the two MQ states are jψ�

ngij00i and

jψ�
ng−1=2ij11i and their energies as a function of ng are

shown in Fig. 2(a) for the choice EJ ≃ 6EC, in the weak
charging regime [59]. By switching on a finite λ the j11i
states shift up in energy with respect to the j00i states, as
shown in Fig. 2(b). The periodicity versus the offset charge
is still 4e, as no coupling is present between the different
states. In Fig. 2(c) a finite EM opens a splitting between all
crossing producing a change in the periodicity from 4e to e
in the offset charge. In Fig. 2(d), by simultaneously
switching on both λ and EM we see that the periodicity
of the spectrum becomes 2e.
The effect of the coupling parametrized by EM and λ is

best appreciated in the microwave spectrum (MWS) of a
nearby capacitively coupled microwave cavity. The offset
charge acquires a time dependence ng → ng þ δngðtÞ that
gives rise to a coupling δngðtÞðn̂þ q̂1=2Þ. Assuming the
system initially in the ground state j0i, the linear res-
ponse MWS is given by SðωÞ ¼ P

p>0 jhpjðn̂þ
q̂1=2Þj0ij2δðω − ω0pÞ, with jpi all eigenstates of the
Hamiltonian Eq. (6) and ω0p ¼ ωp − ω0. In the absence
of MZMs the ground state switches boson parity with
period 2e. The MWS is shown in Fig. 3 for EM ¼ 0.2EC
and different values of λ. In Fig. 3(a) we see that a finite EM
yields a e-periodic spectrum compatible with the avoided
crossings between the energy levels shown in Fig. 2(c). In
Figs. 3(b) and 3(c) a finite λ breaks the e periodicity and

(a) (c)

(b) (d)

FIG. 2. Four lowest energy levels of the Hamiltonian Eq. (6) as
a function of ng for equal JJs, φx ¼ π, and EJ=EC ≃ 6.
(a) λ ¼ EM ¼ 0. (b) λ ¼ 0.2EC and EM ¼ 0. (c) A finite EM ¼
0.2EC splits the crossings at ng ¼ 0; 1=4; 1=2; 3=4 and results in a
e-periodic spectrum. (d) A finite λ shifts the avoided crossing
from ng ¼ 1=4; 3=4 and results in a 2e-periodic spectrum. The
three avoided crossings allow for two C-NOT gates and a SWAP
gate, as indicated.
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restores a 2e-periodic spectrum compatible with the one
shown in Fig. 2(d).
SWAP gate.—We can write an effective low energy

qubit-qubit Hamiltonian by taking matrix elements of the
Hamiltonian Eq. (6) between the four lowest energy levels,
jψ�

ngij00i and jψ�
ng−1=2ij11i, of the Hamiltonian H0. The

relevant matrix elements induced by the MQ are gτ;τ0 ðngÞ ¼
1
2
hψτ

ng jð1þ eiφ̂Þjψτ0
ng−1=2i, and in the weak charging regime

they have a weak dependence on ng. Introducing Pauli
matrices ηi spanning the MQ subspace, the qubit-qubit
Hamiltonian at ng ¼ 3=4 reads

H ¼ Ωτz þ ðωM − λÞηz þ δηzτz

þ EMðg−;þηþτ− þ gþ−η
þτþ þ gþ;þηþ þ H:c:Þ; ð7Þ

where gτ;τ0 , Ω ¼ Tr½Hτz�=4, ωM ¼ Tr½Hηz�, and δ ¼
Tr½Hτzηz�=4 are calculated at ng ¼ 3=4 [60]. This is the
most important result of the present Letter: it shows that a
coupling between a PPSQ and a MQ is possible and can be
controlled by EM. In the weak charging regime, the
coupling gτ;τ0 are all different and the Hamiltonian enables
the implementation the SWAP gate also deep in the
topological phase λ ¼ 0. At EM ¼ 0 and ng ¼ 1=4 the
qubits are decoupled. By tuning the offset charge at ng ¼
3=4 [see Fig. 2(c)] and by switching on EM for a time
T ¼ πm=ðgþ;−EMÞ, with m integer, a SWAP gate can be
obtained with high fidelity, with deviation from F ¼ 1 due
to failure of the rotating wave approximation, which is
guaranteed only for gþ;−EM ≪ δ. A full protocol for the
SWAP gate is presented in the Supplemental Material [61].
This is a very important result, as it shows that a SWAP gate
can be performed without recourse to braiding. In the weak
transmon regime we have that ωM ¼ 0 and gτ;τ0 ¼ g, and a
finite λ is necessary to achieve a SWAP gate by actively
driving the flip-flop term jþ; 11ih−; 00j at a frequency
ω ¼ 2ðΩ − λÞ. In addition, for constant EM the hybridiza-
tion between the two qubits allows for two C-NOT and a

SWAP gate between the hybridized eigenstates. Deviations
may still arise due to failure of the rotating wave approxi-
mation, so that weak values of EM are required. This regime
well applies to Andreev qubits.
2π-periodic perturbations.—The ability to engineer a π-

periodic JJ is crucial for the definition of a well-behaved
PPSQ and 2π-periodic perturbations may occur in experi-
ments. The minima of the cosð2φÞ potential at φ ¼ 0; π
map into each other by the mirror transformation
Mφ∶φ → π − φ. Even and odd perturbations under Mφ,
such as sinðφÞ and cosðφÞ, respectively, have a different
impact. An odd perturbation couples states of the same k
and opposite τ yielding αk ¼ hk;−j cosðφÞjk;þi, that
produces an energy imbalance between the two minima.
States of opposite parity that differ by one unit of k are not
coupled. An even perturbation cannot couple opposite
parity states of the same k, hk;þj sinðφÞjk;−i ¼ 0, and
does not generate an energy imbalance. Nevertheless, it can
couple states that differ by one unit of k and of oppo-
site parity, giving rise to finite matrix elements
β� ¼ h0;�j sinðφÞj1;∓i. A generic 2π-periodic perturba-
tion acts as

H0 ¼ uoðαþ − α−σzÞτx þ ueβσxτx ð8Þ

with ue=o the amplitude of the even/odd perturbation and
α� ¼ ðα0 � α1Þ=2. In Fig. 4(a) the microwave spectrum is
shown for a pure π-periodic Hamiltonian H0 with
λ ¼ EM ¼ 0. No transitions are allowed in the frequency
window −0.5 < ω=EC < 1.5. The effect of a 2π-periodic
perturbation containing both a cosðφÞ and sinðφÞ term is
shown in Fig. 4(b), showing the transitions activated by the
perturbation. The two branches associated with even and
odd total number of fermions in the island are usually seen
in the MWS as a result of an out-of-equilibrium population
of the two fermion parity sectors. Finally, in Fig. 4(c)
the presence of finite EM ¼ 0.2EC and λ ¼ 0.1EC shows
the activation of MQ induced transitions. It follows that the

FIG. 3. Microwave spectrum SðωÞ of the coupled system in the
weakly transmon regime, for EJ=EC ¼ 10 and EM ¼ 0.2EC.
(a) λ ¼ 0 showing e-periodic transitions. A finite λ ¼ 0.1 (b) and
λ ¼ 0.2EC (c) produce a 2e-periodic spectrum.

FIG. 4. Microwave spectrum of a PPSQ: (a) with a pure π-
periodic potential, (b) in presence of 2π-periodic perturbations,
and (c) with a MZMs in one junction. The part of the spectrum
between −0.5 < ω=EC < 1.5 corresponds to Fig. 3(b).
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presence of MZMs can be detected through MWS [62],
even in presence of weak 2π-periodic perturbations.
Discussion.—We have shown how a MQ can be coupled

to a PPSQ based on an effective π-periodic JJ. The setup
enables the implementation of a SWAP gate between the
two qubits without recourse to braiding, thus promoting a
Majorana qubit as a memory for storage. Finite single-
Cooper-pair tunneling has a detrimental effect on the
SWAP gate, in that it reduces the regime of validity of
the rotating wave approximation (see Ref. [61]). The
dependence of the PPSQ Hamiltonian on the offset charge
is particularly pronounced in the weak charging regime and
the fidelity of the SWAP gate may acquire a typical
Gaussian decay controlled by a dephasing rate Γϕ. For
gate times T ≪ 1=Γϕ the gate is robust to dephasing. A
PPSQ can be also realized through a π junction [63] or
through any other implementation, rendering the protocol
and the results general.
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