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The Kondo lattice model plays a key role in our understanding of quantum materials, but a lack of small
parameters has posed a long-standing problem. We present a three-dimensional S ¼ 1=2 Kondo lattice
model describing a spin liquid within an electron sea. Strong correlations in the spin liquid are treated
exactly, enabling a controlled analytical approach. Like a Peierls or BCS phase, a logarithmically divergent
susceptibility leads to an instability into a new phase at arbitrarily small Kondo coupling. Our solution
captures a plethora of emergent phenomena, including odd-frequency pairing, pair density wave formation
and order fractionalization. The ground-state state is a pair density wave with a fractionalized charge e,
S ¼ 1=2 order parameter, formed between electrons and Majorana fermions.
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The rich physics of the Kondo lattice, describing an array
of local moments interacting with an electron sea, plays a
key role in our understanding of quantum materials, from
heavy fermion compounds to twisted moiré lattices [1–4].
A key element of this model is the transformation of spins
into heavy fermions, producing a large Fermi surface [5,6].
These interactions have to date been treated with approxi-
mate methods, such as the large-N expansion [7–11] and
dynamical mean field theory [12].
Our work builds on a series of important developments

in the theory of Kitaev models and their connection with the
Kondo lattice [13–18]. Earlier variants of Kitaev-Kondo
lattices include models that couple the original, spin-
gapped Kitaev spin liquid to a conduction sea [15–17],
and models that couple two-dimensional Yao-Lee spin
liquid to a conduction sea via an octupolar coupling [18].
Here, we introduce a three-dimensional Kondo lattice

modelwhich couples aZ2 spin liquidwith a Fermi surface to
a conduction sea, in which the Kondo lattice physics can be
treated analytically to leading logarithmic accuracy. The
spin fluid is a three-dimensional generalization of the Yao-
Lee spin liquid [19], embedded on a hyperoctagonal lattice
[13], chosen because its cubic, trivalent structure gives rise
to an exactly solvable, gapless spin liquid whose gapless
Majorana excitations lie on a Fermi surface. Like the Kitaev
spin liquid, the Z2 gauge fields associated with the frac-
tionalized spins are static and can be treated exactly [19,20].
Recent work has hypothesized that hybridization

between electrons and fractionalized excitations can give
rise to a new kind of fractionalized order with half-integer
quantum numbers [21,22]. Such order emerges as a
result of condensation of bound states of electrons and

fractionalized excitations of the spin liquid. Our Kondo
lattice model provides a rigorous example of this phe-
nomenon and gives a clear description of its manifestation
in terms of physical observables such as the electron self-
energy. In particular, at half filling, the judicious choice of
the lattice guarantees a perfect nesting between spinon and
electron Fermi surfaces and allows us to sum the leading
logarithmic divergences, establishing an instability at
infinitesimal Kondo coupling into a pair-density wave with
a charge e, S ¼ 1=2 order parameter, which induces odd-
frequency pairing among the conduction electrons and also
gives rise to a neutral, Majorana Fermi surface.
Our model Hamiltonian H ¼ HC þHYL þHK , where

HC ¼ −t
X
hiji

ðc†iσcjσ þ H:c.Þ − μ
X
j

c†jσcjσ;

HYL ¼ ðK=2Þ
X
hiji

ðσ⃗i · σ⃗jÞλαiji λ
αij
j ;

HK ¼ J
X
j

S⃗j · ðc†j σ⃗cjÞ: ð1Þ

Here, hi; ji are neighboring sites on the hyperoctagonal
lattice [13], a trivalent body centered cubic (bcc) crystal
with four atoms per primitive unit cell, coiled around a
helix to form alternating square and octagonal spirals
(Fig. 1). HC describes hopping electrons while HYL
describes a three-dimensional Yao-Lee (3DYL) spin liquid
on the same lattice, with an orbital and spin degree of
freedom at each site, denoted by Pauli operators λaj (a ¼ 1,

2, 3) and spins S⃗j ¼ σ⃗j=2, respectively. The αij ¼ x, y, z
label anisotropic xx, yy, and zz orbital interactions on
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bonds that lie in the yz, zx, and xy planes, respectively.
Finally, J is an antiferromagnetic Kondo coupling between
the electrons and local moments.
Fermionization.—The Yao-Lee model [19] belongs to a

family of Z2 Kitaev spin liquids which can be solved
exactly using fermionization. Following [19] we represent
spin and orbital operators as products of Majorana fermions
σ⃗j ¼ −iχ⃗j × χ⃗j and λ⃗j ¼ −ib⃗j × b⃗j, where we use the
normalization fχai ; χbjg ¼ δijδ

ab. The spin-orbital operator
is given by σ⃗jλ

α
j ¼ −2iDjχ⃗jbαj where the constants Dj ¼

8iχ1jχ
2
jχ

3
jb

1
jb

2
jb

3
j ¼ �1 commute with H. In the gauge

Dj ¼ 1,

HYL ¼ K
X
hi;ji

uijðiχ⃗i · χ⃗jÞ; ð2Þ

where uij ¼ −2ibαiji b
αij
j ¼ �1 is a Z2 gauge field that

commutes with the Hamiltonian.
The 3DYL model describes free fermions moving in a

static Z2 gauge field. This model shares many of the
properties of a 2D Kitaev spin liquid, most notably, the
presence of gapped Z2 flux excitations. On the hyper-
octagonal lattice these are described by Wilson loops—
products of the gauge fields W ¼ Q

uði;jÞ ¼ �1 around
closed tenfold and twelvefold loops [where ði; jÞ orders the
sites i and j along xx, yy, and zz bonds so that the site
furthest in the y, z, and x directions, respectively, is placed
first [13] ]. In the spin liquid ground state, all loops are
trivial W ¼ 1 [13]; flipping the sign of a Wilson loop
creates a flux excitation (vison), with an energy determined
as a fraction of K. Unlike 2D Kitaev spin liquids, the three-
dimensional models undergo an Ising phase transition into
a Higgs phase where gauge fluctuations (visons) are
confined such that only short Wilson loops are allowed
[23–25]. For the Kitaev model on the hyperoctagon lattice
the transition at Tc1 ∼ 0.012K [24,25] gives rise to a spin
gap, but in the 3DYL, spin excitations occur without the

creation of visons, eliminating the spin gap; moreover, the
three Majorana modes enhance Tc1 by a factor of 3. Below
Tc1 the visons are confined and the Majorana fields
describe coherent, fractionalized spin excitations.
In the ground state, choosing a gauge where uði;jÞ ¼ 1

and taking into account that χ−k ¼ χ†k,

HYL ¼ K
X
k∈□

χ⃗†kαhðkÞαβχ⃗kβ; ð3Þ

where α; β ∈ ½1; 4� are site indices, while

hðkÞ ¼

0
BBB@

0 i ie−ik·a2 ie−ik·a1

−i 0 −i ie−ik·a3

−ieik·a2 i 0 −i
−ieik·a1 −ieik·a3 i 0

1
CCCA; ð4Þ

and a1 ¼ ð1; 0; 0Þ; a2 ¼ 1
2
ð1; 1;−1Þ; a3 ¼ 1

2
ð1; 1; 1Þ, are

the primitive bcc lattice vectors. Since χ−k ¼ χ†k, the
momentum sum is restricted to half the Brillouin zone,
corresponding to a cube (□) of side length 2π centered at
the P point at ðπ; π; πÞ. The spectrum Ek ≡ KϵðkÞ,
determined by det½ϵ1 − hðkÞ� ¼ 0, or

ϵ4 − 6ϵ2 − 8ϵðsxsyszÞ þ ½9 − 4ðs2x þ s2y þ s2zÞ� ¼ 0 ð5Þ

[where sl ≡ sinðkl=2Þ, l ¼ x, y, z], contains a single Fermi
surface centered at P [14] (Fig. 2).
Since the electrons and Majoranas move on the same

lattice, at half filling their Fermi surfaces are perfectly
nested and can be brought into coincidence by applying a
gauge transformation to the electrons,

ðc1; c2; c3; c4ÞR⃗ → e−iQ·Rðc1; ic2; c3;−ic4ÞR⃗; ð6Þ

where Q ¼ ðπ; π; πÞ and R ¼ n1a1 þ n2a2 þ n3a3 locates
the unit cell. In this gauge,

Hc ¼
X
k∈BZ

c†kσα½−t hðkÞ − μ1�αβckσβ; ð7Þ

FIG. 1. (a) Hyperoctagonal lattice: a four-atom coil (1,2,3,4) on
a bcc lattice gives rise to alternating square and octagonal spirals
[13]. (b) Anisotropic coupling of orbital degrees of freedom
according to the plane in which the bond lies. (c) Kondo coupling
between the Yao-Lee spin liquid and the electron sea.

FIG. 2. (a) Majorana Brillouin zone of the hyperoctagonal
lattice showing coincident conduction and Majorana Fermi
surfaces around the P point. (b) Hybridization of Majorana
modes (in blue) with conduction band (in red) leaves one
conduction Majorana band decoupled, forming a neutral Major-
ana surface.
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and HYL(3) have the same form. At low temperatures,
where flux excitations can be ignored, we can rewrite the
Kondo interaction in terms of the spin S⃗j ¼ −ði=2Þχ⃗j × χ⃗j
and decouple it using a Hubbard-Stratonovich transforma-
tion, in terms of a charge e spinor, Vj ¼ ðVj↑; Vj↓ÞT ,

HK ¼
X
j

½ðc†j σ⃗VjÞ · χ⃗j þ H:c:� þ 2
V†
jVj

J
: ð8Þ

The terms multiplying χ⃗j must themselves be Majorana
fermions, enabling us to rewrite HK in the compact form

HK ¼
X
j

�
−iVjðc⃗j · χ⃗jÞ þ

V2
j

J

�
; ð9Þ

where we have cast Vj ¼ ðVj=
ffiffiffi
2

p Þðz↑j; z↓jÞT in terms of a

normalized spinor and a real amplitude Vj=
ffiffiffi
2

p
to delineate

the magnitude of the spinor Vj, (denoted by a roman V),
and we have divided the electrons into four Majorana
components, ðc0j ; c⃗jÞ,

�
cj↑
cj↓

�
¼ 1ffiffiffi

2
p ðc0j þ ic⃗j · σ⃗Þ

�
zj↑
zj↓

�
: ð10Þ

Thus in a coherent Kondo lattice, the vector components of
the electron hybridize with the spinons and the scalar
component decouples.
Now the field Vj is a fluctuating field inside the path

integral, but the nesting between the Majorana and con-
duction Fermi surfaces ensures that it has a susceptibility to
condense that is logarithmically divergent in temperature or
chemical potential. Like a Cooper or Peierls instability, this
ensures that instability into a condensed phase must occur
for arbitrarily weak Kondo coupling.
We shall now focus on the stable, uniform condensate

Vj ¼ V. At half-filling (μ ¼ 0), vector and scalar electron
components decouple, so that

H ¼
X
k∈□

�
−tc0†k hkc0k þ ψ⃗†

k

�−thk −iV
iV Kĥk

�
ψ⃗k

�
þ NV2

J
;

ð11Þ

where ψ⃗k ¼ ðc⃗k; χ⃗kÞT , N is the number of sites, and we
denote hk ≡ hðkÞ.
As we now demonstrate, at a temperature Tc2, below the

Ising phase transition Tc1, the system undergoes a second
phase transition where the spinor order parameter V
condenses [Fig. 3(a)]. To demonstrate the instability, we
note that since only states close to the Fermi surface
contribute at small J ≪ K, t, we can project the
Hamiltonian onto the band with a Fermi surface, with a
dispersion for the band and the spin liquid fermions being

equal to −tϵðkÞ and KϵðkÞ, respectively. The calculations
then can be done analytically; we will restrict ourselves to
the simplest case μ ¼ 0. Summing the leading logarithmic
ladder diagrams, we find the critical temperature Tc2 is
defined by the condition Jχ1eðTc2Þ ¼ 1, where

χ1eðTÞ ¼
1

2

Z
d3k
ð2πÞ3

tanh½βtϵðkÞ
2

� þ tanh½βKϵðkÞ
2

�
2ðK þ tÞϵðkÞ ; ð12Þ

is the charge e pairing susceptibility [26]. To logarithmic
accuracy, χ1eðTÞ ¼ ½ρ=ð1þ K=tÞ� ln½W=T�, where ρ ¼
2

ffiffiffi
3

p
=π2t is the conduction density of states, giving

Tc2 ¼ W expf−½ð1þ K=tÞ=ρJ�g, so a phase transition into
the order fractionalized state will occur for arbitrarily small
Kondo coupling. Of course, deviations from particle-hole
symmetry at finite chemical potential destroy the nesting,
so when μ ≠ 0, a transition takes place at finite J > JC from
a fractionalized Fermi liquid (FL�) state [27] with a small
Fermi surface, into the order-fractionalized state [Fig. 3(a)].
The important point, however, is that in the vicinity of
particle-hole symmetry, the broken symmetry state is
rigorously established.
Below Tc2 the vector Majorana modes are gapped,

leaving behind a single, coherent Majorana mode c0k of
the conduction electrons. This feature is robust and is
related to the mismatch between the quantum numbers of
the itinerant Dirac fermions and Majorana triplet of the
Yao-Lee spin liquid. The spectrum of the gapped fermions
close to the Fermi surface is given by

E� ¼ ðK − tÞϵðkÞ=2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðK þ tÞ2ϵ2ðkÞ=4þ jVj2

q
: ð13Þ

FIG. 3. (a) Schematic phase diagram for the 3D Coleman-
Panigrahi-Tsvelik (CPT) model: below Tc1, the Majorana fer-
mions in the spin liquid become phase coherent and at Tc2 the
charge e condensate develops. At particle-hole symmetry (μ ¼ 0)
the charge e condensate forms for arbitrarily small Kondo
coupling. (b) Development of coherent charge e condensate
allows tunneling through the spin liquid over arbitrarily long
distances, liberating a coherent, quasineutral conduction mode.
(c) Staggered configuration of the gap function ΔðRÞ ∼
ei2Q·Rðd̂1 þ id̂2Þ · σ⃗ð1;−1; 1;−1Þ at the four sites of the unit
cell, forming a pair-density wave.

PHYSICAL REVIEW LETTERS 129, 177601 (2022)

177601-3



To understand the nature of the fractionalized order, it is
useful to consider the fractionalized order parameter
v̂ðxjÞ ¼ −Jðσ⃗ · χ⃗jÞcj. This quantity carries a Z2 charge,
and by Elitzur’s theorem, cannot develop long range order.
On the other hand, we know that the χj field represents a
physical degree of freedom at low temperatures, where Z2

fluctuations have become massive. To reconcile this sit-
uation, we must consider the gauge invariant density matrix

ρðx; yÞ ¼ hv̂ðxÞWðx; yÞv̂†ðyÞi ⟶
jx−yj→∞

VðxÞV†ðyÞ; ð14Þ

whereWðx; yÞ ¼ Q
uðlþ1;lÞ is a Wilson line connecting the

sites x, y. Once T < Tc1 the Wilson lines are not only
constants of motion, but they are independent of the path
between the two sites x and y. We can calculate the gauge
invariant quantity in the gauge where uði;jÞ ¼ 1 so that
W ¼ þ1, and in this way, we can be sure that the gauge
invariant density matrix asymptotically factorizes into a
product of well-defined spinor order [22]. In short, once
T < Tc1 where the absence of visons guarantees that
typical Wilson lines are equal to þ1, this fractionalized
long-range order is guaranteed to develop.
One of the physical manifestations of this fractionalized

off-diagonal long-range order, is the development of long-
range tunneling of the electrons through the spin liquid,
which manifests through the development of odd-frequency
triplet pairing and the emergence of a Majorana Fermi
surface. The Z2 gauge invariant self-energy for the electrons
that describes the coherent tunneling through the spin liquid
is given by [Fig. 3(b)]

Σαβðx − x0Þ ¼ V2½σaZðxÞ�αDðx − x0Þ½Z†ðx0Þσa�β; ð15Þ

where σaZðxÞ ¼ σa½zðxÞ; iσyz�ðxÞ�T is the spinorial
hybridization of the vector Majorana components of the
electron with the spin liquid at x≡ ðx; τÞ, written in a
Balian-Werthamer notation, and Dðx − x0Þ is the space-
time propagator of the Majorana fermions. Now the Fermi
surface in the spin liquid means that DðxÞ ∼ eikF½x̂�jxj=jxj
decays as a power law at large distances, (where kF½x̂� is the
Fermi wave vector on the patch of Fermi surface normal to
x̂). This implies that the electron self-energy factorizes into
a product of spinors at widely separated points in space-
time, a key feature of order fractionalization [Fig. 3(b)].
In the ground state where V is uniform we can Fourier

transform the self-energy to obtain

Σαβðk;ωÞ ¼ ð1 − ZZ†ÞαβV2Dðk;ωÞ; ð16Þ

whereZZ† projects out the unhybridized scalar component
of the conduction sea and Dðk;ωÞ ¼ ½ω − KhðkÞ�−1 is the
spin-liquid propagator in momentum space. Without the
projector, this scattering would describe the resonant
scattering of electrons in a Kondo insulator, but the

elimination of the scalar component means that a tunneling
electron that reemerges into the spin liquid loses all
knowledge of its original charge, allowing it to emerge
as a hole, producing resonant Andreev scattering. On the
Fermi surface, where hðkÞ has vanishing eigenvalues
Σðk;ωÞ ∼ 1=ω describes odd frequency pairing that is
infinitely retarded in time. One of the clearest manifes-
tations of long-range order in the charge e order, is that the
projective nature of the scattering self-energy remains
coherent in momentum space, allowing the residual scalar
Majorana conduction electron c0 to propagate coherently
over arbitrarily long distances.
To examine this resonant pairing in more detail, it is

useful to construct the composite order parameter, formed
from bilinears of the z field,

d̂1 þ id̂2 ¼ zTð−iσ2Þσz; d̂3 ¼ z†σz: ð17Þ

The triad ðd̂1; d̂2; d̂3Þ describes coexisting magnetic and
superconducting order. We can then divide the self-energy
into normal and pairing components

Σ ¼ ΣN þ Δðk;ωÞτþ þ Δ†ðk;ωÞτ−; ð18Þ

where

ΣNðk;ωÞ ¼
1

4
½3 − ðd̂3 · σÞτ3�Σ0ðk;ωÞ;

Δðk;ωÞ ¼ −
1

4
½ðd̂1 þ id̂2Þ · σ�Σ0ðk;ωÞ: ð19Þ

ΣN describes a kind of odd-frequency magnetism (with no
on-site magnetic polarization). The second term Δðk;ωÞ in
(19) describes a triplet gap function, with a complex d
vector d̂1 þ id̂2 which breaks time-reversal symmetry.
However, hidden from immediate view, is the fact that

the Andreev scattering Δðk;ωÞ actually describes a pair
density wave. To see this, let us now transform our
solution back to the original electron gauge. Reversing
the transformation (6), we see that in the original gauge
ðV1; V2; V3; V4ÞRj

¼ exp½iQ ·Rj�ð1;−i; 1; iÞV0. Now the
hyperoctagon lattice can be viewed as made of four-atom
coils marked by 1,2,3,4 on Fig. 1, arranged on bcc
lattice. From (6) it follows that the d̂1;2 alternate along
the coil and between the center and corners of the bcc
lattice. In other words, the magnetic vector d̂3 is uniform,
but the superconducting d vector d̂1

j þ id̂2
j is staggered

between neighboring sites, forming a pair density wave
(PDW).
The Goldstone modes and topology.—We briefly touch

on the topic of collective excitations and topology. As
pointed out above, the gauge invariant quantities must
connect two V fields at different points by a string of gauge
fields. However, below the melting temperature Tc1 we can
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safely forget about Z2 gauge fields and work in a fixed
gauge uði;jÞ ¼ 1. In this situation, the spinor V acquires the
status of a true order parameter. Symmetry dictates that well
below the transition where the amplitude fluctuations are
weak the Ginzburg-Landau free energy density f for the
low energy sector is given by

f½x� ¼ ρ

2
jð−i∇⃗þ eA⃗Þzσj2 þ

B⃗2

8π
− gμBB⃗ · ðz†σ⃗zÞ; ð20Þ

where B⃗ ¼ ∇ × A⃗ and as before, Vjσ ¼ ðV= ffiffiffi
2

p Þzσ . We
have also included a Zeeman coupling.
Since the spinor z is defined by three Euler angles,

transforming under the double group SU(2), small fluctua-
tions of the order parameter consist of three Goldstone
modes, one of them being Higgsed if the condensate is
charged. The free energy (20) has been discussed in various
contexts, in particular in connection with multiband super-
conductivity when the superconducting pairing takes place
on Fermi surface consisting of multiple sheets [28,29]. The
case of zero electric charge e ¼ 0 emerges in connection
with frustrated magnetism [30,31]. It is distinct from the
conventional superconductivity due to the different top-
ology of the order parameter manifold; here it is of the S3

sphere. Since π1½SUð2Þ� ¼ 0, it forms a fragile super-
conductor with a Meissner effect, but zero critical current.
The existence of the integer-valued topological invariant in
three dimensions π3½SUð2Þ� ¼ Z

Q ¼ i
24π2

Z
d3xϵμνλTrðUþ

∂μUUþ
∂νUUþ

∂λUÞ; ð21Þ

where

U ¼
� z↑ −z�↓
z↓ z�↑

�
ð22Þ

is an SU(2) matrix, suggests a possibility of nontrivial
topological defects of the kind found in the Skyrme model
of nuclear matter (for a review, see, for example, [32]). The
latter model, however, contains a term with four derivatives
whose presence is required to prevent the skyrmions from
collapse. It has been argued by [28] and later by [29,30] that
such terms are generated once one takes into account the
fluctuating magnetic field. These authors suggested that in
this case, the Ginzburg Landau free energy (20) admits
additional knotted solitons, or Hopfion topological con-
figurations [28–30]. However, numerical calculations per-
formed in [33] indicate that the Hopfions are unstable
leaving their existence an open question.
Conclusions.—We have presented a model of a three

dimensional Kondo lattice which exhibits a remarkable
range of properties associated with strong correlations.
Some of these properties, such as pair density wave
formation, have been observed experimentally, others, like
odd-frequency pairing and the formation of a neutral Fermi

surface, have been a matter of ongoing debate. The success
of our approach is based on the fact that we are able to treat
the strong correlations exactly in the asymptotic region of
weak Kondo coupling.
There are three key aspects to our work. First, the

condensate represents a new class of superconductivity,
with a fractionalized order parameter that transforms under
a double group. This feature leads to a number of robust
consequences. In particular, the group topology determines
the fragility of the superconducting order: although it
displays diamagnetism (Meissner effect), the critical
current is zero. Since the first homotopy π1½SUð2Þ� ¼ 0,
there are no vortices, but a nontrivial third homotopy
π3½SUð2Þ� ¼ Z suggests a possibility of such topological
excitations as Hopfions or hedgehogs. The gauge invariant
order parameter also breaks time reversal symmetry in a
fashion that is protected by Kramers theorem and inde-
pendent of crystal lattice, thus the transition into this state
will not split under strain. Second, the proposed super-
conducting order forms a PDW that coexists with a novel
form of magnetic order. This property is related to the fact
that the nested Fermi surfaces of the conduction electrons
and the Majoranas are centered at different points in the
Brillouin zone, so that when an electron enters the spin
liquid, it needs to borrow momentum from the condensate.
Third, the low temperature excitations are described by a
quasineutral Fermi surface whose existence is guaranteed
by the mismatch between the quantum numbers of elec-
trons and the Majorana spin excitations, and the long-range
coherence of the charge e condensate. This guarantees that
even in the situation of perfect nesting (half filled con-
duction band) there is a residual Majorana Fermi surface.
We end by noting that one of the key features of the

current model is the stabilization of an underlying Z2 spin
liquid inside a Kondo lattice, by orbital degrees of freedom
which decouple by forming a kind of valence bond solid.
This is a situation that conceivably could occur in quantum
materials, such as the topological Kondo insulator SmB6,
which under field, exhibits quantum oscillations reminis-
cent of a bulk Fermi surface [34,35]. This material is
thought to involve a quartet spin state interacting with a
conduction sea [36,37]. It is interesting to speculate that
these orbital degrees of freedom may, under some circum-
stances, freeze into a valence bond-solid, stabilizing an
underlyingMajorana spin liquid within the Kondo insulator.
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