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Condensation of bosons in Bose-Einstein condensates or Cooper pairs in superconductors refers to a
macroscopic occupation of a few single- or two-particle states. A condensate is called “fragmented” if not a
single, but multiple states are macroscopically occupied. While fragmentation is known to occur in
particular Bose-Einstein condensates, we propose that fragmentation naturally takes place in striped
superconductors. To this end, we investigate the nature of the superconducting ground state realized in the
two-dimensional t-t0-J model. In the presence of charge density modulations, the condensate is shown to be
fragmented and composed of partial condensates located on the stripes. The fragments of the condensates
hybridize to form an extended macroscopic wave function across the system. The results are obtained from
evaluating the singlet-pairing two-particle density matrix of the ground state on finite cylinders computed
via the density matrix renormalization group method. Our results shed light on the intricate relation
between stripe order and superconductivity in systems of strongly correlated electrons.
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Introduction.—Superconductivity constitutes one of the
most fascinating ramifications of quantum mechanics in
macroscopic condensed matter systems. A key role in our
understanding of high-temperature superconductivity is
attributed to the two-dimensional Hubbard model, or its
strong coupling limit, the t-J model [1–3]. Early on it was
realized, that the essential behavior of the copper-oxide
superconductors might be captured by these basic models.
Solving these models, however, has posed major difficulties
which have fueled the development of sophisticated numeri-
cal and analyticalmethods over the last decades [4–6]. These
efforts have led to considerable progress in recent years
[5,7–10]. The emergence of stripes in certain relevant
regions of the phase diagram, first proposed by Hartree-
Fock studies [11–14], has by now been firmly established by
a broad range of numerical methods [15–20]. The more
intricate question of whether superconductivity is realized at
low temperature in these models is currently being tackled
by various approaches [21]. This year, three density matrix
renormalization group (DMRG) [22,23] studies have re-
ported robust d-wave superconductivity in particular
regimes of the hole-doped t-t0-J model [24–26]. Refe-
rences [24,26] employed advanced large-scale DMRG
simulations to achieve convergence towards power-law
decay of superconducting pairing correlations, indicative
of a quasi-1D descendant of a 2D superconductor.
Reference [25] applied pinning fields, to demonstrate strong
d-wave pairing in an extended region of the phase diagram.
In this Letter, we investigate the nature of the super-

conducting condensate in this model in further detail. We
propose to study the eigenvalues and eigenvectors of a
properly chosen two-particle density matrix, which
describe the superconducting condensate fraction and the

macroscopic condensate wave function. The method is
applied to the superconducting ground state of the t-t0-J
model obtained from DMRG on cylinders of width W ¼ 4
andW ¼ 6. We discover, that in the presence of stripes, not
just one global superconducting condensate but multiple
condensates are formed. Each partial condensate is found to
be associated with a single charge stripe. The occurrence of
multiple condensates, corresponding to multiple dominant
eigenvalues of the two-body density matrix, is called
fragmentation. Fragmentation is known to occur in specific
instances of Bose-Einstein condensates [27–30]. Examples
include in weakly interacting spinor condensates [31] and
exciton condensates [32]. However, fragmentation has to the
best of our knowledge not prominently been discussed in the
context of high-temperature superconductivity. The method
of studying eigenvalues and eigenvectors of a two-particle
density matrix is applicable for any numerical method, but
particularlywell-suited in the context ofDMRGsimulations.
We, therefore, suggest this approach as a reliable means of
diagnosing superconductivity in correlated electron systems.
Two-particle density matrices.—The essential quantity

to study condensation of Cooper pairs is the generic two-
particle density matrix ρ2 [33],

ρ2ðriσi; rjσjjrkσk; rlσlÞ ¼ hc†riσi c†rjσjcrkσkcrlσli; ð1Þ

where σi ¼ ↑;↓ denotes the fermion spin and c†riσi and criσi
are fermion creation and annihilation operators at lattice
positions ri. Since ρ2 is Hermitian,

ρ2ðriσi; rjσjjrkσk; rlσlÞ ¼ ρ�2ðrkσk; rlσljriσi; rjσjÞ; ð2Þ
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it can be diagonalized with real eigenvalues εn and
eigenvectors χn,

ρ2ðriσi; rjσjjrkσk; rlσlÞ
¼

X
n

εnχ
�
nðriσi; rjσjÞχnðrkσk; rlσlÞ: ð3Þ

In analogy to Bose-Einstein condensation, Cooper pair
condensation takes place whenever one or more eigenval-
ues are of order N, where N is the number of lattice sites. If
exactly one eigenvalue is of order N the condensate is
referred to as simple. If more than one eigenvalue is of order
N, the condensate is called fragmented [33]. Dominant
eigenvalues εi are referred to as the condensate fractions.
While the above definitions are rather generic in scope,

we focus on more specific quantities to investigate singlet-
pairing in two-dimensional lattice models. First, we define
the singlet-pairing density matrix ρS as

ρSðri; rjjrk; rlÞ ¼ hΔ†
rirjΔrkrli; ð4Þ

where the singlet-pairing operators Δrirj is given by

Δ†
rirj ¼

1ffiffiffi
2

p ðc†ri↑c
†
rj↓

− c†ri↓c
†
rj↑
Þ: ð5Þ

To focus on two-dimensional lattice geometries, we con-
sider a nearest-neighbor singlet density matrix,

ρSðri; αjrj; βÞ ¼ ρS(ri; ðri þ αÞjrj; ðrj þ βÞ); ð6Þ
where α (resp. β) denote the vectors connecting nearest-
neighbors on the lattice, e.g., α ¼ x̂; ŷ in the case of a
square lattice. Again, this matrix can be decomposed into
eigenvectors,

ρSðri; αjrj; βÞ ¼
X
n

εnχ
�
nðri; αÞχnðrj; βÞ: ð7Þ

The eigenvectors χnðri; αÞ are also referred to as macro-
scopic wave functions. They depend only on the position ri
and the direction of the nearest-neighbor α. In order to
exclude local contributions from density and spin correla-
tions, we consider the nonlocal singlet density matrix,

ρ̂Sðri;αjrj;βÞ

¼
�
ρSðri;αjrj;βÞ if fri;riþαg∩ frj;rjþβg¼=0

0 else:
ð8Þ

We note, that with this choice, ρ̂S is not necessarily positive
definite. Thus, eigenvalues of ρ̂S can in general be positive
or negative.
Superconductivity in the t-t0-Jmodel.—We now investiga-

te the properties of the condensate fractions εn and macro-
scopic wave functions χnðri; αÞ of (non-)superconducting
stripe states emerging in a simple model system of strongly
interacting electrons. To this end, we study the two-
dimensional t-t0-J model,

(a) (b)

FIG. 1. Spectrum εn of the singlet density matrix ρ̂S of the
ground state on the widthW ¼ 4 cylinder at t0 ¼ 0.2 and J ¼ 0.4.
We compare system lengths L ¼ 8, 16, 24, 32 and show results
for hole doping p ¼ 1=16 (a) and p ¼ 1=8 (b). The number of
dominant eigenvalues above the residual continuum exactly
matches the number of stripes in the system. The insets show
enlarged views of the largest eigenvalues. The condensate
fractions εn increase with system size.

(a)

(b)

FIG. 2. (a) Condensate wave functions χnðri; αÞ for the domi-
nant four eigenvalues of the two-body density matrix on a 32 × 4
cylinder at doping p ¼ 1=16 and t0 ¼ 0.2. For α ¼ x̂we show the
value of χnðri; αÞ as the color and line width right to the site ri, for
α ¼ ŷ it is shown on the link on top of site ri. Blue (red) indicates
a positive (negative) value of χnðri; αÞ. The hole density 1 − hnii
is shown as the area of the gray circles. We observe a uniform
d-wave pattern, where vertical and horizontal bonds have
opposite signs in the most dominant condensate wave function,
while the other dominant condensates exhibit modulation of the
d-wave orientation concomitant with the stripes. (b) Rung-
averaged d-wave condensate wave function χ̄di and the rung-
averaged hole density 1 − hn̄ii.
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H ¼ −t
X
hiji;σ

c†iσcjσ þ H:c: − t0
X
⟪ij⟫;σ

c†iσcjσ þ H:c:

þ J
X
hiji

�
S⃗i · S⃗j −

1

4
ninj

�
; ð9Þ

on a square lattice (c†iσ; ciσ ¼ c†riσ; criσ). Here, S⃗i ¼
ðSxi ; Syi ; Szi Þ are the spin operators, and ni ¼

P
σ c

†
iσciσ

denotes the local density operator. The sums over hi; ji
are over nearest-neighbor sites and ⟪i; j⟫ denotes a sum
over next-nearest neighbors. The Hilbert space is con-
strained to prohibit doubly occupied configurations. In the
following, we set t ¼ 1 and J ¼ 0.4 which is the same set
of parameters chosen in Ref. [25]. Our model slightly
differs from the model studied in Ref. [24], where also
next-nearest neighbor Heisenberg interactions have been
included. While superconductivity of the ground states in
particular parameter regimes has already been established
[24–26,34], a detailed investigation of two-body density
matrices has not previously been performed.
We apply the DMRG method to study the system on

cylindrical geometries with open boundary conditions
along the long x direction and periodic boundary conditions
along the short y direction. The length in the x direction is
denoted by L, and the width in the y direction by W.
Previous DMRG studies of Eq. (9) have achieved ground
state simulations of widths ofW ¼ 8 [25]. In this Letter, we
focus on the particular cases of W ¼ 4, 6, which do not
require large computational resources to achieve conver-
gence for the ground state. Thus, our computations are less
challenging as W ¼ 8 and, therefore, more easily repro-
ducible. The results in this Letter have been attained with
bond dimensions up to D ¼ 2000.
We first focus on the case of width W ¼ 4 cylinders and

choose t0 ¼ 0.2 with hole dopings p ¼ 1=16 and p ¼ 1=8.
A previous DMRG study of this model on the widthW ¼ 4
has established an approximate phase diagram [34]. For

t0 ¼ 0.2 with hole dopings p ¼ 1=16 and p ¼ 1=8 the
system has been found to exhibit a Luther-Emery liquid
(the LE2 phase in Ref. [34]) in this regime, with half-filled
charge stripes and pronounced algebraic superconducting
correlations.
We computed the singlet density matrix ρ̂Sðri; αjrj; βÞ by

measuring the respective pairing correlations of the ground
state obtained via DMRG. The eigenvalues of the singlet
density matrix are for cylinder lengths L ¼ 8, 16, 24, 32 in
Fig. 1. The key observation is that only few dominant
eigenvalues are separated from a continuum of minor
eigenvalues. At hole doping p ¼ 1=16 shown in Fig. 1(a),
the system realizes one stripe for L ¼ 8, two stripes for
L ¼ 16, three stripes for L ¼ 24, and four stripes for
L ¼ 32, as can be seen for L ¼ 32 in Fig. 2.
Correspondingly, we observe exactly one dominant eigen-
value for L ¼ 8, two dominant eigenvalues for L ¼ 16,
three dominant eigenvalues for L ¼ 24, and four dominant
eigenvalues for L ¼ 32. Hence, the number of dominant
eigenvalues exactly matches the number of stripes in the
system. The same observation is made at hole doping
p ¼ 1=8, where twice as many stripes are observed along-
side twice as many dominant eigenvalues. These eigen-
values are interpreted as superconducting condensate
fractions. The insets show a zoom on the dominant
eigenvalues εn. In all cases, the condensate fraction
increases monotonously with system size.
The structure of the four dominant macroscopic wave

functions χnðri; αÞ on the W ¼ 4 cylinder at p ¼ 1=16 and
t0 ¼ 0.2 is shown in in Fig. 2(a). The wave functions
χnðri; αÞ depend both on the position ri as well as the
nearest-neighbor direction α. When α ¼ x̂ we show the
value of χnðri; αÞ to the lattice edge right of site ri, if α ¼ ŷ
it is shown on the edge on top of site ri. We also show the
local density of holes, 1 − hnii superimposed. The most
dominant condensate wave function shown on top exhibits
a clearly extended uniform d-wave pattern, where hori-
zontal and vertical bonds have opposite signs. The other
two dominant modes exhibit a uniform d-wave pattern on a
single stripe, while the orientation and amplitude modulates
between different stripes. A possible interpretation would
be that uniform condensates form along the stripes of the
system, which hybridize by tunneling through a barrier of
higher electron density. Hence, the “fragments” of the
condensate are individual condensates living on the stripes.
To demonstrate the relation between the condensates and
the stripes more clearly, we show the rung-averaged d-wave
condensate wave function,

χ̄dnðrxÞ ¼
XW
y¼1

χn(ðrx; ryÞ; x̂) − χn(ðrx; ryÞ; ŷ); ð10Þ

in Fig. 2(b) alongside the rung-averaged hole density
1 − hn̄ii, where n̄i ¼ ð1=WÞPW

j¼1 nðxi;yjÞ.

FIG. 3. Condensate wave functions χnðri; αÞ for the dominant
four eigenvalues of ρ̂S on a 32 × 4 cylinder at doping p ¼ 1=16
and t0 ¼ 0. The hole density 1 − hnii is shown as the area of the
gray circles.

PHYSICAL REVIEW LETTERS 129, 177001 (2022)

177001-3



We observe that the modulations of χ̄dnðrxÞ correspond
exactly to the modulations in the charge density.
Next, we show that the fragmentation of the condensate

is not just a particular feature of the LE2 phase on the
W ¼ 4 cylinder but is more generic. We consider a different
superconducting phase, which is stabilized on the W ¼ 4
cylinder, the plaquette-pairing phase at t0 ¼ 0 and p ¼
1=16 [35], referred to as the LE1 phase in Ref. [34]. The
plaquette-pairing phase is a peculiarity of the width W ¼ 4
cylinder, where pairing is formed along the four-site
plaquettes of the cylinder and is different from the typical
d-wave pairing state. The spectrum εn of ρ̂S closely
resembles the case t0 ¼ 0.2, and the exact same number
of dominant eigenvalues is observed. The condensate wave
functions are shown in Fig. 3(a). We clearly observe a
plaquette pairing pattern, where the sign of χnðr; αÞ alter-
nates in the y direction, while pairing along the x̂ direction
is suppressed. Similar to the d-wave condensates in Fig. 2,
χnðr;αÞ is modulated by the stripes of the system.
The physics of the width W ¼ 6 cylinder is different

from the W ¼ 4 cylinder in certain aspects. As established
in Refs. [24–26], for t0 < 0 no superconductivity is
observed and a charge density wave is stabilized.
However, at small to intermediate doping and finite
t0 > 0, a superconducting phase has been found. In
Fig. 4 we show the spectrum of ρ̂S in both the super-
conducting phase at t0 ¼ 0.2 and p ¼ 1=16 in panel (a) as
well as the nonsuperconducting stripe phase at t0 ¼ −0.2
and p ¼ 1=8 in panel (b). Only in the superconducting
phase do we observe dominant eigenvalues, whose number
again exactly matches the number of charge stripes.
Therefore, the observation of dominant eigenvalues εn is
clearly associated with the superconductivity and not just

the stripe order of the system. The associated macroscopic
wave functions to the three dominant eigenvalues for t0 ¼
0.2 and p ¼ 1=16 on the 16 × 6 cylinder are shown in
Fig. 5. Again, we observe a uniform d-wave pattern in the
leading eigenvalue, which is modulated in the other two
eigenvalues. To assess the stability of the fragmentation in
the two-dimensional limit we compare the gap δ between
the smallest dominant eigenvalue and the largest non-
dominant eigenvalue between the W ¼ 4 and W ¼ 6
cylinders. We computed δ ¼ 0.041 on the 32 × 4 cylinder
and δ ¼ 0.054 on the 32 × 6 cylinder. Hence, the gap
increases with cylinder width, which is an indication of the
stability of the condensate in the two-dimensional limit.
We also consider the case of uniform s-wave super-

conductivity without the formation charge density wave.
Such a state is realized in the attractive (negative-U)
Hubbard model on the square lattice [36,37]. Because of
a difference in the pairing mechanism we consider the site-
local pairing density matrix,

ρlocðrijrjÞ ¼ hΔ†
riΔrji where Δ†

ri ¼ c†ri↑c
†
ri↓
: ð11Þ

Figure 4(c) shows that a single dominant eigenvalue is
formed at U=t ¼ −2 and t0=t ¼ 0 on theW ¼ 4 cylinder at
quarter filling, i.e., p ¼ 1=2 increasing with system size.
Finally, we investigate how the fragmented conden-

sate can emerge from a “normal” state. Therefore, we
study the temperature dependence of the d-wave pairing
susceptibility,

D ¼
X
α;β

ð−1Þα·βþ1
X
ri;rj

ρ̂Sðri; αjrj; βÞ; ð12Þ

and the magnetic structure factor SmðqÞ at the antiferro-
magnetic ordering vector q ¼ ðπ; πÞ using the minimally
entangled typical thermal states (METTS) method with
maximal bond dimension D ¼ 2000 [20,38]. In Fig. 6, we
observe that strong pairing correlations develop below a

(a) (b) (c)

FIG. 4. Spectrum εn of ρ̂S on the W ¼ 6 cylinder for (a) the d-
wave superconducting state at t0 ¼ 0.2, p ¼ 1=16 and (b) a
nonsuperconducting stripe state at t0 ¼ −0.2, p ¼ 1=8. No
dominant eigenvalues are observed in the nonsuperconducting
case in (b). (c) Spectrum of ρloc [Eq. (11), diagonal elements have
been set to zero] for the s-wave superconducting state realized in
the attractive Hubbard model on aW ¼ 4 cylinder for U=t ¼ −2,
p ¼ 1=2, and t0=t ¼ 0. Only one dominant eigenvalue is ob-
served for this uniform condensate.

FIG. 5. Condensate wave functions χnðri; αÞ for the dominant
three eigenvalues of ρ̂S on a 16 × 6 cylinder at doping p ¼ 1=16
and t0 ¼ 0.2. The hole density 1 − hnii is shown as the area of the
gray circles.
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temperature of T=t ≈ 0.05. Antiferromagnetic correlations
develop at a higher temperature but are finally suppressed
by pairing correlations.
Discussion and conclusion.—Our results suggest a

simple physical picture of the interplay of stripe order
and superconductivity. Individual superconducting conden-
sates are formed on the stripes of the system and hole pairs
can tunnel through a barrier given by the maxima in the
electron density. The superconducting stripes could thus be
regarded as an emergent array of Josephson junctions.
While we found the most dominant macroscopic wave
function to be a uniform superposition of the condensate
fragments, it is an important open question under which
circumstances different modes, e.g., a π-phase shift
Josephson junction, could be realized as the dominant
contribution. Moreover, the smallest dominant eigenvectors
shown in Fig. 2 (n ¼ 4) and Fig. 5 (n ¼ 3) are pair-density
waves [39], where the condensate wave function is modu-
lated from stripe to stripe. Such states have previously been
suggested for the t-t0-J model from variational Monte Carlo
simulations [40]. Interestingly, recent experiments on
La2−xBaxCuO4 have highlighted the possibility of having
pair correlations within stripes without coherence between
the stripes [41,42]. This observation could indeed be
explained by the fragmentation of the superconducting
state by stripes, a fundamental mechanism we have now
revealed in the t-t0-J model.

I am very grateful for insightful discussions with Andrew
Millis, Steven R. White, and Antoine Georges. The DMRG
results were obtained using the ITensor Library [43]. The
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