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For every conserved quantity written as a sum of local terms, there exists a corresponding current
operator that satisfies the continuity equation. The expectation values of current operators at equilibrium
define the persistent currents that characterize spontaneous flows in the system. In this Letter, we consider
quantum many-body systems on a finite one-dimensional lattice and discuss the scaling of the persistent
currents as a function of the system size. We show that, when the conserved quantities are given as the
Noether charges associated with internal symmetries or the Hamiltonian itself, the corresponding persistent
currents can be bounded by a correlation function of two operators at a distance proportional to the system
size, implying that they decay at least algebraically as the system size increases. In contrast, the persistent
currents of accidentally conserved quantities can be nonzero even in the thermodynamic limit and even in
the presence of the time-reversal symmetry. We discuss “the current of energy current” in S ¼ 1=2 XXZ
spin chain as an example and obtain an analytic expression of the persistent current.
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Introduction.—The Noether theorem predicts the pres-
ence of a conserved quantity for every global continuous
symmetry [1–3]. This fundamental theorem underlies the
conservation of many important quantities such as the
energy and the momentum in uniform stationary systems
and the U(1) charges in many-body systems. There can also
be other types of conserved quantities that commute with
the Hamiltonian without apparent symmetry reasons. Such
quantities are the key behind the integrability of exactly
solvable models. They also affect the thermalization of the
system [4–6].
For each conserved quantity, one can define a current

operator that satisfies the continuity equation [Eq. (1)
below]. We call the expectation value of current operators
at equilibrium “persistent currents.” Persistent currents can
flow in systems that do not have any ends, such as the
one-dimensional ring illustrated in Fig. 1(a). Based on a
variational argument that uses the so-called “twist oper-
ator,” Bloch showed that the persistent U(1) current
vanishes in the limit of large system size in (quasi) one-
dimensional systems [7–11]. Recently, Kapustin and
Spodyneiko proved a corresponding statement for the
persistent energy current via a new method focusing on
the response toward deformations of the Hamiltonian [12].
Then natural questions arise: do the persistent currents of

other conserved quantities vanish in the thermodynamic
limit, just like the persistent current of the U(1) charge and
the energy? If so, how do we prove it? What is their scaling
as a function of the system size? In this Letter, we answer
these questions one by one. To our surprise, we find that the
persistent currents can, in general, be nonzero even in the
thermodynamic limit and even in the presence of the time-
reversal symmetry. Given this finding, we derive sufficient

conditions for persistent currents to vanish in the thermo-
dynamic limit. It is known that current operators have
ambiguities in their definitions. To address these questions
in a meaningful manner, we should first show that the
persistent current is independent of such ambiguities.
Our analysis also provides an alternative proof of the

absence of persistent energy current in the thermodynamic
limit. Our argument is advantageous in two ways compared
to Ref. [12]: (i) the finite-size scaling is accessible and
(ii) the absence of a finite-temperature phase transition is
not assumed. Moreover, our argument improves Bloch’s
original bound OðL−1Þ for the persistent U(1) current to an
exponential decay at a finite temperature when the system
size is large enough [7–11].
Setting.—We consider a quantum many-body system

defined on a one-dimensional latticeΛ≡ f1; 2;…; Lg. The
boundary condition is set to be periodic and xþ nL
(n ∈ N) is identified with x ∈ Λ. The distance between
x; y ∈ Λ is given by dðx; yÞ≡minnjx − yþ nLj. For
example, x ¼ L is right next to x ¼ 1 because dðL; 1Þ ¼ 1

[Fig. 1(a)]. The Hamiltonian Ĥ ≡P
L
x¼1 ĥx is given as the

(a) (b)

FIG. 1. Lattice Λ with (a) periodic boundary condition and
(b) open boundary condition. The link between x and xþ 1 is
denoted by x̄.
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sum of local terms ĥx supported around x. Ranges of ĥx ’s
are bounded by a constant rh ∈ N. The system is not
necessarily translation invariant.
Suppose there exists a Hermitian operator Q̂≡P

L
x¼1 q̂x

that commutes with Ĥ. Ranges of q̂x’s are also bounded by a
constant rq ∈ N. By definition, ½ĥx; q̂y� ¼ 0 if dðx; yÞ > r
with r≡ rh þ rq. The system size L ∈ N is assumed to be
much bigger than r.When q̂x generates a compact Lie group
acting exclusively at x (i.e., rq ¼ 0), q̂x is integer-valued in
some unit, which we set 1 by proper normalization. In this

case, the twist operator Û ≡ eð2πi=LÞ
P

L
x¼1

xq̂x is well-defined
and Bloch’s variational argument is applicable [7–11]. We
proceed without assuming such properties of q̂x.
Given Ĥ and Q̂, we introduce the current operator

associated with the link x̄ between x and xþ 1 through
the continuity equation [Fig. 1(a)]

i

�
Ĥ;

Xx0
z¼xþ1

q̂z

�
¼ ĵx̄ − ĵx̄0 ðx0 > xÞ: ð1Þ

We assume that ĵx̄ is localized around the link x̄ with a
finite support. When dðx; x0Þ ≫ r, the supports of ĵx̄ and ĵx̄0
do not overlap and ĵx̄ can be uniquely singled out, for
the given ĥx and q̂x (up to a temperature independent
constant that we set 0). Note that the persistent current hĵx̄i
is independent of the link x̄. This is because, for any
operator ô,

h½Ĥ; ô�i ¼ hĤôi − hôĤi ¼ 0; ð2Þ
when the expectation value is computed using the Gibbs
state or the ground state (or any eigenstate) of Ĥ. We obtain
hĵx̄i ¼ hĵx̄0 i by applying Eq. (2) to Eq. (1) [10].
The decomposition of Ĥ and Q̂ into local terms ĥx and q̂x

is not unique [13]. Let Ĥ ¼ P
L
x¼1 ĥ

0
x and Q̂ ¼ P

L
x¼1 q̂

0
x

be an alternative decomposition, and let ĵ0̄x be the
current operator corresponding to this choice. Owing to
the assumed locality, we can write

P
x0
z¼xþ1 q̂

0
z ¼P

x0
z¼xþ1 q̂z þ δq̂x̄ − δq̂x̄0 . Substituting this into Eq. (1),

we find ĵ0̄x − ĵx̄ ¼ i½Ĥ; δq̂x̄�. Again applying Eq. (2), we
conclude that hĵx̄i is independent of the choice of local
operators despite the fact that ĵx̄ itself may be ambiguous.
Similar conclusion can be found in Refs. [14,15], but our
discussion is slightly more general in that we assumed only
the locality of q̂x.
Tight-binding model.—Before further presenting abstract

arguments, let us first discuss illustrative examples. We first
consider a single-band tight-binding model with hopping
parameters td:

Ĥ ¼
XL
x¼1

ĥx; ĥx ¼
Xrh
d¼0

tdĉ
†
xþdĉx þ H:c:; ð3Þ

where ĉx is the annihilation operator of fermions at
x ∈ Λ. Introducing the Fourier transformation ĉ†k ≡
L−1=2PL

x¼1 ĉ
†
xeikx for k ¼ 2πj=L, we obtain the diagon-

alized form Ĥ ¼ P
k εkĉ

†
kĉk. The band dispersion εk ≡Prh

d¼0 tde
−ikd þ c:c: defines the group velocity vk ≡ ∂kεk ¼

−i
Prh

d¼0 dtde
−ikd þ c:c: The ground state in a N fermion

system is given by the Slater determinant of the N-lowest
energy states. We fix the filling ν ¼ N=L in the canonical
ensemble, while N will be automatically chosen by fully
occupying states with εk < 0 in the grand cano-
nical ensemble (the chemical potential μ is included in
εk via t0 ¼ μ=2). For brevity, we assume that states with
momentum k in the range k− ≤ k ≤ kþ are occupied
and those outside are unoccupied in the ground state
[Fig. 2(a)].
Let us consider a Hermitian operator of the form

Q̂ ¼
XL
x¼1

q̂x; q̂x ¼
Xrq
d0¼0

qd0 ĉ
†
xþd0 ĉx þ H:c:; ð4Þ

which commutes with Ĥ as it is diagonal in the Fourier
space: Q̂ ¼ P

k qkĉ
†
kĉk with qk ≡Prq

d0¼0
qd0e−ikd

0 þ c:c:

For example, qk ¼ 1 for the U(1) charge q̂x ¼ ĉ†xĉx and
qk ¼ εk for the energy q̂x ¼ ĥx. Using Eq. (1), we identify
the current operator ĵx̄ ¼

Prh
d¼1

P
d
d00¼1

σ̂dx−d00þ1
, where

σ̂dx ≡
Xrq
d0¼0

iðt�dq�d0 ĉ†xĉxþdþd0 þ t�dqd0 ĉ
†
xþd0 ĉxþdÞ þ H:c: ð5Þ

FIG. 2. Persistent currents in the tight-binding model with t1 ¼
−te−iθ=L and t0 ¼ μ=2. We set t ¼ 1, μ ¼ ffiffiffi

2
p

(corresponding to
the quarter filling), θ ¼ π=2, and L ¼ 8n − 4 (n ∈ N). (a) The
band dispersion for L ¼ 52. (b) Log-log plot of persistent
currents at T ¼ 0. Lines are obtained by fitting. The slopes for
the U(1) current and the energy current correspond to L−1 and
L−3 decay. (c),(d) Log-log and linear-log plot of persistent
currents at T ¼ t=100. We use the same color labels as in (b).
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See Sec. I of Supplemental Material (SM) [16] for the

derivation. The averaged current operator ˆ̄j≡ L−1PL
x¼1 ĵx̄

takes an intuitive form ˆ̄j ¼ L−1P
k qkvkĉ

†
kĉk in the Fourier

space, which is simply the charge qk multiplied by the
group velocity vk ¼ ∂kεk. The persistent current hĵx̄i ¼
L−1Pkþ

k¼k−
qkvk at T ¼ 0 can be evaluated by the Euler-

Maclaurin formula

hĵx̄i ¼
Z

kþ

k−

qkvk
2π

dkþ qkþvkþ þ qk−vk−
2L

þOðL−2Þ: ð6Þ

Now we show that hĵx̄i vanishes in the thermodynamic
limit when qk is a function of εk but not a function of vk.
This is the case when Q̂ is the U(1) charge and the
Hamiltonian itself. If we write qk ¼ ∂εkfðεkÞ [fðεkÞ ¼ εk
for the U(1) charge and fðεkÞ ¼ ε2k=2 for the energy], the
first term in Eq. (6) can be written as ½fðεkþÞ−fðεk−Þ�=
ð2πÞ, which is small because jεkþ −εk− j¼OðL−1Þ in the
ground state. In the canonical ensemble, εk� ¼ Oð1Þ and
hĵx̄i ∝ L−1 in general. In the grand canonical ensemble at
T ¼ 0, in which all single particle levels with εk < 0 are
occupied, the Fermi levels εk� themselves are OðL−1Þ and
the persistent energy current decays faster.
At T > 0, the persistent current for qk ¼ ∂εkfðεkÞ decays

exponentially (Sec. III of SM). We show the numerical
result for T ¼ t=100 in Figs. 2(c) and 2(d), which demo-
nstrates a crossover between the algebraic and the expo-
nential decay around L ∼ t=T.
On the other hand, in more general cases, qk may not

take the above form. For example, we can reuse the above
current operator ĵx̄ as an example of q̂x in Eq. (4). Then the
corresponding qk is vk for the U(1) current and εkvk for the
energy current. In this case, the first term in Eq. (6) does not
vanish in general as demonstrated in Fig. 2(b).
XXZ spin chain.—The above discussion heavily relies

on the simplicity of the noninteracting model. However,
the key conclusion remains valid even in the presence of
interactions. As an example, let us consider S ¼ 1=2 XXZ
spin chain. The Hamiltonian is Ĥ ¼ P

L
x¼1 ĥx with ĥx ¼

Jðŝxxþ1ŝ
x
x þ ŝyxþ1ŝ

y
x þ Δŝzxþ1ŝ

z
xÞ, where ŝx;y;zx is the spin-1=2

operator at x ∈ Λ. The energy current operator for q̂x ¼ ĥx
is given by ĵEx̄ ¼ i½ĥx; ĥxþ1� [17]. The total energy current
Q̂EC ¼ P

L
x¼1 ĵ

E
x̄ commutes with Ĥ [17], allowing us to

discuss “the current of the energy current” ĵECx̄ [18–20]. We
append the concrete expressions of these operators in
Sec. II of SM. Since the energy current ĵEx̄ are odd under
the time-reversal symmetry, “the current of energy current”
ĵECx̄ is even. Thus, it can flow without breaking the
time-reversal symmetry. Note that both ĵEx̄ and ĵECx̄ are
traceless, implying that their expectation values vanish in
the infinite temperature limit. Unless Δ ¼ 0, neither the

total U(1) current corresponding to q̂x ¼ ŝzx nor “the total
current of energy current”

P
L
x¼1 ĵ

EC
x̄ commute with Ĥ.

The Δ ¼ 0 point reduces the tight-binding model with
t1 ¼ −J=2 and k� ¼ �π=2 and Eq. (6) gives hĵECx̄ i ¼
−J3=ð3πÞ in the thermodynamic limit. For −1 < Δ ≤ 1, we
find the following analytic expressions using the results
of Ref. [21] (Sec. II of SM):

hĵECx̄ i∞ ¼ J3
πΔ − 2ð1 − Δ2Þ3=2ζηð3Þ

8π
; ð7Þ

ζηð3Þ≡
Z þ∞

−∞

1

sinhðx − i π
2
Þ
cosh½ηðx − i π

2
Þ�

sinh3½ηðx − i π
2
Þ� dx; ð8Þ

where η (0 ≤ η < 1) parametrizes Δ ¼ cosðπηÞ. For
example, hĵECx̄ i∞ ¼ J3½1 − 3ζð3Þ�=8 at Δ ¼ 1 [ζðzÞ is the
Riemann zeta function] and hĵECx̄ i∞ → −J3=8 as Δ → −1.
The expressions in Eqs. (7) and (8) can be extended
to Δ > 1 by setting η ¼ iη0 with η0 > 0. For example,
hĵECx̄ i∞ ≃ −3J3Δ=8 when Δ ≫ 1. Our numerical results up
to 26 spins are presented in Fig. 3.
Vanishing persistent current under open boundary

condition.—We have seen through examples that not all
persistent currents vanish in the thermodynamic limit. To
have a better understanding, here we temporarily consider
the open boundary condition (OBC) and prove that the
persistent current vanishes for any conserved quantity
under OBC. This consideration serves as the reference
point when evaluating the persistent current under periodic
boundary condition (PBC) later.
The crucial difference between PBC and OBC lies in

the definition of the distance. Under OBC, the distance
between x; y ∈ Λ is simply given by d̃ðx; yÞ≡ jx − yj.
Thus, x¼L and x ¼ 1 are at a long distance [Fig. 1(b)].

Let ˆ̃H ≡P
L
x¼1

ˆ̃hx be the Hamiltonian under OBC, in which
all interactions across the “seam” between x ¼ L and x ¼ 1
are switched off. We demand that the local Hamiltonians

FIG. 3. The expectation value of “the current of the energy
current” ĵECx̄ in XXZ spin chain with J ¼ 1. Panels (a) and
(b) display different ranges of Δ. Orange points are obtained by
exact diagonalization for L ¼ 26 chain. Blue solid curves are
the analytic expression in Eq. (7) in the thermodynamic limit.
Red dashed line in (b) represents the asymptotic behavior
Δ ¼ −3J3Δ=8. The inset in (a) checks the convergence as L
increases for Δ ¼ 0 and 1. Fitting lines have the slope corre-
sponding to the L−2 correction.
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remain unchanged in the bulk, i.e., ˆ̃hx ¼ ĥx when

rh < x < L − rh þ 1. Near boundaries, ˆ̃hx’s are arbitrary

as long as ˆ̃hx is supported around x and its range is bounded
by rh.

Another important assumption on ˆ̃H is that there exists a

conserved charge ˆ̃Q≡P
L
x¼1

ˆ̃qx that may differ from Q̂
only near the boundaries. For example, in the case of

internal symmetries, one can set ˆ̃Q ¼ Q̂ by symmetrizing
ˆ̃H using eiθQ̂. In contrast, accidentally conserved quantities

of Ĥ may not have a correspondence in ˆ̃H. For example, the
total energy current (more generally, a conserved quantity
under PBC in which the highest order term contains an
odd number of spin operators) in the XXZ model is not
conserved under OBC [22].

We assume that the current operator ˆ̃jx̄, satisfying the
continuity equation

i

�
ˆ̃H;

Xx0
z¼xþ1

ˆ̃qz

�
¼ ˆ̃jx̄ − ˆ̃jx̄0 ðx0 > xÞ; ð9Þ

remains localized around the link x̄ with a finite support.

If we set x ¼ 0 and x0 ¼ L in Eq. (9), we find ˆ̃jL̄ − ˆ̃j0̄ ¼
−i½ ˆ̃H; ˆ̃Q� ¼ 0. Because of the assumed locality of ˆ̃j0̄ and

ˆ̃jL̄,

this is equivalent with ˆ̃j0̄ ¼ ˆ̃jL̄ ¼ 0. This is reasonable since
nothing can flow into or flow out of the system under OBC.
Then, again from Eq. (9), we find a compact expression
ˆ̃jx̄ ¼

P
L
z¼xþ1 i½ ˆ̃H; ˆ̃qz�, which takes the form of ½ ˆ̃H; ô�. Thus,

the persistent current, computed using the Gibbs state

or the ground state of ˆ̃H, is precisely zero under OBC
without the large L limit.
Interpolating Hamiltonian.—Now we return to PBC in

which the distance is measured by dðx; yÞ. The Hamiltonian
ˆ̃H for OBC can be regarded as the Hamiltonian under PBC,
since it satisfies the locality condition. In contrast, the
Hamiltonian Ĥ for PBC cannot be used under OBC in
general, since it may contain interactions between the two
boundaries x ¼ L and 1 that are regarded as long-ranged
with respect to d̃ðx; yÞ of OBC.
We introduce a one-parameter family of Hamiltonians

ĤðsÞ ¼ P
L
x¼1 ĥxðsÞ≡ sĤ þ ð1 − sÞ ˆ̃H for s∈ ½0;1�, which

linearly interpolates our original Hamiltonian Ĥ and the

reference Hamiltonian ˆ̃H. By construction of ˆ̃H, the local
Hamiltonians ĥxðsÞ in the bulk region do not depend on s,
i.e.,

ĥxðsÞ ¼ ĥx; rh < x < L − rh þ 1: ð10Þ

In the following, we denote by hôis the expectation value
with respect to the Gibbs state ρ̂ðsÞ≡ e−ĤðsÞ=T=ZðsÞ

[ZðsÞ≡ tre−ĤðsÞ=T] at a finite T or the ground state of
ĤðsÞ at T ¼ 0.
We assume that, for any s ∈ ½0; 1�, the system has a

conserved charge Q̂ðsÞ≡P
L
x¼1 q̂xðsÞ with Q̂ð1Þ ¼ Q̂ and

Q̂ð0Þ ¼ ˆ̃Q, in which q̂xðsÞ is independent of s at least when
x is away from 1 and L

q̂xðsÞ ¼ q̂x if 1 ≪ x ≪ L: ð11Þ
These assumptions are automatically fulfilled for the case
when Q̂ðsÞ is the Hamiltonian ĤðsÞ itself. Also, for internal
symmetries, we can simply set q̂xðsÞ ¼ q̂x for any x ∈ Λ
and s ∈ ½0; 1�. Substituting Eqs. (10) and (11) into the
continuity equation

i

�
ĤðsÞ;

Xx0
z¼xþ1

q̂zðsÞ
�
þ ĵx̄0 ðsÞ − ĵx̄ðsÞ ¼ 0 ðx0 > xÞ; ð12Þ

we find that the current operator ĵx̄ðsÞ is also independent
of s when x is away from 1 and L.
Bound for persistent current.—With these preparations,

let us evaluate hĵx̄i for the original Hamiltonian Ĥ. Let
x0 ∈ Λ be a site away from 1 and L. We have

hĵx̄i ¼ hĵx̄0is¼1 ¼
Z

1

0

ds∂shĵx̄0is; ð13Þ

for any x ∈ Λ, where we used the fact that hĵx̄i is
independent of x̄ and that ĵx̄0ðsÞ ¼ ĵx̄0 is independent of

s as long as 1≪x0≪L. The last equality used hˆ̃jx̄0is¼0¼0

under OBC as discussed above.
According to the linear response theory, the derivative

∂shĵx̄0is is given by a correlation function ∂shĵx̄0is ¼
−gsðĵx̄0 ; ûL̄Þ, where ûL̄ ≡ ∂sĤðsÞ ¼ P

L
x¼1ðĥx − ˆ̃hxÞ is

localized around the link L̄ between x ¼ L and x ¼ 1.
At a finite T, gsðô; ô0Þ ¼ T−1⟪ô; ô0⟫s is given by is the
canonical correlation

⟪ô; ô0⟫s≡T
Z

T−1

0
dαheαĤðsÞôe−αĤðsÞô0is−hôishô0is; ð14Þ

FIG. 4. gsðĵx̄0 ; ûL̄Þ for the U(1) current in the tight-binding
model in Fig. 2. We set t ¼ 1 and θ ¼ π=2. The lines in the panel
(b) are obtained by fitting. The power ps is 1 for 0 ≤ s < 1 except
p1 ¼ 2 for s ¼ 1.
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and, at T ¼ 0,

gsðô; ô0Þ ¼
�
ô

1 − P̂ðsÞ
ĤðsÞ − E0ðsÞ

ô0
�

s
þ c:c:; ð15Þ

where P̂ðsÞ is the projection onto the ground state of ĤðsÞ
and E0ðsÞ is the ground state energy. Because of the
property gsð½ĤðsÞ; ô�; ô0Þ ¼ h½ô0; ô�is, gsðĵx̄0 ; ûL̄Þ is inde-
pendent of x0 as long as 1 ≪ x0 ≪ L. Up to this point, all
expressions are exact.
Now, recall that ĵx̄0 and ûL̄ are respectively localized

around the link x̄0 and L̄. If x0 is set to be L=2 when L is
even and ðLþ 1Þ=2 when L is odd, the distance between
the supports of these two operators can be approximated by
L=2. Hence, even in gapless systems, gsðĵx̄0 ; ûL̄Þ should
decay as L increases. Let us postulate the power-law decay,
i.e., jgsðĵx̄0 ; ûL̄Þj < csL−ps first. For example, Fig. 4 illus-
trates the case for the above tight-biding model at T ¼ 0.
In this case, the persistent current can be bounded by
Eq. (13) as

jhĵx̄ij ≤
Z

1

0

dsjgsðĵx̄0 ; ûL̄Þj ≤ cL−p ð16Þ

with c≡maxscs and p≡minsps. In contrast, when
the correlation function decays exponentially, i.e.,
jgsðĵx̄0 ; ûL̄Þj ≤ c0se−L=ξs , we instead have

jhĵx̄ij ≤
Z

1

0

dsjgsðĵx̄0 ; ûL̄Þj ≤ c0e−L=ξ ð17Þ

with c0 ≡maxsc0s and ξ≡maxsξs. In gapless systems at
T > 0, if the gapless mode has the velocity v, a crossover
from the algebraic decay (L≲ v=T) to the exponential
decay (L≳ v=T) is expected in general [23,24], as we have
seen in Figs. 2(c) and 2(d).
Conclusions.—In this Letter, we considered a process

in which all interactions across the seam between x ¼ L
and x ¼ 1 are gradually switched off. When the quantity Q̂
remains conserved during this process, the persistent
current can be bounded by Eqs. (16) and (17). This is
the case for internal symmetries and the Hamiltonian itself.
In contrast, when Q̂ fails to be conserved during the
process, this argument is not applicable and the persistent
current can be nonzero even in the large L limit.
The fundamental difference between Noether charges

and accidentally conserved quantities lies in their action on
local operators. Let ôx be an operator supported only at
x ∈ Λ. When Q̂ is a Noether charge of an internal
symmetry, the support of ôxðθÞ≡ eiθQ̂ôxe−iθQ̂ remains
localized to x. In contrast, when Q̂ is an accidentally
conserved quantity, the support of ôxðθÞ is spread over the
entire space even if Q̂ is given as a sum of local terms.

(The speed of the spread obeys the Lieb-Robinson bound
[25].) This is why Q̂ cannot be interpreted as a generator
of symmetries and generically cannot remain conserved in
the deformation process from PBC to OBC.
The mechanism for nonvanishing persistent currents

here is different from the one proposed recently [26,27].
Although our discussion was limited to one dimension,
several implications on higher dimensions can be derived in
the same way as in Ref. [10].
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