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Asymmetric Roughness of Elastic Interfaces at the Depinning Threshold
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Roughness of driven elastic interfaces in random media is typically understood to be characterized by a
single roughness exponent {. We show that at the depinning threshold, due to symmetry breaking caused by
the direction of the driving force, elastic interfaces with local, long-range, and mean-field elasticity exhibit
asymmetric roughness. It is manifested as a skewed distribution of the local interface heights, and can be
quantified by using detrended fluctuation analysis to compute a spectrum of local, segment-level scaling
exponents. The asymmetry is observed as approximately linear dependence of the local scaling exponents
on the difference of the segment height from the mean interface height.
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Introduction.—Driven elastic interfaces in quenched
random media, including, e.g., domain walls in ferromag-
nets [1] and ferroelectrics [2], contact lines in wetting [3],
and crack fronts in disordered solids [4], exhibit universal
dynamical response to external driving forces. These
features are linked to an underlying depinning phase
transition between pinned and moving phases of the
interface at a critical external force [5,6], originating from
the interplay between quenched disorder, elasticity, and an
external driving force. In addition to dynamical properties
such as interface motion taking place in a sequence of
avalanches exhibiting scaling [1,7], a key feature of elastic
interfaces at the depinning threshold is their rough mor-
phology [8]. The roughness of an elastic interface with a
height profile A(x) is typically understood to be charac-
terized by a single roughness exponent ¢, e.g., by consid-
ering the scaling of the saturated mean squared interface
width W2(L) ~ L?* with the system size L, or that of
the two-point correlation function C(x) = ([A(x’ + x) —
h(x")]?) ~x** along the interface, averaged over pinned
interface configurations [9].

This simple description assumes that a single roughness
exponent sufficiently characterizes the pertinent properties
of the system. Thus, this description does not account for
any possible asymmetries of /(x) with respect to, e.g., its
mean value (h). However, many driven elastic interfaces in
quenched random media exhibit local statistical properties
and correlations that may greatly diverge from such a
simple, symmetric picture. Consider as an example a
dislocation line (with a rather peculiar nonlocal self-
interaction kernel [10]) driven by an applied shear stress
through a sparse set of precipitate particles acting as
localized obstacles for dislocation motion [11,12]:
the dislocation will bow out in between the precipitates
while remaining pinned at them, resulting in noticeable
differences between the appearance (e.g., magnitude of
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the local curvature) of dislocation line segments that have
moved more or less than the average dislocation displace-
ment (see, e.g., Fig. 3 of Ref. [12]). Hence, by looking at a
pinned dislocation configuration at a scale comparable to
the precipitate spacing, it is immediately clear which way
the dislocation line is being driven by the stress. On the
other hand, when observing such interfaces on length scales
exceeding the disorder correlation length (as is usually
done by construction in simple models of interface depin-
ning), any possible asymmetry with respect to (h) is less
apparent; see Fig. 1(a).

Here we show that even for scales well above the
disorder correlation length where the interface roughness
emerges as a consequence of weak or collective pinning
[13], the roughness of elastic interfaces at the depinning
threshold exhibits several asymmetric features, originating
from the broken symmetry caused by the direction of the
external driving force. Considering as an example system
the long-range elastic string [14—-16] (in what follows we
will use the terms “string” and “interface” interchange-
ably), known to describe systems such as planar cracks
[4,17,18], contact lines [3], and low-angle grain boundaries
[19], we find skewed distributions of both the local inter-
face height and the local elastic force; analogous results
for local and mean-field elasticity are presented in
Supplemental Material [20]. Analyzing interface segments
on different scales conditioned on the deviation of the
average segment height from the mean interface height and
the average elastic force acting on the segment reveals clear
trends in the segment height profiles. Hence, we employ
detrended fluctuation analysis (DFA) [23,24] with a scale-
dependent segmentation scheme [25] to analyze the scaling
properties of such segments. The resulting scaling expo-
nents a are found to converge in the limit of high order of
the detrending polynomial, with the converged exponents
exhibiting a clear dependence on the difference of the
segment height and the mean interface height, and on the
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FIG. 1. (a) Example of a rough interface configuration /(x) for

L = 4096. (b) Roughness exponent { measured from the scaling
of W2(L) and C(x) (see text). (c) Distribution P(/) of the scaled
local interface height 71 = [h(x) — (h)]/o), (top), and the differ-
ence between P(h) and standard normal distribution N(0, 1)
(bottom). (d) Distribution P(F,,) of the scaled local elastic force
Fg = Fq/or, (top), and the difference between P(F,) and
standard normal distribution N(0, 1) (bottom).

average elastic force. The average values of these local
exponents tend toward the roughness exponent ¢ in the
large-scale limit. Thus, instead of the classical description
in terms of a single roughness exponent £, our results show
that elastic interfaces at the depinning threshold should be
characterized by a spectrum of local, segment-level expo-
nents which depend on quantities like the deviation of the
segment height from the mean interface height and/or the
average elastic force acting on the segment.

Model: Long-range elastic string.—We perform exten-
sive simulations of a discretized version of the long-range
elastic string in a quenched random medium. The local total
force acting on the interface element i located at x = x; = i
(with i an integer from O to L) along the interface h(x) =
h(x;) = h; is

F(x;) = Fo(x;) +n(xi, hy) + Fexs (1)

where the first term on the rhs, F(x;) =Ty [(h; —
h;)/|x; —x;[*] (with Ty the stiffness of the interface),

represents the long-range elastic interactions, # is uncorre-
lated quenched disorder, and F, is the external driving
force [4]. The parallel dynamics of the interface is defined
in discrete time ¢ by setting the local velocity v(x;, f)=
h(x;, t+ 1) — h(x;,t) = O[F(x;)], where 0 is the Heaviside
step function. We employ quasistatic constant velocity
driving which keeps the interface in the immediate prox-
imity of the depinning threshold, such that avalanches are
triggered by increasing Fy; just enough to make exactly
one interface element unstable [that is, F(x;) > O for some
i] whenever the previous avalanche has ended. During an
avalanche, F.,, is decreased at a rate proportional to the
instantaneous avalanche velocity, Fo, = —K/L>"; v;(1),
where K is a parameter controlling the cutoff of the
avalanche size distribution [4]. To collect data for studying
the interface roughness, we simulate the system according
to the above protocol and store interface configurations
h(x) from the steady state at regular intervals separated by
long enough interface displacements such that consecutive
interface configurations are uncorrelated. The parameters
are set to L = 4096, K = 0.0033, and I'j; = 0.3 unless
stated otherwise, but we consider also different L’s up to
L =131072 = 2", and adjust K accordingly to approx-
imately fix the ratio of the correlation length (maximum
lateral extent of avalanches) and L.

Skewed distribution of interface heights.—Figure 1(a)
shows an example of an interface profile h(x) for
L = 4096, illustrating the typical rough morphology one
observes above the length scale of the disorder correlation
length (which here equals 1). Our interfaces follow the
standard scaling picture in that the roughness exponent ¢,
estimated from W?(L) and C(x) in Fig. 1(b) for system
sizes up to L = 27, is very close to the literature value of
{ ~0.385 [9]. However, a closer look reveals the first
signature of asymmetry in the statistical properties of the
h(x)’s: The distribution of local interface heights P(%),
where i = [h(x) — (h)]/o), [with the standard deviation o,
calculated over the whole dataset of h(x) — (h) values],
exhibits a small but clearly nonzero negative skewness [26]
of —0.183, and hence deviates from the standard normal
distribution N(0, 1) [Fig. 1(c)]. Similar conclusions can be
made by considering the distribution of local elastic forces
P(F,) [Fig. 1(d), with F, = F¢(x)/oF,], which exhibits a
positive skewness of 0.176. The interpretation of this is that
strongly pinned points of the interface lagging behind the
mean interface height give rise to a long negative tail in
P(h) and a long positive tail in P(F,,) as the points x with
negative i(x) — (h) lagging behind the rest of the interface
typically experience a positive Fg(x). These features are
a consequence of the broken symmetry between parts of
the interface above and below (/) due to the direction of
F. and can be reproduced also for interfaces with
local and infinite-range (mean-field) interactions (Fig. 1
of Supplemental Material [20]) and for continuous-time
dynamics (Fig. 3 of Supplemental Material).
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Asymmetric trends in interface segments.—Next, we
examine if the broken symmetry is manifested in other
properties of h(x) as well. To this end, we consider
interface segments hg(x) of length s, i.e., we study the
problem on various scales s, as a function of segment-level
quantities such as (h,) — (h) (difference of the mean
segment height and the mean interface height) and
(Fey) (the mean elastic force acting on the segment).
Figure 2(a) shows a set of ensemble-averaged scaled
segment profiles [k (x) — (hy)]/SD(h,) for s =867 (a
“large” example scale smaller than L) for different values
of (hy) — (h) [color bar in Fig. 2(a)]. These exhibit clear,
approximately parabolic trends for large values of
[{(hs) — (h)|, such that the “opening direction” of the curves
is toward the mean interface height. Moreover, these
profiles exhibit asymmetry with respect to (h), such that
there is an excess of profiles with a large negative
(hg) — (h), shown as dashed lines in Fig. 2(a) in addition
to the profiles computed with symmetric binning on both
sides of (h,) — (h) = 0 (solid lines). Moreover, comparing
the symmetrically binned average segment height profiles
for different | (h,) — (h)| and s, by computing the difference
max(h, ) — max(—h_) [where max(h, ) refers to the maxi-
mum of the normalized average segment height profile with
a positive (h;) — (h) and max(—h_) is the maximum of the
negative normalized average segment height profile with
a negative (hy) — (h); only bins with more than 10000
segments are considered here to avoid spurious effects due to
statistical noise], reveals an additional signature of asym-
metry: For small s, the difference is close to zero but slightly
positive [pale red in Fig. 2(c)], while for large s and
|(hs) — (h)| it becomes clearly negative [blue in Fig. 2(c)],
showing that the interface segments exhibit asymmetry also
for large scales, in addition to the long negative tail in the
distribution P(h) of local heights in Fig. 1(c).

Analogous quantities can be studied by considering
segments with different average elastic forces (F)
[Figs. 2(b) and 2(d)]. Figure 2(b) shows a set of ensem-
ble-averaged segment profiles for s = 867 for different
values of (F, ) [color bar in Fig. 2(b)]. These average
segment profiles are qualitatively similar to the ones found
above when conditioning with the value of (k) — (h), but
the trends are somewhat less parabolic looking, suggesting
that they may be better captured by a higher-order poly-
nomial. Again, there is an excess of profiles with a large
positive value of (F, ) [dashed lines in Fig. 2(b)],
corresponding to segments which are lagging behind the
mean height of the interface. Another difference is that for
large s, (F, ) has a tendency to approach zero, and hence
the interval of |(F )| values in Fig. 2(d) gets increasingly
narrow as larger s’s are considered. Nevertheless, an
analogous asymmetry is seen also in Fig. 2(d), such that
for small scales max(—h, ) — max(h_) is close to zero (+
and — now refer to positive and negative values of (F,),
respectively), while a clearly negative value is found for the
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FIG. 2. (a),(b) Scaled segment profiles [h,(x) — (h,)]/SD(hy)

for s = 867 averaged within bins symmetric with respect to
(hg) — (h) = 0and (F ) = 0, respectively (solid lines), with the
values of (h,) — (h) and (F,,) indicated by the color bars. The
dashed lines illustrate the excess profiles for large negative values
of (hy) — (h) and large positive values of (F, ), respectively. (c),
(d) Difference between the maxima of the average scaled segment
profiles with a positive and the corresponding negative value of
(hg) — (h) and (F), respectively, for different scales s.

largest s’s for a given |(Fq ,)|. These findings constitute a
large-scale analog of the long positive tail in the distribu-
tion P(F,) of local elastic forces in Fig. 1(d).

Scaling properties of the segments.—Next, we address
the question of the scaling properties of the segments /,(x)
and how these may depend on (k) — (h) and (F ). Given
the clear trends illustrated in Figs. 2(a) and 2(b), we use
DFA-n, which performs local detrending with least-squares
fitting of nth degree polynomials in windows of length s.
The mean squared differences from the trends are com-
puted and averaged over all the windows to obtain the
squared fluctuation function F(s)2. Conventionally, the
scaling exponent a is obtained by a linear fit from a
logarithmic plot of F(s) o s* [23,24]. Therefore, with
DFA-0 the exponents a and { are equal [27]. We perform
a scale-dependent segmentation scheme [25] to obtain
scale-dependent exponents a(s) in short segments of the
height profiles: The fluctuation function is computed in
maximally overlapping windows at scales s, s =1, and
a(s) is obtained by central finite differences from the
logarithmic quantities [25]. To achieve maximal spatial
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FIG. 3. (a),(b) DFA scaling exponents « for different s [legend

in (b)] as a function of (h,)— (h) for DFA-1 and DFA-4,
respectively. (c) Convergence of the a’s for different DFA orders
for s = 1602. (d)—(f) Corresponding data as a function of (Fy ),
with DFA-10 in (e).

locality for our results, we compute the fluctuation func-
tions in segments of length s + 1.

Figures 3(a) and 3(d) show the scaling exponent «
obtained from DFA-1 for various scales s as functions
of (hy) — (h) and (F), respectively. These exhibit para-
boliclike dependencies on (hy) — (h) and (F ), which
however are a consequence of the linear detrending not
being sufficient here given the higher-order trends
revealed in Figs. 2(a) and 2(b). In Figs. 3(b) and 3(e),
the corresponding data are shown as obtained using higher-
order polynomials for detrending [DFA-4 and DFA-10 in
Figs. 3(b) and 3(e), respectively, chosen to represent the
converged results]. To illustrate the convergence of the
results upon increasing the DFA order, Figs. 3(c) and 3(f)
show the a values for a fixed s = 1602 (a “large” example
scale), obtained by using different orders of the detrending
polynomial. In the limit of high DFA order we find a key
result of this Letter, i.e., an approximately linear depend-
ence of a on (h,) — (h) and (F,), with the slope being
negative in Figs. 3(b) and 3(c) (height difference) and
positive in Figs. 3(e) and 3(f) (elastic force), showing how
the broken symmetry due to the external force is manifested
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FIG. 4. Average scaling exponent (), weighted by the number
of occurrences of segments with the different (h,) — (h) values,
for different L (and K) as a function of the scale s, considering
DFA-1 and DFA-2 in (a) and (b), respectively. Dashed lines
indicate the literature value of the roughness exponent ¢ =~ 0.385.

in the scaling properties of the interface segments. Notice
how a higher-order polynomial is needed for detrending of
the segments conditioned on the value of (F; ), consistent
with the nonparabolic profiles in Fig. 2(b). We also note
that for sufficiently large s (approximately for s 2 100),
does not exhibit any clear dependence on s, consistent with
the scale-free nature of fluctuations of i(x) expected at the
depinning threshold. This is directly evident in Fig. 3(b)
where the curves for different s approximately overlap. A
similar conclusion can be reached regarding the data shown
in Fig. 3(e) if one rescales the horizontal axis with the
s-dependent range of (F ;) [not shown; see also Fig. 2(d)].
Thus, we generally find a larger a for negative (h,) — (h)
and positive (F, ), i.e., for segments that are lagging
behind the average interface. This is likely due to the
“stretched” nature of the strongly pinned segments which
are being pulled forward by the combination of F,,, and
(Fels) [see also the dashed lines in Figs. 2(a) and 2(b)],
resulting in stronger correlations (larger ) in such seg-
ments. Analogous results are obtained also for interfaces
with local elasticity (Fig. 2 of Supplemental Material [20])
and for continuous-time dynamics (Fig. 4 of Supplemental
Material).

Finally, we consider the relation of these local, segment-
level exponents a and the global roughness exponent ¢.
To this end, in Fig. 4, we consider the average of the
({(hy) — (h))-dependent DFA scaling exponent (a), weighted
by the number of occurrences of the different (k) — (h)
values in the dataset, which equals the average of a of
segments of a given s. Figures 4(a) and 4(b) show the
resulting {@)’s as a function of the scale s for different system
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sizes (with the K parameter adjusted so that the correlation
length along the interface remains roughly the same fraction
of L for different L), considering DFA-1 and DFA-2,
respectively. In the limit of large s, (@) converges to a value
very close to { ~0.385 (dashed lines in Fig. 4) largely
independently of the DFA order (the increase of (a) for the
very largest s’s is likely due to the K-dependent correlation
length). Thus, the global roughness exponent emerges on
large scales as an average of the local, ((hy) — (h))-depen-
dent scaling exponents.

Conclusions.—To conclude, our results show that F,,
breaks the symmetry of roughness with respect to () of
elastic interfaces in random media at the depinning thresh-
old, suggesting that a single roughness exponent ¢ is not a
full description of their rough morphology, and that the
spectrum of local, segment-level exponents needs to be
considered as well. We emphasize that this result applies
for all ranges of the elastic interactions, and is true already
on the level of individual interface configurations, and
hence this result significantly adds to previous studies
arguing that distributions P(w?) of the interface width are
needed in addition to { to characterize ensembles of rough
interface configurations [28]. Our results might be relevant
for related problems like the scaling properties of aniso-
tropic fracture surfaces [29], and call for experimental
studies of diverse systems ranging from domain walls in
ferromagnetic thin films [30] to planar crack fronts [31].
Finally, an interesting avenue for future work would be to
check if the asymmetry persists in the thermally activated
creep regime governed by the equilibrium roughness
exponent [32].
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