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Edge states in topological phase transitions have been observed in various platforms. To date,
verification of the edge states and the associated topological invariant are mostly studied, and yet a
quantitative measurement of topological phase transitions is still lacking. Here, we show the direct
measurement of edge states and their localization lengths from survival probability. We employ photonic
waveguide arrays to demonstrate the topological phase transitions based on the Su-Schrieffer-Heeger
model. By measuring the survival probability at the lattice boundary, we show that in the long-time limit,
the survival probability is P ¼ ð1 − e−2=ξlocÞ2, where ξloc is the localization length. This length derived from
the survival probability is compared with the distance from the transition point, yielding a critical exponent
of ν ¼ 0.94� 0.04 at the phase boundary. Our experiment provides an alternative route to characterizing
topological phase transitions and extracting their key physical quantities.
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Photonic topological insulators [1–4], in which the edge
states are robust against perturbations and disorders, have
been widely explored in experiments [5–14]. Among them,
one of the simplest topological models in one dimension is
the Su-Schrieffer-Heeger (SSH) model [15,16]; it can be
described by the Dirac equation in the continuous limit. It
has been studied in various systems, including topological
edge states in optical waveguides [17–22], cold atoms
[23–25], quantum dot arrays [26–28], electrical circuits
[29–31], and systems with interacting particles [32–35].
However, the literature usually focused on the verification
of the existence of edge states predicted by the bulk-
boundary correspondence; yet, a full characterization of the
localized edge states and their related dynamics as well as a
quantitative study of topological phase transitions remain to
be experimentally explored.
In the study of topological phases, critical exponents in

the vicinity of the transition points are proposed to
characterize the universality classes of topological phase
transitions [36–38]. For a topological system, the correla-
tion lengths should coincide with their edge-state locali-
zation lengths, which have not yet been experimentally
confirmed. Here, we fabricate photonic waveguide arrays
using a femtosecond laser direct writing technique [39–42]
to realize the SSH model with a chain length of M ¼ 50 or

M ¼ 51. We extract their localization length and critical
exponent from the measured survival probability in these
structures. The major findings are as follows: (I) We
demonstrate two distinct long-time propagation dynamics.
In topologically trivial phases, the wave packet propagates
throughout the space; whereas in topological phases, it
remains at the boundary. (II) The survival probability is a
unique function of the localization length ξloc from which
the localization length can be extracted directly. (III) At the
phase boundary, we extract ξloc ∼ 1=ενg ∝ jdj − d2j−ν with
critical exponent ν ¼ 0.94� 0.04 and energy gap εg. The
relative waveguide separation jd1 − d2j corresponds to the
distance from the transition point (d1 ¼ d2). With these
results, we can determine the phase diagram and the
associated critical boundary from the survival probability.
This new method provides an alternative approach to
characterizing topological phase transitions and extracting
their key physical quantities.
Model and topological edge states.—Our system con-

tains a SSH chain described by [43,44]

H ¼
XN
j¼1

ðt1a†jbj þ H:c:Þ þ
XN−1ðNÞ

j¼1

ðt2b†jajþ1 þ H:c:Þ; ð1Þ
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where a†j ðb†jÞ and aj ðbjÞ are the creation and annihilation
operators of particles at the a (b) sublattices of the jth unit
cell [see Fig. 1(b)], respectively. The dimerized waveguide
arrays with alternating intra- or intercell waveguide sepa-
rations are fabricated using the femtosecond laser direct
writing technique, which has been validated as a promising
tool for quantum simulations in photonic platforms [5,45–
51]. With a beam shaping method realized by a spatial light
modulator [40,52–54], we obtain circular waveguides with
radii of r ¼ 3.5 μm, and the waveguide separation ranges
from 8 to 13 μm, with a modified dielectric constant of
about δn ¼ 1.5 × 10−3, following the theoretical investi-
gation in Ref. [55]. The intra- and intercell hopping
amplitudes are t1 and t2, which are unique functions of
the separations d1 and d2, respectively. These couplings
decay exponentially with the increasing of the separations
di [shown in Fig. 1(c)] [56], and the next-nearest-neighbor-
ing couplings can be neglected. This model is topologically
nontrivial with a winding number of w ¼ 1 for jt1j < jt2j
but topologically trivial with w ¼ 0 for jt1j > jt2j. This can
be extracted with eigenvalues in the momentum space:
ε�ðkÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t21 þ t22 þ 2t1t2 cos½kðd1 þ d2Þ�

p
, and the phase

transition is characterized by the winding of t1 þ
t2eikðd1þd2Þ in the complex plane. Thus, the energy gap
of εg ¼ 2δt, where δt ¼ t2 − t1, leads to the formation of
the edge states at the interface of two topologically distinct
domains [43].

We consider two kinds of structures with M ¼ 50 and
M ¼ 51, as shown in Fig. 1(a). A continuous-wave laser is
coupled into the leftmost or rightmost waveguide. The
wavelength is fixed at 808 nm to ensure the single-mode
state of the optical waveguide, whereas the variation of the
excitation light wavelength changes the coupling coeffi-
cient and the edge band structure, which further affects the
propagation dynamics [18,57]. We obtain the intensity
distribution from the surface scattered light of the wave-
guide arrays at the top of the sample, which ensures
observation of localization of the edge states and wave
propagation dynamics directly [58–60]. The eigenstates
and eigenvalues of the above model in a finite chain are

jϕni ¼
X
i

ϕnijii

and εn, respectively, where ϕni is the nth eigenstate
amplitude in the ith site. The energy spectrum and edge-
state wave function of the Hamiltonian with even- (odd-)
indexed lattice sites are shown in Fig. 1(d), in which the
energy of the states corresponds to the propagation constant
of the optical modes [57]. There are two near-zero-energy
states when the system is topologically nontrivial for the
even-indexed lattice sites, whereas a zero-energy state
always exists for the odd-indexed lattice sites (localized
either on the left or the right ends due to the dimerization).
For an even-indexed chain, the two near-zero-energy
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FIG. 1. (a) Experimental study of propagation dynamics with a single excitation. (b) Scheme of even-indexed (left) and odd-indexed
(right) SSH chains. Each unit cell (red dashed lines) consists of two sublattices with equal sublattice potential, labeled a and b. Intra- and
intercell couplings are t1 and t2, respectively. (c) Relation between coupling constant and waveguide separation of two evanescently
coupled waveguides. (d) Energy spectra of even-indexed (top left,M ¼ 50) and odd-indexed (top right,M ¼ 51) chains; jϕsii, i ¼ 1, 2
(middle): wave functions of two hybridized edge states (t1=t2 ¼ 1=3, M ¼ 50); jϕn0i (bottom): wave function of left (red bar,
t1=t2 ¼ 1=3) or right edge state (blue bar, t1=t2 ¼ 3) for M ¼ 51. (e)–(g) Numerical (left) and experimental (right) results of intensity
distribution along propagation direction. (e) Ballistic transport of light when d1 ¼ d2 ¼ 11 μm. (f) Localization of light when d1=d2 ¼
13=10 μm (topological). (g) Stronger localization when d1=d2 ¼ 13=8 μm. (h) Measured mean survival probability at selected regions
(red rectangles) in Figs. 1(e)–1(g).
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eigenstates are hybridized states, which are superposition
states that are exponentially localized at the left and right
ends of the chain. The energy of the hybridized states is
exponentially small in the system size according to δE ∼
e−M=ξ [44], where M is the chain length and ξ is the
localization length. Due to the small energy splitting
between the two hybridized states, the propagation distance
required for the power to be exchanged between the two
ends is quite long. Therefore, the localization length of the
system can be obtained by measuring the survival prob-
ability at one end, which will be discussed later. In this
model, ξ ¼ 1= ln ðjt2j=jt1jÞ. The left and right edge-state
wave functions can be expressed as

jLi ¼
XN
j¼1

αjjj; ai

and

jRi ¼
XN
j¼1

βjjj; bi;

where jαjj ¼ jα1je−ðj−1Þ=ξ and jβjj ¼ jβN je−ðN−jÞ=ξ denote
the amplitudes in these a and b sublattices, respectively
[44,61]. In the vicinity of the phase boundary, the locali-
zation length is governed by ξ ¼ 1=ενg [37], where ν is the
critical exponent (ν ¼ 1 in theory) and εg is the gap width.
Propagation dynamics.—Because the contribution of the

bulk states at the localized lattice sites is negligible, the edge
states could be experimentally observed by applying a single
excitation at the boundary of the lattice and measuring the
survival probability of these states remaining at the boun-
dary at the long-time limit [32,62–64]. For those topological
systems with multiple edge states or higher topological
invariants, the initial excitations may need to be tailored
accordingly [57,65–67], and the survival probability may
need to be defined at all the localized sites due to the energy
coupling between these edge states. In the trivial phase, the
edge states are absent; thus, the single excitation should
couple to all the bulk states, yielding much more compli-
cated behaviors. We consider the case of a single excitation
at the boundary of the chain with jΨð0Þi ¼ j0i, and

jΨðtÞi ¼
XM−1

j¼0

cjðtÞjji

where cjð0Þ ¼ δ0j. Thewave dynamics is derived by solving
the Schrödinger equation iℏ∂Ψ=∂t ¼ HΨ, whereH is given
in Eq. (1) under the tight-binding approximation. By
assuming that H is time independent, we find

cjðtÞ ¼
X
n

e−iεnt=ℏϕn;0ϕn;j:

This is achieved in our experiments using waveguide
arrays with propagation-independent couplings, which are

described by the coupled-mode equations [68,69]. Thus, the
survival probability at the boundary is given by

P ¼ jc1ðtÞj2 ¼ P0 þ P1ðtÞ; ð2Þ

P0 ¼
XM
n¼1

ϕ4
n;0; P1ðtÞ ¼

XM
i¼1

XM
j¼iþ1

2ϕ2
i;0ϕ

2
j;0 cosðεi − εjÞt:

ð3Þ
Because H is Hermitian, jϕni is a real vector. The survival
probability is decoupled into two different parts, i.e., the
time-independent termP0 and the time-varying termP1. For
the extended modes with nondegenerate eigenvalues, the
second term can be neglected in the long-time limit from the
cancellation between different modes.
The numerical simulations of the propagation dynamics

are shown in Fig. 2. For the odd-indexed chain in Fig. 2(a),
the first term is reduced to P0 ∼ jϕn0;0j4, which is domi-
nated by the contribution of the zero-energy state. The
oscillating term P1ðtÞ can be neglected in the interval of
about z ∼ 10 to 20 mm. In the long-time limit, a finite
oscillation of P1ðtÞ can still be found, which is arising from
the constructive interference of the extended modes and can
be suppressed with the increase of the system size. For the
even-indexed chain in Figs. 2(b)–2(d), we have

P ∼ jϕs1;0j4 þ jϕs2;0j4 þ 2jϕs1;0j2jϕs2;0j2 cosðΔεtÞ
due to the presence of two near-degenerate edge modes,
where the contributions of the two hybridized states in
the P1 term are included; thus, the mean value
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FIG. 2. Survival probability with a single site excitation at the
boundary. (a) Time evolution of odd-indexed chain for t2=t1 ¼
1.2, and P̄ estimated by jϕn0;0j4 when the evolution distance is in
the range of 10 to 20 mm (shaded region). (b)–(d) Evolutions of
even-indexed chain for t2=t1 ¼ f1.2; 4.3; 5.5g; P̄ can be esti-
mated by ðjϕs1;0j2 þ jϕs2;0j2Þ2.
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P̄ ∼ ðjϕs1;0j2 þ jϕs2;0j2Þ2. We find that in the interval of
z ∼ 10 to 20 mm, the oscillating term is negligible, and we
choose the sample length as 20 mm. In the experiments, we
use the mean value over a finite interval to extract the
survival probability; i.e.,

P̄ðTÞ ¼ 1

ΔT

Z
TþΔT

T
PðtÞdt;

with ΔT ¼ 3 mm [see Figs. 1(e)–1(h)]. In that way, we can
also reduce some errors caused by background noise and
image noise. Meanwhile, the interval should not be too long
to involve the unstable region.
Then, we show that the survival probability is a unique

function of the localization length ξ of the edge modes. To
this end, we first consider the odd-indexed chain with

jLn0i ¼ A
XN
j¼0

e−j=ξjj; ai

(A is the normalization constant). We find that
P̄ ∼ jα1j4 ¼ ð1 − e−2=ξÞ2=ð1 − e−2N=ξÞ2. In the long-chain
limit, we have

PðξlocÞ ¼ ð1 − e−ð2=ξlocÞÞ2; ð4Þ

where ξloc is the localization length of the edge state. For
the even-indexed chain, due to the hybridization of the
two edge states jLi and jRi, the eigenstates of the two
near-degenerate modes are approximated as jϕs1;2i ¼
ðe−iθ=2jLi � eiθ=2jRiÞ= ffiffiffi

2
p

with θ ∈ ½0; 2πÞ [44,70]; thus,
P̄ ∼ ðjϕs1;0j2 þ jϕs2;0j2Þ2 ¼ jα1j4, yielding the same expres-
sion in the long-chain limit, and this relation is true with
multiple site excitations involving the localized sites. Thus,
when ξloc is large enough (ξ > 10), we have PðξlocÞ ∝ ξ−2loc,
which is a general result.
Dimerization-dependent localization.—Next, we fabri-

cate 36 even-indexed and 36 odd-indexed waveguide arrays
with different waveguide separations and explore how the
localization is influenced by the dimerization (t2=t1). We
vary the intracell and intercell distances from 8 to 13 μm in
steps of 1 μm. For even-indexed chains, the light is injected
and the survival probabilities are measured at the left end of
the chain [see Fig. 3(a)]. We obtain different degrees of
localization of light at the input site when t1 < t2 (topo-
logical bulk band); however, when t1 > t2 (trivial bulk
band), the edge modes are absent, and the light is diffracted
into all the extended bulk modes, yielding small survival
probabilities. A sharp boundary is clearly shown at
d1 ¼ d2. For the odd-indexed chains, it is worth noting
that the lattice with a trivial bulk band hosts an edge state
localized at the right end [Fig. 1(d)], and the localization
length can be obtained by applying an excitation at the right
end, following the same procedure. Thus, the light is
injected and measured at the left end of the chain when

t1 < t2 and at the right end when t1 > t2 [see Fig. 3(c)], in
which we observe edge modes at the left and right ends,
respectively. As shown in Figs. 3(b) and 3(d), numerical
simulations with a step of 0.5 μm are performed based on
the beam propagation method [71,72] and agree well with
the experimental results. These results demonstrate that the
edge modes of the even-indexed and odd-indexed chains
exhibit totally different behaviors, which can be clearly
distinguished from the measured survival probability. At the
phase boundary with ξloc ∼M, we show that the survival
probability approaches zero.
Survival probability, localization length, and critical

exponent near the phase boundary.—Finally, we inves-
tigate the relation between the survival probability and the
localization length (jt1j < jt2j). We fabricate 10 sets of
even-indexed and odd-indexed waveguide arrays, with
d2 ¼ 8 μm and d1 ranging from 8.5 to 13 μm. The
measured survival probabilities for various configurations
are shown in Fig. 4(a). In Fig. 4(b), we show the relation
between the survival probability and the localization length
derived by 1= ln ðjt2j=jt1jÞ, which agrees excellently with
Eq. (4), both experimentally and numerically. Based on this
analytical expression, we use the measured survival prob-
abilities to determine the corresponding localization
lengths ξexp of our sample, and they are compared with
the numerical and the analytical results using ξthe ¼
1= ln ðjt2j=jt1jÞ [Fig. 4(c)], exhibiting excellent agreement.
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As shown in Fig. 4(d), with the localization length ξloc
extracted from the measured survival probabilities and the
control parameters, in which εg ∝ jd1 − d2j, we have ξloc ∝
ε−νg ∝ jd1 − d2j−ν near the transition point. The fitted
critical exponent of ν ¼ 0.94 agrees excellently with our
theoretical prediction of ν ¼ 1.
Conclusions.—We experimentally demonstrated the

edge state, the localization length, and the critical exponent
from the survival probability. We fabricated photonic
waveguides with various structures and determined the
phase transitions from this approach, which were based on
a relation in which the survival probability is a unique
function of the localization length. Compared with the
conventional end-face imaging, the proposed idea could be
applied in the exploration of critical phenomena near the
phase transition point in complicated unknown systems
[60,73,74], such as topological phase transitions in two-
dimensional models with high topological invariants.
Although direct imaging of the wave propagation for
higher-dimensional models might be a tricky task, we find
that the stray light from out-of-focus planes can be
effectively suppressed with further improvement of our
system using a confocal microscopic system [75].
Furthermore, because the complex refractive index

profiles can be introduced in photonic lattices [76–81],
we anticipate that our findings will facilitate the study of

transport behavior and critical phenomena in non-
Hermitian systems. In such lossy systems, more advanced
imaging techniques might be required to achieve the
desired measurement accuracy. In particular, it would be
quite interesting to extend such methods to study the
dynamics of local Chern markers near the transition point
[82,83], which helps to uncover exotic topological phases.
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