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We show how to simulate a model of many molecules with both strong coupling to many vibrational
modes and collective coupling to a single photon mode. We do this by combining process tensor matrix
product operator methods with a mean-field approximation which reduces the dimension of the problem.
We analyze the steady state of the model under incoherent pumping to determine the dependence of the
polariton lasing threshold on cavity detuning, light-matter coupling strength, and environmental temper-
ature. Moreover, by measuring two-time correlations, we study quadratic fluctuations about the mean field
to calculate the photoluminescence spectrum. Our method enables one to simulate many-body systems
with strong coupling to multiple environments, and to extract both static and dynamical properties.
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The strong coupling between organic matter confined in
a microcavity and light results in new collective modes—
superpositions of molecular excitations and photons known
as exciton polaritons [1]. Under sufficient pumping, these
may condense into a coherent or lasing state, as has now
been demonstrated in a diverse range of organic materials
[2–7] (see Ref. [1] for a review). The rich photophysics of
organic molecules allows for the possibility of room
temperature lasing devices with ultralow thresholds, yet
also makes the task of determining the optimal conditions
for lasing a challenging one. In particular, one must
consider the effect on the dynamics of the vibrational
environment of each molecule [8], which is generally
structured and beyond weak coupling or Markovian treat-
ments [9–17]. To this end there have been studies of
polariton condensation using simplified models with a few
vibrational modes [8,18–27], and also studies involving
exact vibrational spectra for a small number of molecules
[15,16]. However, the real system has both a complex
vibrational density of states and many, e.g., 105, molecules.
Therefore, what is needed is a method capable of handling
large systems with non-Markovian effects. Here we provide
such a method and show the consequences for the descrip-
tion of polariton lasing.
Process tensor matrix product operator (PT-MPO) meth-

ods are a class of numerical methods based upon the
process tensor (PT) description of open quantum system
dynamics [28–34]. The PT captures all possible effects of
the environment on a system. The system Hamiltonian
propagator, or any system operator, then forms a finite set
of interventions that may be contracted with the PTand thus
one can find any system observable or multitime correlation
function. Crucially, the PT can be represented efficiently as
a matrix product operator that only needs to be calculated
once for a given system-bath interaction and set of bath
conditions [31]. While this provides an efficient means to

evolve a system with long memory times, such methods
have so far been limited to systems of small Hilbert space
dimension.
In this Letter we present a mean-field approach to reduce

an N-body problem to one that can be handled by PT-MPO
methods without further approximation. This approach
does not require expressions for the system eigenstates
and energies, and allows for genuine non-Markovian
dynamics of many-body systems. As we will discuss,
mean-field theory consists of the ansatz that there are no
correlations between certain parts of the system. Here we
employ this approach to accurately treat the vibrational
environments of a many-molecule–cavity system. In par-
ticular, we develop a realistic model of an organic laser
based on BODIPY-Br [Figs. 1(a) and 1(b)], an organic
molecule which has shown polariton lasing [5,7]. We find
results that differ significantly from those obtained in the
model where the vibrational environments cause simple
dephasing—a model that cannot account for lasing in the
presence of strong light-matter coupling. We determine
how modifying the light-matter coupling and environmen-
tal temperature of our model changes the lasing threshold,
and calculate the observed photoluminescence.
We model N identical molecules as a collection of two-

level systems (Pauli matrices σαi ) interacting with a single
near-resonant cavity mode (bosonic operator a) according
to the Dicke Hamiltonian under the rotating-wave approxi-
mation. Setting ℏ ¼ 1, the system Hamiltonian is

HS ¼ ωca†aþ
XN
i¼1

�
ω0

2
σzi þ

Ω
2

ffiffiffiffi
N

p ðaσþi þ a†σ−i Þ
�

ð1Þ

where ω0 and ωc are the two-level system and cavity
frequencies, and σþi (σ−i ) the raising (lowering) operator
for the ith spin. The collective coupling Ω controls the
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light-matter interaction such that the bright eigenstates of
HS, i.e., the polaritons, are split as �Ω=2 at resonance.
The Hamiltonian Eq. (1) may be referred to as the Tavis-

Cummings model. Its extension to include a single vibra-
tional mode, the Holstein-Tavis-Cummings model, has
frequently been used to describe cavity bound organic
emitters [18,19,21–23,25–27]. We instead consider the
interaction of each two-level system with a continuum of
modes represented by the harmonic environment

HðiÞ
E ¼

X
j

�
νjb

†
jbj þ

ξj
2
ðbj þ b†jÞσzi

�
; ð2Þ

where bj is the annihilation operator for the jth mode of
frequency νj. The system-environment coupling is charac-
terized by a spectral density JðνÞ ¼ P

jðξj=2Þ2δðν − νjÞ,
taken to be Ohmic in the form

JðνÞ ¼ 2ανe−ðν=νcÞ2 ; ν > 0; ð3Þ

where α and νc are chosen to reproduce the leading
structure of the absorption spectrum of BODIPY-Br at T ¼
300 K [Fig. 1(b)]. This effectively captures the low
frequency modes arising from the host matrix of the
molecule. The realistic picture of vibrational dephasing

it affords is the most significant advancement of our Letter.
In the limit that the system-environment coupling is weak
one might look to derive a Redfield theory [35]. However,
as we discuss in the Supplemental Material [36], this is
difficult in the presence of strong light-matter coupling.
Finally we consider incoherent pump Γ↑ and dissipation

Γ↓ of the two-level systems as well as field decay κ. Since
these are associated with baths at optical frequencies (e.g.,
1015 Hz) they may be well approximated [35] by
Markovian terms in the master equation for the total
density operator ρ,

∂tρ ¼ −i
�
HS þ

XN
i¼1

HðiÞ
E ; ρ

�
þ 2κL½a�

þ
XN
i¼1

ðΓ↑L½σþi � þ Γ↓L½σ−i �Þ; ð4Þ

with L½x� ¼ xρx† − fx†x; ρg=2. If HðiÞ
E is absent one

recovers the Tavis-Cummings model with pumping
and decay which, as we discuss below, requires inversion
Γ↑ > Γ↓ to show lasing. Below we fix Γ↓ and κ and
observe the transition of the system from a normal state,
where the expectation hai of the photon operator vanishes,
to a lasing state, where hai is nonzero and time dependent,
as Γ↑ is increased from zero.
Simulating dynamics in the presence of strong coupling

to a structured environment is a computationally intense
task and as such PT-MPO methods cannot be used to solve
for a large number of open systems simultaneously. Our
strategy is to use mean-field theory to reduce the N-
molecule–cavity system to a single molecule interacting
with a coherent field [Figs. 1(c) and 1(d)].
According to mean-field theory, we assume a product

state for the many-body density operator ρ, i.e., a factori-
zation between the photon and individual molecules, an
ansatz known [61,62] to be exact as N → ∞. This reduces
the problem to the coupled dynamics of the molecular
mean-field Hamiltonian

HMF ¼
ω0

2
σz þ Ω

2
ffiffiffiffi
N

p ðhaiσþ þ hai�σ−Þ; ð5Þ

combined with evolution of the field expectation

∂thai ¼ −ðiωc þ κÞhai − i
Ω

ffiffiffiffi
N

p

2
hσ−i: ð6Þ

Here hσ−i (no subscript) is the average of any one of the
identical spins. Thus, by propagating a single spin with
HMF and subject to the vibrational environment and
individual losses described above, we can effectively
simulate the N-molecule system using a PT-MPO method
provided that at each time step we also evolve hai

FIG. 1. (a) Our system: a molecular ensemble in an optical
microcavity. Each molecule is modeled as a driven-dissipative
two-level system with a diagonal coupling to a harmonic
environment. The spectral density JðνÞ of the environment is
chosen to match (b) absorption data [5] for BODIPY-Br at 300 K
(black crosses: experimental data, blue curve: model spectrum,
orange line: ω0 ¼ 2310 meV). For the Ohmic form Eq. (3) with
dissipation Γ↓ ¼ 10 meV we obtained α ¼ 0.25 and νc ¼
150 meV (ℏ ¼ 1). (c) Schematic of the many-body open system
before and (d) after the mean-field reduction. (e) Tensor network
for the PT-MPO method with the concurrent dynamics of the
cavity field. The PT (red) is constructed independently of the
system propagators (orange) and initial state (gray), allowing
the dynamics for many different system Hamiltonians to be
calculated at relatively little cost.
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according to Eq. (6) [Fig. 1(d)]. In Ref. [36] we discuss the
derivation of Eqs. (5) and (6) further as well as the role of
“bright” and “dark” excitonic states [8,23,24,63–65] in
mean-field theory.
To calculate the dynamics we use the PT-MPO

provided by the time evolving MPO (TEMPO) method
[28,31,66,67]. Notable to our problem is that the system
propagators depend on the field hai, which depends self-
consistently on the state of the system. A second-order
Runge-Kutta method is used to integrate the field from tn to
tnþ1 whence it may be used in the construction of the
system propagator for the next time step. Further imple-
mentation details are provided in Ref. [36]. Importantly the
construction of the PT capturing the influence of the bath,
which is the costly part of the calculation, only needs to
performed once for a given spectral density Eq. (3) and bath
temperature T. It can then be reused with many different
system Hamiltonians or parameters. This is particularly
advantageous when one wishes to vary one or more system
parameters to map out a phase diagram.
Figure 2(a) shows time evolution simulations at Ω ¼

200 meV and a small negative detuning Δ ¼ ωc − ω0 ¼
−20 meV. For each run the bath was prepared in a thermal
state at T ¼ 300 K and the spin pointing down, with a

small initial field to avoid the trivial fixed point of Eqs. (5)
and (6). The dynamics were generated up to a time
tf ¼ 1.3 ps and the final value haif recorded. This gave
the steady-state field except near the phase boundary
where, due to the critical slowing down associated with
a second-order transition, hai was still changing at tf. To
accommodate this, an exponential fit was made to the late
time dynamics yielding an estimate of the steady-state
value indicated by filled circles in Fig. 2(b). Where this was
not possible (i.e., the fitting failed), the final value of the
field is marked with a cross and the attempted fit with an
open circle. An automated procedure [36] was used to
assess fit validity and any point with an invalid fit was not
used in subsequent calculations.
Having obtained the steady-state field for a number of

pump strengths encompassing the transition [Fig. 2(b)], a
second fitting was performed to extract the threshold pump
Γc at each detuning. This was repeated for different light-
matter coupling strengths and temperatures to produce the
phase diagrams Figs. 2(c) and 2(d).
In Fig. 2(c), we study the evolution of the threshold Γc as

the coupling Ω increases. At the smallest coupling
considered, Ω ¼ 100 meV, the threshold is high and for
Γ↑ ≤ Γ↓ there is only a small window of detunings for
which lasing is supported—i.e., the photon frequency
coincides with a region of net gain in the spectrum [69].
This curve may be compared with the prediction of weak
light-matter coupling theory [36] shown with a gray dashed
line. The disagreement here, most apparent nearer zero
detuning, reflects the fact that Ω ¼ 100 meV is already
beyond weak light-matter coupling.
We note the observed behavior cannot be described by a

weak system-bath coupling model in which the coupling to
the bath is replaced by Markovian (temperature dependent)
dephasing. Indeed, such a model requires Γ↑ > Γ↓ for
lasing and predicts a phase diagram that is symmetric about
Δ ¼ 0 [36]. The same is true for models that completely
neglect the effect of vibrational modes [70]. The existence
of lasing for Γ↑ < Γ↓ within our model is a consequence of
the vibrational bath. The detuning for minimum threshold
evolves with Ω and is not simply set by the peak of the
molecular emission spectrum; this is due to reabsorption of
cavity light playing a role for the parameters we con-
sider [71].
As the light-matter coupling increases, faster emission

into the cavity mode sees the threshold reduce before
eventually saturating. The threshold becomes less depen-
dent on detuning as lasing is now dictated by whether the
frequency of the lower polariton formed coincides with a
region of gain in the spectrum, and this occurs for a larger
range of cavity frequencies. Similar observations were
made in models with sharp vibrational resonances [26].
In that work reentrance under Γ↑ was seen—behavior
absent here because of the broader molecular spectrum we
consider.

(a)

(c) (d)

(b)

FIG. 2. Determining the threshold of an organic laser. (a) Ex-
ample dynamics of the scaled photon number n=N ¼ jhaij2=N
below (Γ↑ ¼ 0.2Γ↓) and above (Γ↑ ≥ 0.4Γ↓) the lasing transition
at Ω ¼ 200 meV, T ¼ 300 K, and Δ ¼ ωc − ω0 ¼ −20 meV
(note n scales withN above threshold [68]). The losses were fixed
at κ ¼ Γ↓ ¼ 10 meV. Initial conditions: the system was prepared
in a σz-down state with n0=N ¼ 0.05 and the bath in a thermal
state. Computational parameters and convergence information are
provided in Ref. [36]. (b) Steady-state photon number with pump
strength at Ω ¼ 200 meV, T ¼ 300 K for several different
detunings (closed circle: steady-state value obtained from a valid
fit of late time behavior, open circle: invalid fit, cross: final value).
Fitting a curve to the data at each detuning provided an estimate
of the threshold Γc. This was repeated for different Ω and T to
produce (c) and (d), respectively. The result of a weak-coupling
calculation [36] for Ω ¼ 100 meV is included in (c) as a dashed
gray line.
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A key question in the study of organic polaritons is to
what extent thermalization occurs, and thus how temper-
ature affects the threshold [1,71]. Motivated by this and the
range of temperatures accessible in organic polariton
experiments we examine the dependence of threshold on
environmental temperature T at fixed Ω ¼ 200 meV.
Changing T shifts, and increases the width of, the molecu-
lar spectrum. The result for the phase diagram, shown in
Fig. 2(d), is a suppression of lasing with increasing T, most
significantly for positive detunings where the lower polar-
iton is more excitonic. This temperature dependence is one
aspect of the phase diagram that cannot generally be
captured by simplified models with a few vibrational
modes, as we demonstrate in Ref. [36].
We next study quadratic fluctuations about the mean

field, as described by two-time correlations and their
Fourier transforms. Specifically we calculate the spectral
weight and the photoluminescence (PL) spectrum, the latter
of which is the actual measured observable in all polariton
experiments [1]. Multitime correlations are naturally acces-
sible within the PT-MPO framework, allowing us to
calculate absorption and emission spectra without recourse
to the quantum regression theorem.
We use that the retarded DR and Keldysh DK photon

Green’s functions may be written in terms of the exciton
self-energies [65,72]

Σ−þðωÞ ¼ iΩ2

4

Z
∞

0

dteiωth½σ−ðtÞ; σþð0Þ�i; ð7Þ

Σ−−ðωÞ ¼ iΩ2

4

Z
∞

−∞
dteiωthfσ−ðtÞ; σþð0Þgi: ð8Þ

The photon Green’s functions then take the form

DRðωÞ ¼ 1

ω − ωc þ iκ þ Σ−þðωÞ ; ð9Þ

DKðωÞ ¼ −
Σ−−ðωÞ þ 2iκ

jω − ωc þ iκ þ Σ−þðωÞj2 : ð10Þ

Hence, by calculating the correlators hσ−ðtÞσþð0Þi and
hσþðtÞσ−ð0Þi using the PT-MPO approach, we can find the
Green’s functions DR and DK which fully characterize the
spectrum of the nonequilibrium system.
Thus far we have considered a model with a single

photon mode for which mean-field theory is exact as
N → ∞. However, it is straightforward to extend our
analysis to include multiple photon modes, where the
mean field can still provide a good approximation [36].
Hence we consider the model with cavity mode termP

k ωc;ka
†
kak, where ωc;k ¼ ωc þ k2=2mph (recall ℏ ¼ 1),

and light-matter interaction
P

kΩa
†
ke

ik·rnσ−i þ H:c: As
discussed in Ref. [36], the mean-field steady-state

equations remain similar and one now has access to the
photon Green’s functions DR

k ðωÞ, DK
k ðωÞ of the multi-

mode model.
We first consider the system without pumping (Γ↑ ¼ 0)

and the spectral weight [73]

ϱkðωÞ ¼ −2ImDR
k ðωÞ: ð11Þ

As the system is in the normal state, hσþðtÞσ−ð0Þi≡ 0,
while an exact expression for the other correlator may be
found [71] as hσ−ðtÞσþð0Þi ¼ e−iω0t−ϕðtÞ−ðΓ↓=2Þt where

ϕðtÞ ¼
Z

∞

−∞
dω

JðωÞ
ω2

�
2 coth

�
ω

2T

�
sin2

�
ωt
2

�
þ i sinðωtÞ

�
:

ð12Þ

This provides a benchmark of our numerics: Figure 3(a)
shows excellent agreement between the spectral weight
derived from the analytical result Eq. (12) and that from
measurement of the correlator using the PT-MPOmethod at
k ¼ 0. Figure 3(b) then illustrates the k dependence of the
spectrum for Ω ¼ 200 meV.
When the system is pumped, i.e., Γ↑ ≠ 0, no analytical

results are available and it is necessary to determine both

FIG. 3. (a) Spectral weight, Eq. (11), at k ¼ 0 when Γ↑ ¼ 0. At
each light-matter coupling, results from the analytic self-energy
are shown as a dotted line, and results from PT-MPO as a solid
line. (b) k-dependent spectral weight for Ω ¼ 200 meV. The bare
molecular energy ω0 is shown in orange and the photon
dispersion ωc;k in red (the photon mass mph was set to
ωc=c2). (c) Photoluminescence, Eq. (13), at k ¼ 0 on a loga-
rithmic scale for four different pump strengths at Ω ¼ 200 meV.
Above threshold the spin-spin correlators have a nonzero long
time value giving a delta singularity, i.e., lasing peak in the
spectrum, indicated here as a vertical line. Additional cross
sections at smaller and larger Ω are provided in Ref. [36].
(d) k-dependent photoluminescence below threshold at Ω ¼
200 meV and Γ↑ ¼ 0.1Γ↓ with red and orange lines as in (b).
All panels were produced atΔ ¼ −20 meV and T ¼ 300 K, with
losses κ ¼ Γ↓ ¼ 10 meV.

PHYSICAL REVIEW LETTERS 129, 173001 (2022)

173001-4



the spectrum and its occupation numerically. Here we
calculate the photoluminescence [72],

LkðωÞ ¼
i
2
ðDK

k ðωÞ −DR
k ðωÞ þ ½DR

k ðωÞ��Þ: ð13Þ

Figure 3(c) shows Lk¼0ðωÞ at fixed detuning Δ ¼
−20 meV and Ω ¼ 200 meV for four different pump
strengths. At the weakest pump strength, Γ↑ ¼ 0.1Γ↓,
the system is below threshold yet LkðωÞ does not vanish
since, in contrast to the mean-field calculation of the
steady-state photon number, the photoluminescence con-
tains an incoherent part. Plotting the k dependence of the
spectrum in this case [Fig. 3(d)] makes clear this arises
from the lower polariton.
At higher pump strengths, Γ↑ ¼ 0.3; 0.6; 1.2Γ↓ in

Fig. 3(c), the system is above threshold, with the coherent
lasing contribution indicated by a delta peak superimposed
on the spectrum. In particular, for Γ↑ ¼ 0.3Γ↓ and 0.6Γ↓,
the lasing frequency occurs noticeably to the right of the
peak luminescence: the conditions to maximize Lk, which
depends on both the density of states and their populations,
do not, in general, coincide with the point at which
the lasing instability develops. We explore this further in
Ref. [36] by examining the real and imaginary parts
of the inverse Green’s functions as the transition is
approached.
In conclusion, we have developed a technique for

calculating the non-Markovian dynamics of a many-body
open system using mean-field theory and PT-MPO meth-
ods. We applied this technique to model the polariton lasing
of an organic dye in a microcavity including many
molecules with realistic vibrational spectra. This provided
the steady state of the driven-dissipative system and, via the
measurement of two-time correlations, its spectrum. We
first determined the dependence of the threshold for lasing
on cavity detuning under different light-matter coupling
strengths and environmental temperatures. Second, we
observed how the photoluminescence and lasing frequency
of the model evolved with pump strength. For the case of a
one-to-all interaction between the cavity and molecules, the
mean-field treatment is exact as N → ∞ [61,62]. The same
applies to all-to-all networks of open systems [36,62]. More
generally, there are situations where mean-field theory is
not exact but offers a good approximation, including
models of polariton condensation with multiple modes
such as considered in Refs. [27,36,75].

The research data supporting this publication can be
accessed at [79]
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[1] J. Keeling and S. Kéna-Cohen, Bose-Einstein condensation
of exciton-polaritons in organic microcavities, Annu. Rev.
Phys. Chem. 71, 435 (2020).
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