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Minimal massive gravity in three dimensions propagates a single massive spin-2 mode around an anti–de
Sitter vacuum. It is distinguished by allowing for vacua with positive central charges of the asymptotic
conformal algebra and a bulk graviton of positive energy. We present a new action for the model (and its
higher order extensions) in terms of a dreibein and an independent spin connection. From this, we construct
its supersymmetric extension. Surprisingly, all vacua complying with bulk and boundary unitarity appear to
break supersymmetry spontaneously. In contrast, all supersymmetric vacua have a negative central charge
whenever the bulk graviton has positive energy.
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Three-dimensional (3D) gravity has long been estab-
lished as a distinguished testing ground in order to develop,
examine, and challenge fundamental issues of quantum
gravity, black hole physics, and holography, building on the
seminal works [1–5]. In what is now understood as a
precursor of the anti–de Sitter/conformal field theory (AdS/
CFT) correspondence, Brown and Henneaux discovered
that Einstein gravity on a 3D AdS space has an infinite-
dimensional asymptotic symmetry algebra forming two
copies of the Virasoro algebra with nonvanishing central
charges [3]. This observation has been at the origin of
fundamental precision computations [6,7] of the entropy of
the Bañados-Teitelboim-Zanelli black hole [8], obtained as
a discrete quotient of 3D AdS.
Over the years, various 3D gravitational models have

been constructed featuring massive spin-2 excitations
around Minkowski and AdS spaces, including in particular
topologically massive gravity (TMG) [9], new massive
gravity [10], minimal massive gravity (MMG) [11], and
higher order extensions thereof, such as the exotic massive
gravity [12].
In this Letter, we will focus on the MMG model (and its

higher order extensions). This model propagates a single
massive spin-2 mode around an AdS background, and is

distinguished by the fact that its parameter space allows for
a region in which the massive spin-2 mode is neither ghost
nor tachyonic, while maintaining both Brown-Henneaux
central charges positive. In this sense, MMG evades the
bulk-boundary unitarity clash from which most other 3D
massive gravity models suffer, elevating the model to a
viable holographic dual of a putative unitary 2D CFT.
To date, none of the 3D bosonic models complying with

bulk and boundary unitarity [11,13] have been embedded
into a supersymmetric theory, despite the fact that super-
symmetry typically provides an invaluable set of tools to
establish and corroborate consistent holographic scenarios.
The construction of a supersymmetric extension of MMG is
one of the main results of this Letter and gives rise to some
surprising observations regarding its vacuum structure,
notably an apparent clash between unbroken supersym-
metry and unitarity for its AdS vacua.
MMG is defined as a deformation of TMG by terms

quadratic in the Riemann tensor according to

1

μ
Cμν þ σ̄Gμν þ Λ̄0gμν ¼

γ

2μ2
ϵμκλϵνστSκσSλτ: ð1Þ

Here, Gμν is the Einstein tensor associated with the metric
gμν, Sμν is the associated Schouten tensor, and Cμν is its
Cotton tensor

Gμν ¼ Rμν −
1

2
gμν R; Sμν ¼ Rμν −

1

4
gμν R;

Cμν ¼ ϵμρσ∇ρSσν: ð2Þ

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW LETTERS 129, 171601 (2022)

0031-9007=22=129(17)=171601(7) 171601-1 Published by the American Physical Society

https://orcid.org/0000-0002-6612-655X
https://orcid.org/0000-0003-2896-4031
https://orcid.org/0000-0003-3569-4893
https://orcid.org/0000-0002-4848-7773
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.129.171601&domain=pdf&date_stamp=2022-10-18
https://doi.org/10.1103/PhysRevLett.129.171601
https://doi.org/10.1103/PhysRevLett.129.171601
https://doi.org/10.1103/PhysRevLett.129.171601
https://doi.org/10.1103/PhysRevLett.129.171601
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


In the limit γ → 0, Eqs. (1) reduce to those of TMG. The
MMG equations (1) cannot be derived from a standard
action principle of the metric alone. In particular, the fact
that the right-hand side has zero divergence (as required for
consistency) is not automatic, but follows on-shell from
iterating Eq. (1) itself—a mechanism dubbed “third way
consistency” in [11]. On the other hand, in [11] Eqs. (1)
could be derived by variation of a first order Lagrangian
with auxiliary fields, in the region of parameter space
where [14]

μ2ð1þ γσ̄Þ2 > γ3Λ̄0: ð3Þ

The absence of a standard action functional has among
other things hampered the construction of the supersym-
metric extension of (1). As a main result of this Letter, we
will employ a new action for MMG (and higher order
extensions thereof), in order to construct the supersym-
metric extension of (1). As it turns out, the extension is
not unique, and for a given set of coupling constants
fγ; μ; σ̄; Λ̄0g we find (up to four) different supersymmetric
extensions of the model. The underlying supersymmetric
structures provide additional tools for the vacuum analysis
of the model.
As a starting point, we consider the following class of

actions, depending on a dreibein eaμ and an independent
(torsionful) spin connection ϖa

μ as

L½e;ϖ� ¼ L0½e� þ τεμνρeaμD½ϖ�νeρa
þ κεμνρ

�
ϖa

μ∂νϖρa þ
1

3
εabcϖ

a
μϖ

b
νϖ

c
ρ

�
; ð4Þ

with local Lorentz indices a; b;… (for our conventions see
Ref. [15]). To begin with, L0½e� is an arbitrary gravitational
Lagrangian, depending only on the dreibein eaμ. The
constants τ and κ denote the coupling constants of the
torsion and the Chern-Simons term for ϖ, respectively.
Variation of the Lagrangian (4) with respect to the con-
nection ϖ yields an equation for its curvature

R½ϖ�μν;a ¼ −
τ

κ
εabcebμecν: ð5Þ

Variation of (4) with respect to the dreibein eaμ on the
other hand determines the torsion T½ϖ�μν;a of the con-
nection ϖ by

0 ¼ 2Gμ
a þ τϵμνρT½ϖ�νρ;a; ð6Þ

where Gμ
a is defined as

δL0 ¼
ffiffiffiffiffiffi
−g

p
Gμ
aδeaμ: ð7Þ

Diffeomorphism and Lorentz symmetry imply that the
tensor Gμν ≡ Ga

μeaν is symmetric and divergence free

Gμν ¼ Gνμ; ∇μGμν ¼ 0: ð8Þ

The contorsion of the connection ϖ is defined as

K½ϖ�aμ ¼ ϖa
μ − ωa

μ

¼ 1

2
ϵρστ

�
ebμeaρ −

1

2
eaμebρ

�
T½ϖ�στ;b; ð9Þ

in terms of the torsionless Levi-Civita connection ωa
μ. The

field equations (6) can then be rewritten as

K½ϖ�aμ ¼ −
1

τ

�
Ga
μ −

1

2
eaμG

�
≡ −

1

τ
Sa
μ; ð10Þ

where G≡ Ga
μe

μ
a. Finally, using the general relation

between curvature and contorsion

R½ϖ�aμν ¼ R½ω�aμν þ 2D½ω�½μK½ϖ�aν�
þ εabcK½ϖ�μbK½ϖ�νc; ð11Þ

and combining this with (5) and (10), yields the equation

ϵμστ∇σSτ
ν − τGμν þ

τ2

κ
gμν ¼

1

2τ
ϵμστϵνκλSσκSτλ; ð12Þ

exclusively formulated in terms of the dreibein, with Sμν

defined via (10), (7). Just as in (1), these equations are “third-
way consistent” in that the vanishing of the divergence of the
right-hand side follows from iterating Eq. (12) itself
[together with the relations (8)]. A key feature of this
construction is that the final equations (12) do not arise
directly among the Euler-Lagrange equations, but only after
combination with the integrability conditions (11) [16].
Let us also point out that consistent matter couplings to

(12) are straightforwardly implemented in the Lagrangian
(4) by

L0½e� → L0½e� þ Lmatter½e;…�;
⇒ Gμν → Gμν þ Tμν; ð13Þ

with the standard (covariantly conserved) energy-
momentum tensor Tμν, reproducing the (on-shell) results
of [12,17].
In the following, we specialize to MMG, by setting

L0½e� ¼
1

G3

εμνρeaμRνρ;a þ λεμνρεabceaμebνecρ; ð14Þ

where for simplicity we will set the gravitational constant
G3 ¼ 1. The resulting Eqs. (12) then reproduce (1), with
the (bijective up to rescaling) translation of parameters
according to
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μ

γ
¼ τ; μΛ̄0 ¼

9λ2

4τ
þ τ2

κ
; μσ̄ ¼ −τ −

3λ

2τ
: ð15Þ

Equivalently, (14) can be replaced by the first order Palatini
Lagrangian in terms of an independent connection ω,

L0½e;ω� ¼ εμνρðeaμR½ω�νρ;a þ λεabceaμebνecρÞ; ð16Þ

such that the final Lagrangian (4) is given by the sum of the
so-called “standard” and the “exotic” action of 2þ 1
gravity [5], however with both actions carrying different
spin connections ω, and ϖ, respectively [18]. In this first
order formulation, and after redefinition

ωa
μ ¼ Ωa

μ þ αhaμ; ϖa
μ ¼ Ωa

μ þ
ffiffiffiffiffiffiffiffi
−κτ

p
κ

eaμ; ð17Þ

the Lagrangian (4), written as L½e;Ω; h�, reproduces the
first-order Lagrangian of [11]. The condition κτ < 0
precisely defines the region in parameter space (3) in
which the Lagrangian of [11] exists.
We will now use the Lagrangian (4), (14) in its second

order form as a starting point for the construction of
supersymmetric extensions of the model. Separate super-
symmetrization of the two parts of (4) is known in terms of
super–Chern-Simons theories, with in particular (14)
admitting a general N ¼ ðp; qÞ supersymmetric extension
]4 ]. Again, the nontrivial structure here arises since both
parts of (4) share the same dreibein eaμ while carrying
independent spin connections ω, and ϖ. For simplicity,
we will only attempt to impose minimal [N ¼ ð1; 0Þ]
supersymmetry.
Our ansatz for the fermionic sector of the model carries

two gravitino fields, ψμ and χμ, sharing only one local
supersymmetry, with spinor parameter ϵ. Reminiscent of
the first order formulation of TMG [19,20], this allows the
first order fermionic Lagrangian [expected for the super-
symmetrization of (4), (14)] to consistently accommodate a
massive spin-3=2 mode as a superpartner to the massive
spin-2 mode. Indeed, this turns out to be the correct
structure. Leaving the technical details for [21], let us only
spell out the result. To quadratic order in the fermions, their
Lagrangian is given by

Lferm ¼ 1

ζ2
εμνρ½ð1þ ζÞψ̄μ þ χ̄μ�D½ω�ν½ð1 − ζÞψρ þ χρ�

þ 1

2ζ2
εμνρK½ϖ�aνðψ̄μ þ χ̄μÞγaðψρ þ χρÞ

− τεμνρψ̄μγνχρ þ
1

2
τεμνρχ̄μγνχρ

þ 1

4

�
ðζ2 − 2Þτ þ 1

ζ2κ

�
εμνρψ̄μγνψρ; ð18Þ

with the couplings determined as functions of a new
parameter ζ. The full Lagrangian can be shown to be

invariant under the supersymmetry transformations (also
given to lowest order in the fermions)

δeaμ ¼
1

2
ψ̄μγ

aϵ;

δϖa
μ ¼ −

1

2ζ2κ
ðψ̄μ þ χ̄μÞγaϵ −

1

2
D½ϖ�μðχ̄νϵeνaÞ;

δψμ ¼ D½ω�μϵ −
1

4

�
ζ2τ þ 1

ζ2κ

�
γμϵ;

δχμ ¼
1

2
K½ϖ�aμγaϵ −

1

4

�
ζ2τ −

1

ζ2κ

�
γμϵ; ð19Þ

up to quartic terms in the fermions, which can be removed
by higher order fermion contributions to the Lagrangian
and transformation rules [22]. Details will appear else-
where [21].
The final result is thus given by the sum of the bosonic

Lagrangian (4), (14) and the fermionic Lagrangian (18).
Supersymmetry requires the following relation

λ ¼ 1þ ζ2κτ½2ζ2 þ ðζ2 − 4Þζ4κτ þ 4�
12ζ4κ2

; ð20Þ

between the parameter ζ parametrizing the fermionic
couplings, and the coupling constants fλ; κ; τg of the
bosonic model (4), (14). Supersymmetrizability of the
MMG model thus translates into the existence of real roots
(for ζ) of (20). A necessary and sufficient set of conditions
for the existence of such real roots is

ðiÞ 3λ

τ2
− 1

κτ
þ 1 ≥ 0;

ðiiÞ either κτ ≥ −1 or
3λ

τ2
≥ − 2ffiffiffiffiffiffiffiffi−κτp : ð21Þ

There are in general up to eight real roots (pairwise related
by the flip ζ → −ζ). While this may appear to place strong
constraints on the model, remarkably our analysis below
reveals that every MMG model (1) admitting an AdS
vacuum also admits a supersymmetric extension.
The bosonic MMG equations (1) are obtained from the

second order Lagrangian (4), (14), after elimination of the
connection ϖ by its field equations. We can now carry out
the analog construction in the fermionic sector. The
fermionic field equations, obtained from variation of (18)

D½ω�½μψν� ¼
1

4

�
ζ2τ þ 1

ζ2κ

�
γ½μψν� − τγ½μχν�; ð22Þ

can be solved algebraically for χμ. Plugging this solution
back into the remaining fermionic field equations, we find
after some computation (still to lowest order in fermions)
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τCρ ¼ 1

8
νð2Þνð−2ÞRρ −

1

4
νð0ÞϵμνργσψνSσμ

−
1

32
νð0Þνð2Þνð−2Þϵμνργμψν −

1

2
RμGρ

μ

−
1

2
ϵρμνγσRμGνσ −

1

2
ϵρμνγμRσGνσ; ð23Þ

where we have introduced the gravitino curvature

Rμ ¼ ϵμνρD½ω�νψρ; ð24Þ

and the “Cottino vector spinor” [23]

Cμ ¼ γργμνD½ω�νRρ − ϵμνρSρσγσψν; ð25Þ

and moreover defined the functions

νðnÞ≡ ðζ þ nÞ2τ þ 1

ζ2κ
: ð26Þ

We thus obtain the second-order fermionic field equation,
entirely expressed in terms of the dreibein eaμ and the
gravitino ψμ. Equation (23) constitutes the “superpartner”
to the bosonic MMG equations (1). In the process, the latter
receive additional source terms bilinear in the fermions. In
order not to spoil consistency of the field equations (1),
these source terms have to satisfy certain consistency
conditions which in turn are implied by (23). Details will
appear in [21].
Let us also note that in the TMG limit, where the right-

hand side of (1) vanishes, Eq. (23) reduces to

Cρ ¼ −2μσ̄Rρ −
μσ̄ffiffiffiffiffiffiffiffiffi
−Λ̄0

p γρνψν: ð27Þ

This is precisely the super-TMG equation from [23] (where
σ̄ ¼ 1 was assumed).
Let us now explore the landscape of (A)dS vacua of

the super-MMG model and in particular localize the
bulk-boundary unitary AdS vacua discovered in [11].
The bosonic MMG equations (1) admit maximally sym-
metric vacua Gμν ¼ −Λgμν, provided that

μ2σ̄2 ≥ γΛ̄0: ð28Þ

With the translation of parameters (15), this turns out to
precisely coincide with the first condition in (21). The
cosmological constants are given by

Λ�¼−τ2
�
ð1�ΓÞ2þ 1

κτ

�
; Γ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3λ

τ2
−
1

κτ
þ1

r
: ð29Þ

As a consequence, every supersymmetrizable MMG
model admits maximally symmetric vacua. Evaluating the

super-MMG field equations (1) with (15) and (20), we
obtain the values of their cosmological constants as

Λsusy ¼ −
ð1þ ζ4κτÞ2

4ζ4κ2
≡ −

1

l2
;

Λns ¼ −
1þ ζ2κτ½8þ 2ζ2 þ ζ2ðζ2 − 4Þ2κτ�

4ζ4κ2
: ð30Þ

The first vacuum in (30) is AdS (or Minkowski) and
preserves part of the supersymmetry with the Killing spinor
defined by

D½ω�μϵ −
1

2l
γμϵ ¼ 0: ð31Þ

From (19), it then follows that δψμ ¼ 0 is satisfied as usual
for AdS, whereas δχμ ¼ 0 holds identically, as a conse-
quence of (10). On the other hand, for the nonsupersym-
metric vacuum Λns in (30), the Killing spinor equations for
ψμ and χμ (19) cannot be solved simultaneously.
Linearizing and diagonalizing the bosonic Lagrangian

around the supersymmetric AdS vacuum Λsusy (with ẽaμ as
background dreibein) yields

Llin ¼ εμνραþf
ðþÞ
μ

að∂νfðþÞ
ρ;a − l−1εabcf

ðþÞ
ν

bẽcρÞ
þ εμνρα−f

ð−Þ
μ

að∂νfð−Þρ;a þ l−1εabcf
ð−Þ
ν

bẽcρÞ
− εμνρα0pa

μð∂νpρ;a þMεabcpb
ν ẽcρÞ; ð32Þ

exhibiting two massless and one massive spin-2 mode, fð�Þ
and p, respectively, with coefficients factorizing in terms of
ζ in an intriguing pattern as

αþ ¼ κð1 − ζ2Þð1þ ζ4κτÞ;
α− ¼ κð1þ ζ2κτÞð1þ ζ4κτÞ;
α0 ¼ κð1 − ζ2Þð1þ ζ2κτÞ; ð33Þ

and with the mass given by

Ml ¼ −
ð1þ ζ2κτÞ þ ζ2ð1 − ζ2Þκτ

1þ ζ4κτ
: ð34Þ

The no-tachyon conditionM2l2 > 1 for the massive spin-2
mode translates into

κτð1 − ζ2Þð1þ ζ2κτÞ > 0: ð35Þ

An analysis following [11,24] quickly shows that imposing
no-ghost and no-tachyon unitarity conditions on the mas-
sive spin-2 mode necessarily implies negative central
charges. Remarkably, all supersymmetric AdS vacua thus
exhibit the clash between bulk and boundary unitarity.
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We can finally map out the full landscape of (A)dS vacua
in order to reconcile these results with the earlier findings
of [11]. To this end, we combine the conditions on
supersymmetrizability (21) with the values of the cosmo-
logical constants (29), (30) in order to identify the various
regions in parameter space as depicted in Fig. 1.
Region 0.—In this region

1

κτ
> 1þ 3λ

τ2
; ð36Þ

the first condition in (21) is violated. According to the
above discussion, no (A)dS vacua exist in this region and
the model is not supersymmetrizable.
Region I.—This region is bounded by region 0 and the

parabola

1

κτ
¼ −

9

4

�
λ

τ2

�
2

; ð37Þ

with ðλ=τ2Þ < − 2
3
. The second condition in (21) is violated,

thus the model is not supersymmetrizable. With (29), it
follows that both vacua Λ� are of dS type.
Region II.—This region is bounded from above by the

parabola (37). Λþ is an AdS vacuum, Λ− is dS. There are
two different solutions to (20), i.e., two supersymmetric
extensions of the bosonic model, in both of which Λþ is

supersymmetric, but exhibits the bulk-boundary unitar-
ity clash.
Region III.—This region is not covered by the

Lagrangian of [11], since κτ > 0. Both vacua Λ� are of
AdS type. Equation (20) admits two different solutions

ζ2� ¼ ð1� ΓÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� ΓÞ2 þ 1

κτ

r
: ð38Þ

There are thus two supersymmetric extensions of the
bosonic model, satisfying

Λsusyðζ�Þ ¼ Λ� ¼ Λnsðζ∓Þ: ð39Þ

That is, each of the vacua (29) of the bosonic model is
supersymmetric in one of the supersymmetric extensions
and nonsupersymmetric in the other. Both vacua exhibit
the bulk-boundary unitarity clash.
Region IV.—Both vacua Λ� are AdS. There are four

supersymmetric extensions of the model with a structure
similar to (39), i.e., each of the AdS vacua of the bosonic
model is supersymmetric in some supersymmetric exten-
sion(s) of the model. Again, both vacua exhibit the bulk-
boundary unitarity clash.
Region V.—Both vacua Λ� are AdS. There are two

solutions of Eqs. (20)

ζ2� ¼ ð1þ ΓÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ ΓÞ2 þ 1

κτ

r
; ð40Þ

i.e., two supersymmetric extensions of the model. In both
of these, the vacuum Λþ is supersymmetric, whereas Λ− is
not. A careful translation of parameters shows that this
region is hosting all the vacua identified in [11] as evading
the bulk-boundary clash. Specifically, these are the non-
supersymmetric Λ− vacua, as is also consistent with the
above analysis of supersymmetric vacua.
Along the border lines separating the different regions in

Fig. 1, there is always one Minkowski vacuum together
with an (A)dS vacuum. The red line is the so-called merger
line [17] in which both (A)dS vacua of the model coincide.
Note that the two regions κτ < 0 and κτ > 0 of the
parameter space are not connected, as the model (4)
degenerates for κτ ¼ 0 (or ð1=κτÞ ¼ 0).
As anticipated above, the analysis shows that MMG

admits supersymmetric extensions in all regions (II–V) that
admit AdS vacua. In particular, the bulk-boundary unitary
AdS vacua discovered in [11] are all situated in region V
and can be embedded into supersymmetric models.
Moreover, the analysis shows that in all these vacua
supersymmetry is spontaneously broken.
The supersymmetric extensions of the MMG model thus

offer new perspectives on the AdS vacuum analysis of the
bosonic model and it will be most interesting to explore its
repercussions in the context of other solutions of the model,

FIG. 1. Different regions in parameter space. As long as the
MMG model admits an AdS vacuum, i.e., outside of the gray and
yellow areas, it admits at least one supersymmetric extension.
The AdS vacua evading the bulk-boundary unitarity clash [11]
are the nonsupersymmetric AdS vacua in region V.
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such as [17]. The product pattern of the coefficients (33) in
terms of the supersymmetry parameter ζ indicates the
location of the chiral points at which one of the central
charges vanishes. The underlying supersymmetric structure
will also be of great value for the unitarity analysis at
these special points. Further interesting research directions
include the construction of possible supersymmetric matter
couplings to MMG, as well as the supersymmetrization of
higher order extensions of the model [12,25]—given that
our action (4) naturally accommodates all such general-
izations. A superspace formulation of our construction
would be highly desirable to address these issues.
Interestingly, we have identified different minimal super-

symmetric extensions of the same bosonic MMG in which
different vacua of the bosonic model appear supersym-
metric. This may be read as a hint of an underlying structure
of extended supersymmetry into which these models could
be embedded, as is typical for such twin supergravities
[26]. As a technical challenge this would require embed-
ding the single massive bosonic degree of freedom into
some extended multiplet structure.
Perhaps the most surprising result of our analysis is the

observed clash between supersymmetry and bulk-boundary
unitarity. It is precisely the AdS vacua in which super-
symmetry is spontaneously broken which reconcile pos-
itive central charges with a positive energy bulk graviton. It
would be very interesting to understand if this observed
clash of unbroken supersymmetry and unitarity goes back
to some more fundamental principle and has deeper
implications for holography. The minimal massive super-
gravity constructed in this Letter provides a natural starting
point for studying aspects of holography around non-
supersymmetric vacua. The simultaneous (and unavoid-
able) presence of a supersymmetric AdS vacuum with
bulk-boundary unitarity clash and a second AdS vacuum
avoiding the clash but breaking supersymmetry allows us to
probe such issues in a single model.
A more detailed version of the presented results will

appear elsewhere [21].
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