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Quantum thermalization is well understood via the eigenstate thermalization hypothesis (ETH).
The general form of ETH, describing all the relevant correlations of matrix elements, may be derived
on the basis of a “typicality” argument of invariance with respect to local rotations involving nearby energy
levels. In this Letter, we uncover the close relation between this perspective on ETH and free probability
theory, as applied to a thermal ensemble or an energy shell. This mathematical framework allows one to
reduce in a straightforward way higher-order correlation functions to a decomposition given by minimal
blocks, identified as free cumulants, for which we give an explicit formula. This perspective naturally
incorporates the consistency property that local functions of ETH operators also satisfy ETH. The present
results uncover a direct connection between the eigenstate thermalization hypothesis and the structure of
free probability, widening considerably the latter’s scope and highlighting its relevance to quantum
thermalization.
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Introduction.—The current framework for understanding
the emergence of thermal equilibrium in isolated quantum
systems goes under the name of the eigenstate thermal-
ization hypothesis (ETH). Earlyworks of Berry [1], Deutsch
[2], and Srednicki [3] recognized the importance of under-
standing the eigenstates of chaotic systems a pseudorandom
vectors that encode microcanonical ensembles. Inspired by
random matrix theory (RMT), ETH was then fully estab-
lished by Srednicki in Ref. [4], incorporating some
additional structure required to account for nontrivial
temperature or time dependences. See Ref. [5] for a review.
According to ETH, the matrix elements of local observables
A in the energy eigenbasis HjEii ¼ EijEii are pseudoran-
dom numbers, whose statistical properties are smooth
thermodynamic functions. In the original formulation, the
average and variance read

Aii ¼ AðEiÞ; AijAji ¼ Fð2Þ
Eþ
ij
ðωijÞe−SðE

þ
ijÞ for i ≠ j;

ð1Þ

where Eþ
ij ¼ ðEi þ EjÞ=2, ωij ¼ Ei − Ej, and SðEÞ is the

thermodynamic entropy at energyE. WhileA represents the

microcanonical expectation value of A, Fð2Þ
E ðωÞ depends

implicitly on the observableA (jfAðE;ωÞj2with the standard
notations [5]) and it is associated to correlations on energy
shell. In this Letter, we will refer to them as on-shell
correlations. The ETH assumptions (1) allow one to fully
describe the local relaxation of observables to thermal
equilibrium as well as to characterize two-time dynamical

correlation functions [5,6]. Since its formulation, ETH has
motivated a considerable body of numerical [7–9] and
analytical work [9–12], also in relation to quantum entan-
glement [13–15]. Despite this progress, the precise relation
between ETH and RMT is currently the focus of a large
debate.
With the recent explosion in activity imported from the

string theory community that revolutionized the field of
quantum chaos [16], the question of how ETH applies to
multipoint correlations (as the out-of-time order correlators
OTOC) came to the forefront. Higher order correlators are
important to several areas of many-body physics: from
quantum information scrambling (through OTOCs) [17], to
dynamic-heterogeneity effects (through the fluctuation of
correlations) [18] or in pump-probe experiments (through
three point functions) [19]. It became clear that amoregeneral
version of ETH had to be introduced, encompassing corre-
lations between matrix elements hitherto neglected in the
standard framework. In order to compute such correlations of
q > 2 times, Ref. [20] formulated an extension of Eq. (1)
based on typicality arguments [21–25], as applied to small
rotations of nearby energy levels. The existence of matrix
elements correlations on top of Eq. (1), recently confirmed
numerically [26,27], has motivated discussions on the finer
structure of the ETH beyond Gaussian RMT [28–32].
This perspective offered some understanding of the finite

contribution of different matrix elements functions from
a diagrammatic approach, although it did not provide an
efficient calculational tool for the various terms, leaving
unknown the general structure of multitime correlation
functions.
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In this Letter, we characterize this structure by identify-
ing its intimate relation between the general form of the
ETH and free probability theory. The latter can be thought
of as the generalization of classical probability to non-
commutative random variables, where the concept of
“freeness” extends the one of “independence.” Introduced
by Voiculescu in connection to the theory of operator
algebras [33], free probability theory turned out to have
important links with several branches of mathematics and
physics [34–36], such as RMT [37] and combinatorics.
We are here interested in the combinatorial aspects of
free probability, based on free cumulants and noncrossing
partitions [38].
Using these tools, we show that the higher-order corre-

lation functions of generic physical systems are determined
by basic quantities: the thermal free cumulants, thus
providing a sort of generalized Wick theorem. Our meth-
odology is to use the properties of the ETH matrix elements
and their diagrammatic description to link them with the
free probability mathematical structure. We will first recall
the derivation of the general form of ETH, based on
invariance with respect to local rotations of nearby energy
levels. By discussing the ETH diagrams relevant to
correlation functions, we will show that they are in one-
to-one correspondence to noncrossing partitions. Our main
result is an explicit expression for the thermal free
cumulants in terms of sums of the matrix elements over
nonrepeated indices: simple loops in the diagrammatic
language discussed in [20]. The thermal free cumulants are
hence linked to the Fourier transform of the ETH on-shell
correlation of order q. As a byproduct, free probability
allows us to deduce bounds on the behavior of on-shell
correlations in the frequency domain.
General ETH.—The ETH in its enlarged formulation

was discussed in Ref. [20] to compute correlation functions
of order q depending on ⃗t ¼ ðt1; t2;…; tq−1Þ times. The
latter can be written in terms of the product of q matrix
elements. The ETH amounts in the following ansatz:
the average of products with distinct indices fii;…; iqg
reads

Ai1i2Ai2i3…Aiqi1 ¼e−ðq−1ÞSðEþÞFðqÞ
Eþ ðωi1i2 ;…;ωiq−1iqÞ ð2Þ

and with repeated indices it factorizes in the large N limit

Ai1i2…Aik−1i1Ai1ikþ1
…Aiqi1

¼ Ai1i2…Aik−1i1 Ai1ikþ1
…Aiqi1 : ð3Þ

In Eq. (2), Eþ ¼ ðEi1 þ � � � þ EiqÞ=q is the average energy,
ω⃗ ¼ ðωi1i2 ;…;ωiq−1iqÞ with ωij ¼ Ei − Ej are q − 1 energy

differences and FðqÞ
Eþ ðω⃗Þ is a smooth function of the energy

density Eþ=N and ω⃗. Thanks to the explicit entropic factor,

FðqÞ
E ðω⃗Þ is of order one and thus contains Eq. (1) as a

particular case for q ¼ 1, 2. We will refer to FðqÞ
E ðω⃗Þ as the

on-energy shell correlations of order q. This generalization
of ETH, which is necessary if matrix elements are con-
sidered to be not independent, implies that correlation
functions at order q contain new information that is not in
principle encoded in lower moments.
The ETH ansatz in Eq. (2) can be derived using typicality

arguments. The central idea is to use local invariance of the
Aij, stemming from small rotations that involve only nearby
energy levels. The matrix elements are evaluated by
substituting the operator with a “locally” rotated one
(see Fig. 1) Au ¼ UAU†, i.e., Aij ¼

P
ī j̄ UiīAī j̄U

�̄
jj, with

Uiī ¼ hEijEīi and jEīi are the eigenstates of a slightly
perturbed Hamiltonian [2]. By looking at a sufficiently
small energy range around Ei, theUiī can be thought of as a
pseudorandom unitary matrix. This is in analogy to Berry’s
conjecture, stating that the overlaps of chaotic eigenstates
with a generic basis can be thought of as random Gaussian
numbers. The size of this matrix has to be “small” to keep
intact the energy band structure of Aij, but it contains many
level spacings. Hence the matrix elements are treated as
belonging to an ensemble of local rotational invariances.
By averaging over U, one can immediately deduce the
finite contributions to any product of matrix elements.
Averages are nonzero only if the matrices U appear at least
twice. For example, for AijAlk the only finite contribution
comes from AijAji leading to Eq. (1). In the same way,
finite products of q matrix elements necessarily have to be
in a loop (see Fig. 1 for the pictorial example with q ¼ 3).
When the indices are different, this leads to Eq. (2). This
scenario, complemented with some entropic arguments,
results also in the factorization of Eq. (3), see Ref. [20].
As a consequence, we remark that this approach also

accounts for the validity of the ETH ansatz between
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FIG. 1. Impact of the local rotational invariance of Aij on the
correlations between three matrix elements. The operator A in the
energy eigenbasis is depicted as a random matrix with a band
structure. To each matrix element Aij is associated with a “small”
U (box on the diagonal) which acts as a pseudorandom unitary
matrix. Matrix elements with different indices (a) are charac-
terized by different U and their average vanishes. When the
indices are repeated on a loop (b) theU appear in pairs and yield a
finite result.
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different operators, e.g., AijBji ¼ Fð2Þ
Eþ;ABðωÞe−SðE

þÞ, where
we make explicit the dependence on the operators. Clearly,
the ensemble defined by U is the same for A and B, since
they come only from changes in H. Hence, the above
argument can be applied to any set of local observables.
Computing expectations: diagrammatic expansion.—

The ETH ansatz in Eq. (2) allows one to compute multitime
thermal correlation functions of the form

SðqÞβ ð⃗tÞ ¼ hAðt1ÞAðt2Þ…Aðtq−1ÞAð0Þiβ; ð4Þ

where h•iβ ¼ Trðρ•Þ and ρ ¼ e−βH=Z with Z ¼ Trðe−βHÞ.
Here, AðtÞ ¼ eiHtAe−iHt is the observable at time t in the
Heisenberg representation (ℏ ¼ 1).
As introduced in Ref. [20], one can determine the

contribution of Ai1i2…Aiqi1 to the thermal correlation

SðqÞβ ð⃗tÞ in a diagrammatic fashion, see Fig. 2(a) for
q ¼ 4. Let us briefly illustrate how to understand pictorially
such ETH diagrams. Products as Ai1i2…Aiqi1 are repre-
sented on a loop with q points. The matrix elements Aij

live on the oriented edge connecting two points i and j.
The arrows keep track of nontrivial time dependencies. The
different diagrams correspond to all the different ways one
can contract the indices, i.e., identify two points. Such
diagrams are classified as follows: (i) Loops.—all distinct
vertices lie on a single closed circle [e.g., AijAjkAkmAmi

in Fig. 2(a1)]. Each loop with n vertices contributes with
∝ FðnÞe−ðn−1ÞS; (ii) Cactus diagrams.—Trees of loops are
joined to one another at single vertex [e.g., AijAjiAimAmi in
Fig. 2(a2)]. Cactus with p leaves contribute with p products
of the associated F. The example of a two-leaf cactus in
Fig. 2(a2) contributes with ∝ ðFð2Þe−SÞ2.
The noncactus diagrams [e.g., AijAjiAijAji in Fig. 2(a7)]

have a further constraint to indices with respect to the other
diagrams; their contribution is subleading for the correla-
tion functions, as we now argue.

The thermal correlation SðqÞβ ð⃗tÞ in Eq. (4) is given by the
sum over all indices (and correspondingly all the diagrams)
with the proper Boltzmann weight e−βEi=Z. The ETH

ansatz (2) and (3) results in two main outcomes: (a) all
summations of elements with repeated indices (cactus
diagrams) factorize on results computed at the thermal
energy Eβ ¼ hHiβ. This means that leaves may be severed.
(b) The contribution of noncactus diagrams is exponentially
small with respect to the other terms. These properties
follow from the smoothness of the ETH functions and the
proper entropic counting. As an explicit example of (a), one
can compute the diagram (a6) of Fig. 2, i.e.,

1

Z

X
i

e−βEiAii
4 ¼ 1

Z

Z
dEe−βEþSðEÞA4ðEÞ ¼ ðSð1Þβ Þ4; ð5Þ

where we have substituted the ETH ansatz (1), summations
with integrals

P
i ¼

R
dEeSðEÞ and performed the integral

in E via saddle point technique, which fixes the energy
by the thermodynamic condition β ¼ S0ðEβÞ and yields

A4ðEβÞ ¼ ðSð1Þβ Þ4. On the other hand, performing the same
steps on the noncactus diagram Fig. 2(a7) and expanding
the entropies [5] leads to

1

Z

X
i≠j

e−βEi jAijj2 jAijj2

¼ 1

Z

Z
dEþdωe−βEþ

e−βω=2½Fð2Þ
EþðωÞ�2 ∼Oðe−NÞ: ð6Þ

In this Letter, we rationalize that cactus diagrams corre-
spond in fact to the noncrossing partitions that play a role in
free probability theory.
Hints of free probability theory.—We are interested in

the combinatorial aspects of free probability, which are
based on noncrossing partitions and free cumulants, as
developed by Speicher [38]. A partition of a set f1;…; qg
is a decomposition in blocks that do not overlap and whose
union is the whole set. Partitions in which blocks do not
“cross” are called noncrossing partitions. The set of all
noncrossing partitions of f1;…; qg is denoted NCðqÞ.
See the example in Fig. 2(b) for the partitions with
q ¼ 4, with ×½n� we denote the n cycling permutations.

(a)

(b)

FIG. 2. ETH diagrams (a) and noncrossing partitions (b) for q ¼ 4. (a1)–(a6) Loop and cactus diagrams that contribute to ETH
correlators. The arrow indicates the presence of a time dependence. With ×½n� we indicate that there are n cyclic permutations. (a7)
Noncactus diagram. (b1)–(b6) Noncrossing partitions for q ¼ 4. Each of the blocks contributes with a free cumulant kn, where n is the
number of points in the block. For completeness, we also represent the crossing partition after the dashed line.
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There are 14 noncrossing partitions of q ¼ 4 elements, and
only one is crossing, i.e., Fig. 2(b)(a7).
Noncrossing partitions appear in the definition of free

cumulants. Consider some normalized ϕ [i.e., ϕð1Þ ¼ 1],
for example ϕð•Þ ¼ Trð•Þ=D for large D ×D random
matrices. The free cumulants kq are defined implicitly
from the moment-cumulant formula, stating that the
moments of variables AðiÞ read

ϕðAð1Þ;…; AðqÞÞ ¼
X

π∈NCðqÞ
kπðAð1Þ;…; AðqÞÞ; ð7Þ

where π is a noncrossing partition. Here, kπ is a product of
cumulants, one term for each block of π. For instance, for
AðiÞ ¼ A ∀ i and knðA;…; AÞ ¼ kn, one has ϕðAÞ ¼ k1,
ϕðA2Þ ¼ k2 þ k21, ϕðA3Þ ¼ k3 þ 3k1k2 þ k31, and ϕðA4Þ ¼
k4 þ 2k22 þ 4k3k1 þ 6k2k21 þ k41, i.e., Fig. 2(b). Classical
cumulants are defined by a similar formula, where there is a
sum over all the possible partitions and not only on the
noncrossing ones. Notably, the relation between moments
and cumulants differs in classical and free probability only
for n ≥ 4. Another interesting property is that the third and
higher-order free cumulants of a Gaussian random matrix A
vanish, i.e., kq≥3ðA;…; AÞ ¼ 0 (as for the classical cumu-
lants of standard Gaussian random variables). At this level,
Eq. (7) is a simple implicit definition of free cumulants
in terms of moments, e.g., k1 ¼ ϕðAÞ, k2 ¼ ϕðA2Þ−
ϕðAÞ2, etc.
ETH in these words.—The relation between ETH and

free cumulants is thus clear: cactus diagrams correspond to
noncrossing partitions, on the set identified by the matrices
AðtiÞ. Likewise, noncactus diagrams, not being associated
with any noncrossing partition, do not count and they are
related to crossing partitions [39]. As we argued, they do
not contribute to the thermal moments. Analogously to
Eq. (7), we introduce an implicit definition of the thermal
free cumulants

SðqÞβ ð⃗tÞ ¼
X

π∈NCðqÞ
kβπðAðt1ÞAðt2Þ;…; Að0ÞÞ: ð8Þ

Also here, kβπ is a product of free cumulants, one for each
block of the partition π, as kβn associated to n operators.
Note that the cumulant kβnð⃗tÞ depends on the order in which
we consider different operators, and we make this implicit
in its time dependence. The ETH ansatz (2) is then the
precise statement that the thermal free cumulants, may be
substituted, for the purposes of computing time correla-
tions, by sums as

kβqð⃗tÞ ¼ kETHq ð⃗tÞ

¼ 1

Z

X
i1≠i2≠iq

e−βEi1Aðt1Þi1i2Aðt2Þi2i3…Að0Þiqi1 ; ð9Þ

where all indices are different. In other words, free
cumulants are simply given by the loop diagrams. This
follows from two properties of the ETH ansatz discussed
above: (a) that cactus diagrams factorize and (b) that only
cactus diagrams (noncrossing partitions) matter. This first
point is almost trivial for q ¼ 2, where it is well known that
via ETH one can compute

kβ2ðtÞ≡ Sð2Þβ ðtÞ − ½Sð1Þβ �2 ¼ hAðtÞAð0Þiβ − hAi2β ð10Þ

¼ 1

Z

X
i≠j

e−βEi jAijj2eiðEi−EjÞt ¼ kETH2 ðtÞ; ð11Þ

where one uses that the diagonal ETH matrix element is a
smooth function of energy and therefore

P
i e

−βEiA2
ii ≃

hAi2β by saddle point integral, as in Eq. (5). One can show
that this factorization holds at all orders. For instance, for
q ¼ 4 fixing k1ðAÞ ¼ hAiβ ¼ 0, we obtain

hAðt1ÞAðt2ÞAðt3ÞAð0Þiβ ¼ kβ4ðt1; t2; t3Þ þ kβ2ðt1 − t2Þkβ2ðt3Þ
þ kβ2ðt2 − t3Þkβ2ðt1Þ; ð12Þ

where kβ4 is the term coming from the simple loop in
Fig. 2(a1) and encodes all the correlations beyond Gaussian
[26,31]. This expression now immediately follows from
free probability expression [the diagrams (b1)–(b2) of
Fig. 2], while it would require in principle a lengthy
calculation [39].
Also in rotationally invariant random matrix ensembles,

free cumulants are associated with diagrams with all
distinct indices [42] and one can show that only the cactus
diagrams matter.
Let us see how the structure of free probability

leads to further results in the ETH context. First of all, it
incorporates the consistency condition that products of
operators obeying ETH shall obey ETH [4,40]. This can be
checked directly from the free probability noncrossing
partitions, see Ref. [39]. Second, we are led to ask
questions such as the value of kETHq ð0Þ ¼ ð1=ZÞPi1≠i2≠iq
e−βEi1Ai1i2Ai2i3…Aiqi1 . free probability offers powerful
computational tools to study such correlations via the
generating functions [43]. Given the Stieltjes transform
GβðzÞ ¼ Trfρ½1=ðz − AÞ�g, related to the generating func-
tion of thermal moments, one can study the so-called R
transform

RβðwÞ≡G−1
β ðwÞ − 1

w
¼

X
q¼1

kβqð0Þwq−1; ð13Þ

that is always the generating function of equal-times free
cumulants. In the case of ETH, kβqð0Þ ¼ kETHq ð0Þ and it
generalizes the result of fully rotational invariant random
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matrices [42]. Finally, free probability offers the tools—via
the free cumulants—to pinpoint and characterize the non-
Gaussian aspects of ETH [26–32].
Free cumulants on shell.—The thermal free cumulants

defined in Eq. (9) admit an extremely appealing expression
in terms of the ETH ansatz (2). By standard manipulations
[39], one shows that

kβqð⃗tÞ ¼
Z

dω⃗FðqÞ
Eβ
ðω⃗Þeiω⃗·⃗t−βω⃗·l⃗q ; ð14Þ

where we defined the thermal shift l⃗q ¼ f½ðq − 1Þ=q�;
½ðq − 2Þ=q�;…; ð1=qÞg. This equation gives an important
property: ETH qth on-shell correlations are related to the
Fourier transform of the thermal free cumulants kβq

kβqðω⃗Þ ¼ FðqÞ
Eβ
ðω⃗Þe−βω⃗·l⃗q : ð15Þ

This is familiar for q ¼ 2, for which kβ2ðωÞ ¼
Fð2Þ
Eβ
ðωÞe−βω=2, which is the standard Kubo-Martin

Schwinger (KMS) relation, leading to the fluctuation-
dissipation theorem. The presence of this thermal shift—
which only depends on temperature and on the correlation
function order q—shall be interpreted as a generalized
KMS condition, see Ref. [43]. Equation (15) naturally leads
us to inspect the free cumulant expansion of the shifted

correlator S̄ðqÞβ ð⃗tÞ≡ SðqÞβ ð⃗t − iβl⃗qÞ given by

S̄ðqÞβ ð⃗tÞ ¼ Tr½ρ1=qAðt1Þρ1=q…Aðtq−1Þρ1=qAð0Þ�; ð16Þ

which corresponds to a regularized version of Sβ. One can

look at the following connected correlation part of S̄ðqÞβ , i.e.,

k̄qð⃗tÞ ¼
1

Z

X
i1≠…≠iq

e−
β
qðEi1

þ…Eiq ÞAðt1Þi1i2

× Aðt2Þi2i3…AðtqÞiqi1 : ð17Þ

Diagrammatically, it is associated with the loop with q
operators where the thermal weight ρ1=q is equally split.
Nicely, its Fourier transform coincides with on shell

correlations at the energy Eβ, i.e., [20] k̄
β
qðω⃗Þ ¼ FðqÞ

Eβ
ðω⃗Þ.

This allows accessing such correlations directly from the
time-dependent correlation functions in time and by taking
their Fourier transform.
We now recall that the correlation between matrix

elements with large energy differences should be small.
This means that ETH correlation functions are usually
expected to decay fast at large frequencies ω ≫ 1 as

FðqÞ
E ðωÞ ∼ e−jωj=ω

ðqÞ
max : ð18Þ

The relations between free cumulants and FðqÞ
E ðω⃗Þ (15)

allow one to infer relevant properties of the latter. Using
Eq. (14) and the fact that free cumulants at equal times shall
be well defined, in [39] we prove that on-shell correlations
must decay at large frequencies in all directions at least as

FðqÞ
Eβ
ðω⃗Þ ∼ exp

�
−β

q − 1

q
jωij

�
ð19Þ

∀ i ¼ 1;…; q − 1. This gives the bound ωðq−1Þ
max ≤

½ðq − 1Þ=qβ�, which generalizes the result for q ¼ 2, 4
of Ref. [31]. These kinds of constraints have been related to
operator growth or to timescales of multitime correlation
functions (such as out-of-time order correlators) [31,44–
47], which have been proven to obey strict bounds
[16,48,49].
Conclusions.—We have found that the ETH, when

generalized to all multipoint correlations in the spirit as
Berry, Deutsch, and Srednicki, leads us directly to place it
in the realm of free probability. This is a branch of
mathematics where many developments have been made,
and for which one may now turn to look for connections
and analogies.
There is, however, a fundamental new element: the

ensembles of matrices are not homogeneously full, but
rather have a band structure, and a large, slowly varying
diagonal. This structure exists on a specific basis, the one
where the Hamiltonian is diagonal and its eigenvalues are
ordered. The results are, likewise, always related to a
specific energy shell, and not the matrix as a whole. This is
a distinguishing feature of using free probability within
ETH to respect to standard RMT results. The moments that
define equilibrium correlation functions are then more
complicated objects than those of a standard rotationally-
invariant matrix model. Nonetheless, many results from
these appear to generalize to the ETH setting and call for a
rigorous understanding.
The ETH is at its most interesting when it fails, and

integrability or many-body localization phenomena
emerge. A more global understanding of ETH may then
lead to a finer understanding of these effects.
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Note added.—This Letter has been submitted simultane-
ously with Ref. [50], which discusses the appearance of free
cumulants in a stochastic transport model. The occurrence
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of free probability in both problems has a similar origin:
the coarse-graining at microscopic either spatial or energy
scales, and the unitary invariance at these microscopic
scales. Thus the use of free probability tools promises to
be ubiquitous in chaotic or noisy many-body quantum
systems.
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