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We extend the notions of multipole and subsystem symmetries to more general spatially modulated
symmetries. We uncover two instances with exponential and (quasi)periodic modulations and provide
simple microscopic models in one, two, and three dimensions. Seeking to understand their effect on the
long-time dynamics, we numerically study a stochastic cellular automaton evolution that obeys such
symmetries. We prove that, in one dimension, the periodically modulated symmetries lead to a diffusive
scaling of correlations modulated by a finite microscopic momentum. In higher dimensions, these
symmetries take the form of lines and surfaces of conserved momenta. These give rise to exotic forms of
subdiffusive behavior with a rich spatial structure influenced by lattice-scale features. Exponential
modulation, on the other hand, can lead to correlations that are infinitely long-lived at the boundary while
decaying exponentially in the bulk.
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Introduction.—Unconventional symmetries can give rise
to interesting phenomena, such as new equilibrium phases
of matter with novel low-energy features [1–8] and unusual
nonequilibrium properties such as subdiffusive transport
[9–15] and Hilbert space fragmentation [16–18]. Two cases
that have been investigated extensively in recent years are
multipole moment and subsystem symmetries. The latter
often exhibit “UV-IR” mixing [7,19–21]: Their long-
wavelength properties are sensitive to lattice-scale features,
leading to distinct field-theoretic and hydrodynamic
descriptions. The corresponding conserved quantities are
spatially modulated, Qfαrg ¼

P
r αrqr, where qr is some

local charge at location r. As such, they fail to commute
with spatial translations. For multipole conservation αr is
a polynomial of the coordinates ri ¼ x, y, z, while for
subsystem symmetries αr takes nonzero values only on a
spatial submanifold.
In the present Letter, we extend this notion to more

general cases of αr. We show that such symmetries appear
in some simple, locally interacting systems and give
various examples in one (1D), two (2D), and three (3D)
dimensions. The symmetries we identify come in two
flavors. One type is (exponentially) localized at the
boundaries of the system, leading to infinitely long-lived
boundary correlations, resembling the physics of strong
zero modes [22]. The other type corresponds to the
conservation of certain momentum components of a local
observable. Interestingly, in 2D and 3D we find various
models where long-lived modes exist along some closed
hypersurfaces in momentum space, resembling systems
with Bose surfaces [7,23–26] and the UV-IR-mixing
phenomenon [19–21]. We will discuss the effect of these

symmetries on the system’s dynamics and show that they
lead to unusual features in correlation functions, such as
long-lived spatial oscillations on microscopic scales.
Modulated symmetries.—We first consider a family of

1D models to introduce the notion of modulated sym-
metries. We consider stochastic cellular automaton dynam-
ics, which allow for large-scale numerical simulations,
although all of our models can be mapped to quantum
models that realize the same set of symmetries. We consider
a chain of classical discrete spins that take values sx ∈
f−S;…; Sg on each site x ¼ 0;…; L − 1. The dynamics is
generated by local gatesGx, acting in a finite neighborhood
of site x. The effect of a gate of range lþ 1 is described
by a set of integers ni such that, when applying Gx ¼ fnig,
the spins are updated as sxþi → sxþi � ni with i ∈
f0;…;l − 1g. The updates are applied probabilistically
among those for which jsxþi � nij ≤ S, with symmetric
transition rates: At each application, either (i) sxþi →
sxþi þ ni is applied or (ii) its inverse, sxþi → sxþi − ni,
or (iii) no update is made. The full evolution is given by a
random sequence of these gates [27].
We consider a family of models labeled by integers

q ≥ 1, p ≥ 0, defined by the gates

Gðp;qÞ
x ¼ fn0; n1; n2g ¼ fq;−p; qg; ð1Þ

acting on a three-site block centered around x. We notice
that, for 2q ≠ p, these models do not conserve the
total charge Q ¼ P

j sj or any of its higher moments.
Nevertheless, there still exist some global conserved
quantities, which we now construct.

PHYSICAL REVIEW LETTERS 129, 170601 (2022)

0031-9007=22=129(17)=170601(7) 170601-1 © 2022 American Physical Society

https://orcid.org/0000-0001-7512-505X
https://orcid.org/0000-0002-9736-2539
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.129.170601&domain=pdf&date_stamp=2022-10-17
https://doi.org/10.1103/PhysRevLett.129.170601
https://doi.org/10.1103/PhysRevLett.129.170601
https://doi.org/10.1103/PhysRevLett.129.170601
https://doi.org/10.1103/PhysRevLett.129.170601


Consider the general ansatz Qfαjg ≡
P

j αjsj. Then
Qfαjg is a conserved quantity for the evolution generated

by Gðq;pÞ if and only if fαjg fulfills the recurrence relation

αjþ2 ¼
p
q
αjþ1 − αj: ð2Þ

As a linear recurrence, Eq. (2) admits a general solution in
terms of the roots r1 and r2 of the associated characteristic
equation

r2 −
p
q
rþ 1 ¼ 0: ð3Þ

The solutions can be parametrized by the initial conditions
α0 and α1 [32], which implies that the model Eq. (1) has at
most two linearly independent conserved quantities of this
kind. Note that if q divides p, then Qfαjg has an integer
spectrum and, thus, generates a representation of U(1);
otherwise, the symmetry is a unitary representation of the
additive group R [33]. As the second-order polynomial in
Eq. (3) is palindromic [34], its two roots r1 and r2 are
inverses of each other: r2 ¼ 1=r1. Thus, three different
scenarios can occur, depending on the ratio p=q.
(i) Dipole conservation. If 2q ¼ p, then r2 ¼ r1 ¼ 1,

which leads to a general solution of the form
αj ¼ a0 þ a1j; this reproduces the conservation of charge
and dipole moment. Although conserving higher m
moments of the charge requires longer-range gates [12],
one would find that r ¼ 1 is an (mþ 1)-fold degenerate
root, so that αj includes the contribution

P
m
n¼0 anj

n. In fact,
r ¼ 1 will be the only root for the shortest-range gates
conserving the first m moments of the charge.
(ii) (Quasi)periodic modulation. If 2q > p, then

Eq. (3) has two complex solutions e�ik� with k� ¼
arccosðp=ð2qÞÞ [35]. A general solution of Eq. (2) then
takes the form αj ¼ aeik

�j þ be−ik
�j ¼ A cosðk�jþ ϕÞ

with constants a and b (equivalently, A and ϕ) fixed by
α0 and α1. Thus, although the total charge is not conserved,
some finite momentum component of it is. However, while
the recursion relation can always be solved in a system
with open boundary conditions (OBCs), the corres-
ponding momentum mode might not exist in a finite
system with periodic boundaries (PBCs). Indeed, we could
search directly for a conserved quantity of the form sk≡P

j e
ikjsj, by plugging the ansatz αj ¼ eikj into Eq. (2),

which then becomes χðkÞ≡ cosðkÞ − ðp=2qÞ ¼ 0. We can
distinguish two possibilities, depending on whether the
solution k ¼ k� is a rational multiple of π or not. According
to Niven’s theorem [37], the former is the case if and only if
p=ð2qÞ ∈ f0;� 1

2
;�1g; in this case, the modulation k� is

commensurate, having a finite periodicity on the lattice,
and the symmetry is exact for some finite system sizes
that are integer multiples of its period. In the more general
case, however, k� is incommensurate, the modulation is

quasiperiodic, and the conserved quantity does not exist for
any finite system with PBCs. Nevertheless, for sufficiently
large systems, there will be momentum modes that are
almost conserved, and the symmetry reemerges in the
thermodynamic limit.
(iii) Exponentially localized. For 2q < p, the solutions

r1;2 are real, positive, and nondegenerate. This implies
r1 > 1 and r2 ¼ 1=r1 < 1, leading to two conserved
quantities exponentially localized at the two boundaries
of the system. Thus, it is more appropriate to instead label
solutions by the two end points α0 and αL−1 [27] rather than
α0 and α1. Note that, in this case, it is not possible to satisfy
the recursion relation with PBCs.
These models can be combined to construct longer-range

gates with the same conserved quantities [27]. Moreover,
allowing for p < 0 translates into r1, r2 < 0 for dipole
moment and exponentially localized symmetries, leading to
an additional staggering of the associated densities. See
Ref. [38] for an extended discussion.
Hydrodynamic description.—Continuous symmetries

provide long-lived modes that dominate the dynamics
at long times; this idea is at the base of hydrodynamics
[39–41]. Recent works investigated how hydrodynamics
changes in the presence of multipole and subsystem
symmetries [9–14], leading to subdiffusive transport.
However, not all models we have introduced conserved
the total charge, and, thus, the spin density is not the
relevant long-wavelength degree of freedom for which a
hydrodynamic theory should be written. Nevertheless,
these modes can be probed via the physically relevant
and accessible “infinite-temperature” spin-spin correlations
Cðr; tÞ≡ srðtÞs0ð0Þ, where ð� � �Þ denotes averaging over all
randomly chosen initial spin configurations and circuit
realizations. This approach captures the behavior of the
three types of models we introduced and has the advantage
of being easily generalized to higher dimensions.
Consider now periodically modulated symmetries cor-

responding to conserved momentum components of the
total spin. These can be identified by the vanishing of some
characteristic function, χðkÞ ¼ 0. To understand the
dynamical consequences, we will assume a description
in the spirit of linear hydrodynamics, which provides a
closed linear equation of motion for the relevant slow
degrees of freedom. In momentum space, this can be
written as ∂tskðtÞ ¼ −ωðkÞskðtÞ. The key difference from
more usual hydrodynamic descriptions is that we cannot
simply expand the “imaginary frequency” ωðkÞ near
k ≈ 0. Instead, we have to take into account the slow
modes at finite momenta originating from the modulated
symmetries.
To obtain ωðkÞ, we require that (i) ωðkÞ ≥ 0, leading to

physicallymeaningful solutions, (ii)ωðkÞ ¼ 0 ⇔ χðkÞ ¼ 0
to exactly capture the conserved momenta modes corre-
sponding to the relevant slow degrees of freedom, and
(iii) ωðkÞ is analytic around these points. This latter
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condition rules out ωðkÞ being an odd power of jχðkÞj. A
natural approximation that satisfies all these requirements
and should correctly capture the leading-order behavior in
the regimes where ωðkÞ ≈ 0 is [42] ωðkÞ ∼ jχðkÞj2. We
emphasize that this relation holds only for momenta k close
to the conserved modes at which χðkÞ ¼ 0. One can check
that this approximation correctly captures the known
behavior in a variety of models, including those with
dipole conservation and subsystem symmetries [27].
Within linear response, the spin-spin correlator behaves

as the Green’s function of this equation of motion [39],
Cðr; tÞ ¼ R

ddkeik·r−ωðkÞt. We can rewrite this as

Cðr ¼ 0; tÞ ¼
Z

∞

0

dωρðωÞe−ωt: ð4Þ

The long-time decay is, therefore, determined by the
density of states (DOS) ρðωÞ near ω ≈ 0 [43].
Consider Gðp;qÞ with 2q > p. Near the conserved

momentum k�, we have ωðk� þ δkÞ ∼ δk2. This gives rise
to a DOS ρðωÞ ∼ ω−1=2; inserting this into Eq. (4) yields a
diffusive scaling:Cð0; tÞ ∼ t−1=2. This is consistent with our
numerical results for ðp; qÞ ¼ ð3; 2Þ, shown in Fig. 1(a),
and for longer-range gates [27]. Nevertheless, as this is not
an exact symmetry for PBCs, Cð0; tÞ is expected to decay
exponentially at sufficiently late times [see data for L ¼ 30
in Fig. 1(a)]. The situation changes for dipole conservation

(2q ¼ p). In this case, k� ¼ 0, so the leading contribution
vanishes, and we instead have ωðkÞ ∼ k4, recovering the
known subdiffusive scaling Cð0; tÞ ∼ t−1=4 [9–12,44].
The role of finite-momenta modes becomes much more

apparent when we consider the spatial structure of the
correlations. Taking into account the slow modes around
k ≈�k�, we obtain Cðx; tÞ ∼ t−1=2N ðx= ffiffi

t
p Þ cosðk�xÞ with

N denoting a Gaussian function, i.e., diffusive behavior
modulated by a factor that oscillates at the microscopic
scale 1=k�. This behavior is numerically verified in
Figs. 1(c) and 1(d). Additional details on the numerical
implementation can be found in Ref. [27]. The influence
of finite (lattice-scale) momentum components in the
Brillouin zone (BZ) on long-time and large-distance
correlations can be seen as an infinite-temperature mani-
festation of UV-IR mixing in these models [19–21].
We can also apply our approximation to models

with exponentially localized symmetries. In this case,
ωðkÞ ∼ jχðkÞj2 is finite everywhere, which indicates an
exponential decay of correlations. Nevertheless, there can
be a correction coming from the large density of states near
the minimum of ωðkÞ. To see this, consider again the model
Eq. (1), but this time with 2q < p. The dispersion has a
minimum at k ¼ 0, and expanding around it we find
ωðkÞ ≈ ð1

2
k2 − k20Þ2, with k20 ≡ ð2q − pÞ=ð2qÞ. Integrating

over k, we find the long-time asymptotic form Cð0; tÞ∼
e−k

4
0
t=

ffiffi
t

p
. The numerical results shown in Fig. 1(b) are

consistent with this scaling for bulk correlations. However,
the exponentially localized symmetries have a strong effect
on the dynamics near the boundary, leading to infinitely
long-lived correlations, as one can prove using Mazur’s
inequality [27,45,46] [dashed line in the inset in Fig. 1(b)].
Generalization to higher dimensions.—We now general-

ize our discussion to 2D systems.We begin by constructing a
model which features the quasiperiodically modulated sym-
metries discussed above. However, in this case, the con-
served momentum components will not only lie at isolated
points in the BZ, but extend along continuous lines.
In our microscopic model, local gates Gx;y act on a 4 × 4

block of a 2D square lattice in the vicinity of the site with
coordinates x, y. The gate is again specified by a set of
integers, such that Gx;y∶sxþi;yþj → sxþi;yþj � ni;j, with

G ¼ fn0;0; n0;3; n3;0; n3;3; n1;1; n1;2; n2;1; n2;2g
¼ f1; 1; 1; 1;−1;−1;−1;−1g; ð5Þ

whose action is illustrated in Fig. 2(a).
This model has many U(1) symmetries: It conserves the

total charge, its dipole moment, and the Qð2Þ
xy and Qð2Þ

x2−y2
components of the quadratic moment (however, it does not

conserve Qð2Þ
x2þy2

). Moreover, it conserves the staggered

magnetization along all rows and columns: Sx0 ¼P
yð−1Þysx0;y and Sy0 ¼

P
xð−1Þxsx;y0 . However, these

(a)
(b)

(c) (d)

FIG. 1. Dynamics in 1D. Evolution of the spin-spin correlator
Cðx; tÞ for the 1D models in Eq. (1). (a) Cð0; tÞ for quasiperiodic
symmetries with S ¼ 5 and ðp; qÞ ¼ ð3; 2Þ. (b) Exponentially
localized symmetries with S ¼ 10 and ðp; qÞ ¼ ð3; 1Þ. The inset
shows the boundary correlation which is lower bounded by
Mazur’s bound (black dashed line). (c) and (d) Spatial correla-
tions for the model in (a): “dressed” scaling collapse of Cðx; tÞ (c)
and its spatial Fourier transform Cðk; tÞ, which becomes increas-
ingly peaked at k ¼ �k� (d).
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do not exhaust the set of modulated symmetries of the
model. To detect additional modulated conserved quantities
Qfαrg ¼

P
r αrsr, we can look for nontrivial solutions of

the associated two-dimensional recurrence relation

X
i;j

ni;jαxþi;yþj ¼ 0: ð6Þ

Although a complete analytical solution of two-
dimensional recurrences might be feasible (e.g., via gen-
erating functions or rewriting it as a matrix equation), the
procedure can be quite involved and not leading to a closed-
form expression. Instead, we use the ansatz αr ¼ eik·r and
focus on periodically modulated symmetries. Equation (6)
then reduces to

χðkÞ≡X
a;b

na;beiðakxþbkyÞ∝ cosðkx=2Þcosðky=2Þ

× ½cosðkxÞþcosðkyÞ−2cosðkxÞcosðkyÞ�¼0: ð7Þ

The solutions of χðkÞ ¼ 0 are highlighted in green in
Fig. 2(b). The conservation of total charge corresponds to
the mode s0 at k ¼ ð0; 0Þ, while the staggered subsystem
symmetries Sx and Sy show up as the lines ky ¼ π and
kx ¼ π, respectively. Moreover, we find a set of contour
lines (forming a closed loop in the Brillouin zone) along
which the second line in Eq. (7) vanishes. As in 1D, each of
these corresponds to an exact symmetry for OBCs, whose

total number scales with the linear system size OðLÞ [27].
However, most points along these lines are not realized
exactly in a finite system with PBCs but become exact
symmetries only in the thermodynamic limit, leading to an
(infinite-dimensional) emergent symmetry group. While
straight lines in the BZ correspond, upon inverse Fourier
transformation, to symmetry operators that act along
columns or rows on the lattice, linear combinations of
symmetries lying along these contours do not lead to
subsystem symmetries and, instead, are delocalized on
the whole system [27].
As we saw, the asymptotic decay of Cð0; tÞ is governed

by the DOS near ω ≈ 0. For the 2D model in Eq. (5), ρðωÞ
picks up contributions from various parts of the BZ [see
Fig. 2(b)] [27]. We find that the leading contributions arise
from the five points where multiple lines of conserved
momenta meet. Around all of these points, ρðωÞ ∼
ω−1=2 logðωÞ and, consequently, Cð0; tÞ ∼ t−1=2 logðtÞ: sub-
diffusion with a logarithmic correction, similarly to the case
of U(1) subsystem symmetries [13] [the remaining parts of
the BZ provide a subleading ρðωÞ ∼ ω−1=2 contribution].
We confirm this numerically in Fig. 2(c). The finite
momentum contributions also lead to spatial oscillations
of Cðx; tÞ at short scales [see Fig. 2(d)], which can be
clearly identified in its Fourier transform Cðk; tÞ shown in
Fig. 2(b), concentrated along the solutions of χðkÞ ¼ 0.
Another consequence is that Cðr; tÞ does not have full
rotational invariance but instead concentrates around the
two coordinate axes.
Equation (6) has additional solutions of the form

αr ¼ eκxxeikyy; eikxxeκyy [47] for open boundary conditions.
We expect them to have no effect on bulk correlations at
infinite temperature analogous to the 1D models we studied
above. Their effect on boundary dynamics will be explored
in an upcoming work.
Many other models which exhibit conserved momenta

along various shapes in the BZ exist, including ones that do
not conserve the total charge Q ¼ P

r sr. An example is
shown in Fig. 3(a) [27]. The construction can also be easily
extended to higher dimensions. For example, in 3D, one
can find exact conserved quantities lying in intersecting
2D manifolds in momentum space [27] as we show in
Fig. 3(b). These symmetries lead to different scalings for
the correlations, depending on the details of jχðkÞj. The
decay is at least as slow as Cð0; tÞ ∼ t−1=2, coming from the
fact that expanding the dispersion along a codimension 1
hypersurface (a line in 2D or a surface in 3D) is formally
similar to an expansion in one dimension. However, the
actual behavior can be much slower than this. For example,
in 2D, points where many conserved lines intersect [see
Fig. 3(a)] or ones where lines touch (rather than cross) can
lead to strongly subdiffusive dynamics [27].
A natural question is how to construct a complete

hydrodynamic description, which could be used to predict
the long-time behavior of the spin-spin correlations.

(a)

(c)
(d)

(b)

FIG. 2. Dynamics in 2D. (a) Schematics of a local gate
corresponding to Eq. (5). (b) Correlation function Cðk; tÞ within
the Brillouin zone at t ¼ 104. The solution of Eq. (7) is shown in
a green (dashed) line. (c) The autocorrelation decays as
Cð0; tÞ ∼ logðtÞ= ffiffi

t
p

. (d) Correlations Cðx; tÞ are concentrated
along the two axes and show oscillations on lattice scales that
survive for long times.
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One could decompose the spin density as sðrÞ ∼P
fkjχðkÞ¼0g eik·rskðrÞ and construct a hydrodynamic

theory for the relevant long-wavelength degrees of freedom
skðrÞ’s, which could be further constrained by the con-
servation of higher moments of the charge. Although
addressing a different question, this approach is similar
to the expansion of the UV boson (fermion) in terms of
low-energy degrees of freedom lying close to the Bose
(Fermi) surface (see, e.g., Ref. [26]). Moreover, the
situation becomes rather complicated in two and higher
spatial dimensions, where infinitely many momenta lie
along different intricate shapes in the BZ. The derivation of
an appropriate hydrodynamic description is an interesting
challenge that we leave for future work.
Conclusions and outlook.—We introduced the notion of

spatially modulated symmetries that generalize both multi-
pole and subsystem symmetries. We provided two new
classes of such symmetries: quasiperiodically modulated
and exponentially localized ones. The latter are relevant for
the dynamics near the boundary, playing a role similar to
strong zero modes. The former lead to unusual behavior in
bulk correlations: subdiffusive decay and long-lived short-
wavelength oscillations, providing a hydrodynamic analog
of the phenomenon of UV-IR mixing, making long-time
dynamics sensitive to lattice-scale features. While here we
discussed thermal correlations, these models also appear to
host interesting examples of fragmentation which we plan
to explore in a future publication.
Although we focused on classical cellular automata, each

of our models can be easily related to a corresponding
quantum Hamiltonian, by mapping a gate Gr, characteri-
zed by integers fnag, to a local Hamiltonian term

⊗
a⃗
ðŜsgnðna⃗Þr⃗þa⃗ Þjna⃗j þ h:c. These quantum Hamiltonians possess

the same set of symmetries as their classical counterparts.
These also include additional Z2 symmetries, which anti-
commute with the modulated ones, leading to strong zero
modes [22] for systems with exponentially localized
symmetries. Understanding their low-energy physics and

the relationship to previous studies of UV-IR mixing is an
exciting challenge. Moreover, 1D systems with such
quasiperiodic symmetries might be realized as effective
descriptions in the strong detuning limit of experimental
realizations of the Aubry-André model [48,49]. Finally,
generalizing our analysis of long-time dynamics to 3D is
another interesting open question.
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Note added.—Recently, we were informed of an indepen-
dent study of two-dimensional systems with dipole and
quadrupole conservation [50].
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