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The operator space entanglement entropy, or simply “operator entanglement” (OE), is an indicator of the
complexity of quantum operators and of their approximability by matrix product operators (MPOs). We
study the OE of the density matrix of 1D many-body models undergoing dissipative evolution. It is
expected that, after an initial linear growth reminiscent of unitary quench dynamics, the OE should be
suppressed by dissipative processes as the system evolves to a simple stationary state. Surprisingly, we find
that this scenario breaks down for one of the most fundamental dissipative mechanisms: dephasing. Under
dephasing, after the initial “rise and fall,” the OE can rise again, increasing logarithmically at long times.
Using a combination of MPO simulations for chains of infinite length and analytical arguments valid for
strong dephasing, we demonstrate that this growth is inherent to a U(1) conservation law. We argue that in
an XXZ spin model and a Bose-Hubbard model the OE grows universally as 1

4
log2t at long times and as

1
2
log2 t for a Fermi-Hubbard model. We trace this behavior back to anomalous classical diffusion processes.
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The study of quantum many-body systems through
the prism of their quantum entanglement continues to
prove extremely fruitful [1,2]. In particular, the growth
of entanglement in time-evolving quantum many-body
systems is of fundamental interest [3–8]: not only is it
useful to characterize the dynamics, but the amount of
entanglement also indicates whether a quantum evolution
can be efficiently simulated on a classical computer. In one
dimension (1D), the connection can be made via the
concept of matrix product states (MPSs) [9–12]. An
MPS is a decomposition of a many-body state vector into
a product of χ × χ matrices (where the entries of the
matrices are local kets). In such a representation, the
bipartite von Neumann entanglement entropy S is bounded
by max½S� ¼ log2ðχÞ. Consequently, to represent a physical
state jψðtÞi with entanglement entropy SðtÞ as an MPS, the
matrix size (or “bond dimension”) has to grow at least as
χ ∝ 2SðtÞ with time. For example, an evolution where S
increases linearly in time can therefore be considered
computationally hard [13].
The past few years have seen the arrival of novel

experiments capable of synthetically engineering quantum
many-body models in controllable and clean environments,
e.g., using optically trapped ultracold atoms [14–17],
molecules [18], or ions [19]. Since such experiments are
currently bringing the goal of analog quantum simulation
into sight [20,21], the question of entanglement growth,
and thus classical simulability, has become very important.
Every experiment has small couplings to its environment

and should therefore be considered as an open quantum

system described by a density matrix ρ̂. Analogously to
MPSs for pure states, also a matrix product operator (MPO)
form of the density matrix ρ̂ can be defined. An MPO form
allows one to easily express the density matrix as a Schmidt
decomposition between a left and a right block,

ρ̂ ¼
X
a

λaτ̂
½L�
a τ̂½R�a ; ð1Þ

with Trðτ̂½L=R�a τ̂½L=R�b Þ ¼ δab, and λa as the Schmidt coef-
ficients [schematically this is depicted in Fig. 1(b)]. The
bipartite entropy of this decomposition is given by the
operator space entanglement entropy, or simply operator
entanglement (OE), defined as [7,22–30]

SOP ¼ −
X
a

λ2alog2ðλ2aÞ: ð2Þ

The OE quantifies how many Schmidt values are at least
needed for faithfully approximating decomposition (1),
thus indicating the efficiency of an MPO representa-
tion [31]. It can be easily computed numerically
[25,27,28,32,33] and is amenable to analytical treatment
[26,34,35]. We stress that OE is not necessarily connected
to genuine quantum entanglement between distinct blocks
of spins when ρ̂ is a mixed state. Still, it is a crucial quantity,
as it puts severe restrictions on the possibility to approxi-
mate ρ̂ by an MPO. Furthermore, OE can give insights into
quantum many-body effects such as quantum chaos and
information scrambling [27,29,30].
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Here, we analyze the far-from-equilibrium dynamics of
the OE, SOP, in open many-body quantum systems. Our
models include coherent nearest-neighbor Hamiltonian
couplings that compete with incoherent single-particle
dephasing [37,47–50] at rate γ [see sketch in Fig. 1(a)].
Under dephasing, fluctuations and coherences can decay
toward equilibrium in a universal algebraic and subdiffu-
sive manor [51–54]. We treat dissipation in a Lindblad
master equation. Dephasing arises due to a coupling with
the environment in which local magnetization is preserved,
e.g., for laser driven transitions due to laser-phase fluctua-
tions [55,56] or due to spontaneous photoabsorption of
lattice photons in optical lattices [38]. We compute the
evolution of SOP for an infinite MPO representation of the
full density matrix using an infinite time-evolving block
decimation algorithm with reorthogonalization [39].
Surprisingly, we find that, for the magnetization con-

serving XXZ model and well-defined initial magnetization
[see text below Eq. (3) for the definition of our models], the
OE exhibits a universal logarithmic growth at long times
[see Figs. 1(c) and 1(d)]. An identical universal behavior is
also observed for particle number conserving Bose- and
Fermi-Hubbard models (see later discussion). Strikingly, as

shown in Fig. 1(e), this logarithmic growth breaks down if
the symmetry is broken by initial states or for Liouvillians
without magnetization conservation (see Supplemental
Material [36] for further initial states and nonconserving
Lindblad operators). In the latter scenarios, SOP saturates or
even vanishes at long times. In this Letter, we explain this
behavior by considering symmetry-resolved OE in combi-
nation with known results for classical models of interact-
ing particles [57–59].
Model.—We focus on infinite spin-1=2 chains, which

evolve under the general Hamiltonian (ℏ≡ 1),

Ĥ ¼ 1

4

X
i

ðJxσ̂xi σ̂xiþ1 þ Jyσ̂
y
i σ̂

y
iþ1 þ Jzσ̂

z
i σ̂

z
iþ1Þ þ

hz
2

X
i

σ̂zi :

ð3Þ

Here, σ̂x;y;zi denote standard Pauli matrices defined in a local
basis j↓;↑ii, Jx;y;z are the respective nearest-neighbor spin
couplings, and hz is a field strength along the z direction.
Our Hamiltonian (3) includes (i) the XXZ model, with
Jx ¼ Jy ≡ J, hz ¼ 0, (ii) an XYZ model, with Jx ≡ J,
Jx ≠ Jy, and hz ¼ 0, and (iii) a transverse Ising model, with
Jx ≡ J, Jy ¼ Jz ¼ 0, and hz ≠ 0. We are interested in the
dynamics of highly excited states. Here, we choose pure
Néel product states polarized along the z direction, ρ̂0 ¼
jψ0ihψ0j with jψ0i ¼⊗i j↑i2i−1j↓i2i, or a tilted Néel state
along the x direction, jψ0i ¼⊗i j →i2i−1j ←i2i with
j⇆ii ¼ ðj↑ii ∓ j↓iiÞ=

ffiffiffi
2

p
. Dynamics is governed by a

Lindblad master equation,

d
dt

ρ̂ ¼ −i½Ĥ; ρ̂� þ
X
i

D½i�ρ̂≡ Lρ̂; ð4Þ

where the local dephasing superoperators are de-
fined as D½i�ρ̂ ¼ γ=2ðσ̂zi ρ̂σ̂zi − ρ̂Þ and L is the Liouvillian
superoperator.
MPO decomposition and OE.—For L spins, the full

many-body density matrix ρ̂ of a spin-1=2 system is a 2L ×
2L Hermitian matrix with unit trace. The amount of
information encoded in ρ̂ can be effectively compressed
using matrix product decompositions [11,12]. This can be
done in different ways [60]: for instance, by decomposing ρ̂
into a particular (not unique) statistical mixture of pure
states, while using anMPS for the latter. Then, the Lindblad
dynamics can be computed using quantum trajectories [61].
Alternatively, one can use a direct MPO representation for
ρ̂, e.g., simply by effectively vectorizing local density
matrices [40] or by constructing MPOs in a locally purified
form that preserves positivity [62,63].
Here, we decompose ρ̂ into a canonical MPO form [40],

which is formally achieved by an iterative application of the
Schmidt decomposition from Eq. (1), until each spin n is

described by a matrix of unique local operators γ̂½n�an;anþ1
,

FIG. 1. (a) We compute dynamics of spin chains with coherent
nearest-neighbor couplings (double arrows) and local dephasing at
rate γ (wiggly arrows). (b)We analyze the growth of OE (SOP) for a
bipartition of an infinite chain into a left and right block [from a
Schmidt decomposition of the density matrix ρ̂, see Eq. (1)].
(c) Time evolution of SOP for a Néel state in the XXZ model for
different values of γ ¼ J=4; J=2; J; 2J, and 4J in order of increas-
ing darkness (anisotropy Jz ¼ −J). (d) Same as (c), demonstrating
logarithmic growth at long times (log-scale time axis). Gray dashed
line, analytic long-time prediction: SOP ¼ log2ðJtÞ=4þ const.
(e) SOP for dynamics in models breaking magnetization conserva-
tion. Green dash-dotted line, XYZ model ðJx ¼ J; Jy ¼ 0.8J;
Jz ¼ −J=2; γ ¼ J=2Þ; red dashed line, transverse field Isingmodel
ðhz ¼ J; γ ¼ J=2Þ; blue solid line, XXZ model with initial Néel
state in x direction ðJz ¼ −J=2; γ ¼ J=2Þ. Results converged for
time stepΔtJ ¼ 0.2 [ΔtJ ¼ 0.5 for (d) at long times] and different
values for the bond dimension χ ¼ 256, 512, 1024 (see Supple-
mental Material [36]).
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i.e., ρ̂ ¼ P
fang

Q
n λan γ̂

½n�
an;anþ1

. By choosing local basis
operators êin for the density matrix of spin n, we can then
decompose

ρ̂ ¼
X
fing

Xχ
fang

Y
n

Γ½n�in
ananþ1

λ½n�an⊗
n
êin ; ð5Þ

where Γ½n� are three-dimensional tensors and λ½n� are the
Schmidt vectors. Tensors are truncated at a maximumMPO
bond dimension χ. All results shown are numerically
converged in χ [36]. For êi we choose local eigenoperators
for the multiplication with σ̂z from the left and right, to take
advantage of the magnetization conservation (see below).
Both the initial state and the Hamiltonian are invariant
under translation by two lattice sites. As a consequence, in
Eq. (5) one has Γ½nþ2� ¼ Γ½n� and λ½nþ2� ¼ λ½n� [39,41], and
only two Γ and λ tensors are needed to encode a density
matrix. The time evolution is then computed with a fourth-
order Trotter decomposition of the matrix exponential of
the Liouvillian expðLΔtÞ [39,40,42]. Importantly, since the
dynamics is nonunitary, a naive implementation of this
algorithm destroys the orthogonality of the decomposition
in Eq. (5), such that, with time, the λ’s do not correspond to
orthogonal Schmidt bases anymore. We fix this by reor-
thogonalizing the tensors after updates [39].
When considering the XXZ model, the total magneti-

zation Ŝz ¼ P
n σ̂

z
n is conserved. This means that ρ̂ stays an

eigenoperator of Ŝz in the sense that Ŝzρ̂ðtÞ ¼ Mρ̂ðtÞ at all
times (for the Néel state, M ¼ 0). Note that, alternatively,
one could also define a condition for multiplication from

the right. Because of magnetization preservation, the τ̂½R�a

matrices in Eq. (1) can be chosen to be eigenoperators of
the “right-half magnetization” of the chain, ŜzR ≡P

n>0 σ̂
z
n

(without loss of generality, we define the right half as

n > 0), ŜzRτ̂
½R�
a ¼ MRτ̂

½R�
a . Similarly, one can choose τ̂½L�a to

be eigenoperators of ŜzL ≡P
n≤0 σ̂

z
n withML ¼ −MR. This

means that the index a in Eq. (1) becomes a composite
index a → ðMR; a0Þ, where a0 distinguishes the Schmidt
coefficients corresponding to the same MR,

ρ̂ ¼
X
MR

ffiffiffiffiffiffiffiffiffi
pMR

p X
a0
λ̃MR;a0 τ̂

½L�
−MR;a0

τ̂½R�MR;a0
: ð6Þ

Here we defined λ̃MR;a ≡ λMR;a=
ffiffiffiffiffiffiffiffiffipMR

p , with pMR
¼P

a λ
2
MR;a

as the probability of having magnetization MR

in the right half. The existence of the conservation law
makes our simulations much more efficient, since the
block-diagonal form of the tensors can be exploited.
Logarithmic increase of OE: Numerical results.—In

simulations in Fig. 1, we noticed a distinctive different
behavior of OE growth at long times (log growth) for the

magnetization conserving XXZ model compared to other

models breaking this conservation law. Quite generically,
at times t ≪ γ−1, the dynamics is dominated by the
Hamiltonian part in Eq. (4). Sufficiently pure states at
such short times can be approximated by the state
jψ ti ¼ e−iĤtjψ0i. In that case, the OE is simply twice
the entanglement entropy of jψ ti (see, e.g., Ref. [26]), and
it is well established that the latter generically grows
linearly in time (in the absence of disorder). At times
t≳ γ−1, the initial coherence is destroyed by dephasing,
and the OE decreases (see Supplemental Material [36] for a
more detailed discussion on the parameter dependence of
the peak heights). This rise and fall is clearly visible in
Fig. 1, and it is typical for OE dynamics, as well as other
quantities such as the mutual information [64,65].
Typically, under the dynamics in Eq. (4), the system is
expected to relax to a simple stationary state characterized
by the conserved quantities of Eq. (4) or to the identity if
there is no conservation law. The OE at late times converges
toward the OE of that stationary state. This is visible in our
simulations of the XYZ and Ising models, see Fig. 1(e). In
this case, only the parity Π̂ ¼⊗i σ̂

z
i is preserved by the

dynamics. Since the initial Néel state is an eigenstate of Π̂,
the stationary density matrix is a projector on a fixed
parity sector, 1

2
ð1� Π̂Þ, with the Oð1Þ entropy SOP ¼

1ð¼ log2 2Þ. For the XXZ chain with the initial tilted
Néel along the x direction, even parity conservation is
broken, and the stationary density matrix becomes the
identity, SOP ¼ 0. In stark contrast, for the XXZ chain and
initial Néel state, after the rise and fall dynamics, the OE
increases again at long times, see Fig. 1(c), and this second
increase is logarithmic in time, see Fig. 1(d). More
precisely, we find the long-time behavior SOPðt → ∞Þ ¼
ηlog2ðtJÞ þ S0, which we will also understand analytically
below. The prefactor η converges universally to η ¼ 1=4
independent of the precise values of γ and Jz, as shown in
Fig. 2(a), and has also been observed with additional
disorder [66]. The offset S0 depends on the characteristic
timescale of the long-time diffusive dynamics set by J, Jz,
and γ [36]. Note that we find the evolution of OE in the
XXZ model to be independent of the signs of J and Jz.
Mechanism for logarithmic growth: Abelian symmetry

and anomalous charge diffusion.—To also analytically
understand this behavior, we now consider the XXZ model
evolution in the strong dephasing limit γ ≫ J. The dis-
sipators in the master equation (4) project the density
matrix onto its diagonal part ρ̂diag ¼

P
σ ρσσ jσihσj, where

the σ denote all binary vectors of spin-z configurations.
The dynamics then reduces to a classical master equation
for the probability pσ ¼ ρσσ, dpσ=dt ¼

P
σ0 Mσσ0pσ0 . The

stochastic matrixMwas determined in Ref. [37] in second-
order perturbation theory starting from Eq. (4). It takes the
form of an effective ferromagnetic Heisenberg Hamiltonian,
M¼−J2=ð8γÞPi ½σ̂xi σ̂xiþ1þ σ̂yi σ̂

y
iþ1þ σ̂zi σ̂

z
iþ1−1�. Importa-

ntly, M is the stochastic matrix of the symmetric simple
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exclusion process (SEP) [43,67], a model of classical hard-
core particles that perform random walks.
Crucially, in the SEP, the mean-squared displacement of

a tagged particle grows as hX2
t i ∝

ffiffi
t

p
[58,59,68–71], as

opposed to ∝ t for a usual random walk. This anomalous
diffusion is universally found in problems of so-called
single-file diffusion [68,72,73], when classical particles
diffuse in one-dimensional channels without bypassing
each other. Here, it is now also tied to anomalous scaling
of the particle number fluctuations between the left and
right half-systems. If ΔNðtÞ ¼ MRðtÞ=2 is the excess
number of particles (with respect to the initial Néel state)
in the right half-system at time t, and if we tag the parti-
cle initially at the origin, then one can estimate
ΔNðtÞ ≃ ρ0Xt, where ρ0 ¼ 1=2 is the particle density in
the Néel state. Consequently, hΔNðtÞ2i ≃ ρ20hX2

t i ∝
ffiffi
t

p
.

More generally, the probability distribution of MRðtÞ
is found to obey a scaling form at long times [69]:
p½MRðtÞ ¼ m� ∼

t→∞
exp ½ ffiffi

t
p

Gðm=
ffiffi
t

p Þ�. Here, the large-

deviation function G is nonpositive, symmetric [GðuÞ ¼
Gð−uÞ], diverges when juj → ∞, and has a single mini-
mum at u ¼ 0 (see Ref. [69]). In particular, away from the
tails, the distribution is Gaussian with standard deviation
δ ¼ t1=4=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijG00ð0Þjp
. The Shannon entropy associated with

number fluctuations is then

SnumðtÞ ¼
X
m∈2Z

− pðmÞlog2pðmÞ

≃
Z

−
ffiffiffiffiffiffiffi
2

πδ2

r
e−

m2

2δ2 log2

� ffiffiffiffiffiffiffi
2

πδ2

r
e−

m2

2δ2

�
dm
2

¼ log2δþ log2ð
ffiffiffiffiffiffiffiffiffiffi
πe=2

p
Þ ¼
t→∞

1

4
log2tþOð1Þ: ð7Þ

It is no coincidence that SOP grows in the same way as the
number fluctuations Snum at long times (see below).

Away from the γ=J ≫ 1 limit, the XXZ chain no longer
reduces to the SEP. Nevertheless, we find that the same type
of anomalous scaling persists. This is confirmed in Fig. 2,
where we show that, for times accessible numerically,
pðMR ¼ mÞ is approximately Gaussian [Fig. 2(b)] with
width δ ∝ t

1
4 [Fig. 2(c)]. Thus, even though the exact

correspondence with the SEP breaks down at finite γ=J,
the scaling of Snum in Eq. (7) remains unchanged. This
result is also consistent with previous studies of transport in
the XXZ and related models [74–77].
Symmetry-resolved OE.—We now show how the relation

between SOP and Snum can be revealed in so-called
symmetry-resolved operator entanglement. From Eq. (6)
we can derive a decomposition of the OE into the form

SOP ¼
X
MR

pMR
SresðMRÞ þ SnumðpMR

Þ; ð8Þ

where the “symmetry-resolved entanglement entropies” are
SresðMRÞ ¼ −

P
a λ̃

2
MR;alog2ðλ̃2MR;aÞ, and Snum is given in

Eq. (7). Such symmetry-resolved entropies have attracted
attention recently [8,78–82]. In Fig. 2(d) we display
SresðMRÞ for different values of MR. Also Sres exhibits
the rise and fall phenomenon discussed above, but inde-
pendent of MR they decrease to very small values at late
times. This means that the logarithmic increase SOP is
solely due to the growth of Snum.
Fermi- and Bose-Hubbard models.—To demonstrate the

generality of the logarithmic OE growth, we discuss two
additional paradigmatic many-body setups featuring num-
ber conservation: (i) a Fermi-Hubbard (FH) model, ĤFH ¼
−Jf

P
n;σðĉ†σ;nĉσ;nþ1 þ H:c:Þ þ Uf

P
n ĉ†↑;nĉ

†
↓;nĉ↑;nĉ↓;n

with creation operators for spin-full fermions on site n, ĉ†σ;n
(σ ¼ ↑;↓), and (ii) a Bose-Hubbard (BH) model,
ĤBH ¼−Jb

P
nðb̂†nb̂nþ1þH:c:ÞþUb=2

P
n b̂

†
nb̂

†
nb̂nb̂n, for

bosons created by b̂†n. In both cases, we consider dephasing

FIG. 2. (a) Numerical determination of η for long times. η at time t0J is obtained as the local tangent to SOPðtÞ ¼ S0 þ η logðtJÞ at t0J.
We find η → 1=4 (gray dashed line) for all parameters and t0 → ∞. Top (blue): Fixed Jz ¼ −J and various γ=J ¼ 1=4; 1=2; 1, 2, 4.
Bottom (red): Fixed γ ¼ J and various −Jz=J ¼ 0, 1, 2, 3, 4. (b) Probabilities pðMRÞ for right-half magnetization MR of the infinite
chain (see text) at increasingly late times (200 ≤ tJ ≤ 1200 from light to dark, Jz ¼ −J, γ ¼ J=2. Lines are Gaussian fits. (c) Variance δ2

of Gaussian fits [as in (b)] as a function of time for Jz ¼ −J and γ=J ¼ 1=4; 1=2; 1, 2, 4 (light to dark). The gray dashed line indicates
δ2 ∼

ffiffiffiffiffi
tJ

p
(double-log scale). (d) Symmetry-resolved operator entanglement entropies Sres as a function of time (see text). For short times

and the larger MR ¼ 6, 8 the probabilities pðMRÞ are exponentially suppressed and no sub-machine-precision data could be extracted.
Same parameters as panel (b). Results converged for ΔtJ ¼ 0.5 [(a)-(c)] and ΔtJ ¼ 0.1 [(d)] and different values of χ ¼ 512, 1024,
2048 (see Supplemental Material [36]).
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D½k�ρ̂ ¼ γL̂kρL̂
†
k − γðL̂†

kL̂kρ̂þ ρ̂L̂†
kL̂kÞ=2, where L̂σ;n ¼

ĉ†σ;nĉσ;n and L̂n ¼ b̂†nb̂n in the FH and BH case, respec-
tively. As demonstrated in Fig. 3, both models also exhibit a
long-time logarithmic OE growth. In the FH model, we
observe SOP ∼ log2ðtJfÞ=2. For γ ≫ Jf; Uf, this can be
understood analytically by considering the FH chain as the
sum of two chains, one for each spin degree of freedom,
both of which are described by the SEP and exhibit
SOP ∼ log2ðtJfÞ=4. Here, interactions contribute only at
higher orders (see Supplemental Material [36]). The BH
model exhibits SOP ∼ log2ðtJbÞ=4 analogous to the XXZ
model. For large Ub ≫ γ ≫ Jb, the creation of doublons is
energetically suppressed, leading back to the SEP. For finite
interaction strength ðγ ≫ Jb; UbÞ, a different classical limit
is reached, which also features logarithmic OE growth with
a prefactor close to 1=4 stemming from a “symmetric
inclusion process” [36,43].
Conclusion.—We showed that, in a dissipative system

possessing a U(1) conservation law, the operator entangle-
ment grows logarithmically at long times. We pinpointed
the mechanism that leads to this logarithmic growth and
identified its prefactor with the (possibly anomalous)
exponent characterizing the fluctuations of the charge
associated with the U(1) symmetry. Our results and
methods are of general interest to studies of imperfect
quantum computation and quantum simulation platforms,
currently pushing into a regime where they may offer a
quantum advantage. The entanglement entropy dynamics
we study here connects directly to similar results obtained
for discrete quantum circuit models [27,32,83,84] or to
other dissipative simulation methods such as quantum
trajectories [85,86]. An understanding of the destructive
processes of the environment on dynamics are essential,
and the interplay between dissipation and coherent cou-
plings can lead to interesting physics or state engineering
(e.g., [87–90]). In the future, it will be interesting to
investigate how the presence of more complex symmetries
such as SUðNÞ impacts entanglement dynamics.
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