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The operator space entanglement entropy, or simply “operator entanglement” (OE), is an indicator of the
complexity of quantum operators and of their approximability by matrix product operators (MPOs). We
study the OE of the density matrix of 1D many-body models undergoing dissipative evolution. It is
expected that, after an initial linear growth reminiscent of unitary quench dynamics, the OE should be
suppressed by dissipative processes as the system evolves to a simple stationary state. Surprisingly, we find
that this scenario breaks down for one of the most fundamental dissipative mechanisms: dephasing. Under
dephasing, after the initial “rise and fall,” the OE can rise again, increasing logarithmically at long times.
Using a combination of MPO simulations for chains of infinite length and analytical arguments valid for
strong dephasing, we demonstrate that this growth is inherent to a U(1) conservation law. We argue that in
an XXZ spin model and a Bose-Hubbard model the OE grows universally as %logzt at long times and as

%logz t for a Fermi-Hubbard model. We trace this behavior back to anomalous classical diffusion processes.
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The study of quantum many-body systems through
the prism of their quantum entanglement continues to
prove extremely fruitful [1,2]. In particular, the growth
of entanglement in time-evolving quantum many-body
systems is of fundamental interest [3—8]: not only is it
useful to characterize the dynamics, but the amount of
entanglement also indicates whether a quantum evolution
can be efficiently simulated on a classical computer. In one
dimension (1D), the connection can be made via the
concept of matrix product states (MPSs) [9-12]. An
MPS is a decomposition of a many-body state vector into
a product of y x y matrices (where the entries of the
matrices are local kets). In such a representation, the
bipartite von Neumann entanglement entropy S is bounded
by max|[S] = log,(y). Consequently, to represent a physical
state |y (¢)) with entanglement entropy S(z) as an MPS, the
matrix size (or “bond dimension”) has to grow at least as
7 « 2500 with time. For example, an evolution where S
increases linearly in time can therefore be considered
computationally hard [13].

The past few years have seen the arrival of novel
experiments capable of synthetically engineering quantum
many-body models in controllable and clean environments,
e.g., using optically trapped ultracold atoms [14-17],
molecules [18], or ions [19]. Since such experiments are
currently bringing the goal of analog quantum simulation
into sight [20,21], the question of entanglement growth,
and thus classical simulability, has become very important.

Every experiment has small couplings to its environment
and should therefore be considered as an open quantum
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system described by a density matrix p. Analogously to
MPSs for pure states, also a matrix product operator (MPO)
form of the density matrix p can be defined. An MPO form
allows one to easily express the density matrix as a Schmidt
decomposition between a left and a right block,

p=3 Atz (1)

a

with Tr(%LL/ R]%E,L/ R]) = 6., and A, as the Schmidt coef-
ficients [schematically this is depicted in Fig. 1(b)]. The
bipartite entropy of this decomposition is given by the
operator space entanglement entropy, or simply operator
entanglement (OE), defined as [7,22-30]

Sop = —Zlﬁlogz(lﬁ). (2)

The OE quantifies how many Schmidt values are at least
needed for faithfully approximating decomposition (1),
thus indicating the efficiency of an MPO representa-
tion [31]. It can be easily computed numerically
[25,27,28,32,33] and is amenable to analytical treatment
[26,34,35]. We stress that OE is not necessarily connected
to genuine quantum entanglement between distinct blocks
of spins when p is a mixed state. Still, it is a crucial quantity,
as it puts severe restrictions on the possibility to approxi-
mate p by an MPO. Furthermore, OE can give insights into
quantum many-body effects such as quantum chaos and
information scrambling [27,29,30].
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Here, we analyze the far-from-equilibrium dynamics of
the OE, Spp, in open many-body quantum systems. Our
models include coherent nearest-neighbor Hamiltonian
couplings that compete with incoherent single-particle
dephasing [37,47-50] at rate y [see sketch in Fig. 1(a)].
Under dephasing, fluctuations and coherences can decay
toward equilibrium in a universal algebraic and subdiffu-
sive manor [51-54]. We treat dissipation in a Lindblad
master equation. Dephasing arises due to a coupling with
the environment in which local magnetization is preserved,
e.g., for laser driven transitions due to laser-phase fluctua-
tions [55,56] or due to spontaneous photoabsorption of
lattice photons in optical lattices [38]. We compute the
evolution of Sgp for an infinite MPO representation of the
full density matrix using an infinite time-evolving block
decimation algorithm with reorthogonalization [39].

Surprisingly, we find that, for the magnetization con-
serving XXZ model and well-defined initial magnetization
[see text below Eq. (3) for the definition of our models], the
OE exhibits a universal logarithmic growth at long times
[see Figs. 1(c) and 1(d)]. An identical universal behavior is
also observed for particle number conserving Bose- and
Fermi-Hubbard models (see later discussion). Strikingly, as
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FIG. 1. (a) We compute dynamics of spin chains with coherent

nearest-neighbor couplings (double arrows) and local dephasing at
rate y (wiggly arrows). (b) We analyze the growth of OE (Sgp) for a
bipartition of an infinite chain into a left and right block [from a
Schmidt decomposition of the density matrix p, see Eq. (1)].
(c) Time evolution of Sgp for a Néel state in the XXZ model for
different values of y = J/4,J/2,J,2J, and 4J in order of increas-
ing darkness (anisotropy J, = —J). (d) Same as (c), demonstrating
logarithmic growth at long times (log-scale time axis). Gray dashed
line, analytic long-time prediction: Sop = log,(J?)/4 + const.
(e) Sop for dynamics in models breaking magnetization conserva-
tion. Green dash-dotted line, XYZ model (J, =J, J, =0.8J,
J, = —J/2,y = J/2);red dashed line, transverse field Ising model
(h, = J,y = J/2); blue solid line, XXZ model with initial Néel
state in x direction (J, = —J/2,y = J/2). Results converged for
time step AtJ = 0.2 [AtJ = 0.5 for (d) at long times] and different
values for the bond dimension y = 256, 512, 1024 (see Supple-
mental Material [36]).

shown in Fig. 1(e), this logarithmic growth breaks down if
the symmetry is broken by initial states or for Liouvillians
without magnetization conservation (see Supplemental
Material [36] for further initial states and nonconserving
Lindblad operators). In the latter scenarios, Sqp saturates or
even vanishes at long times. In this Letter, we explain this
behavior by considering symmetry-resolved OE in combi-
nation with known results for classical models of interact-
ing particles [57-59].

Model.—We focus on infinite spin-1/2 chains, which
evolve under the general Hamiltonian (A = 1),

, h
D _Uabibt + 1,66+ 18767,) + 5 6.

i

3)

Here, 6, denote standard Pauli matrices defined in a local
basis ||, 1);, J.,.. are the respective nearest-neighbor spin
couplings, and £, is a field strength along the z direction.
Our Hamiltonian (3) includes (i) the XXZ model, with
Je=J,=J, h; =0, (i) an XYZ model, with J, =J,
J. # Jy, and h, = 0, and (iii) a transverse Ising model, with
Jy=J,J,=J,=0, and h, # 0. We are interested in the
dynamics of highly excited states. Here, we choose pure
Néel product states polarized along the z direction, py =
Wo) (wol With lyro) =® [1)5i_i| L)y, or a tilted Neéel state
along the x direction, |po) =®; | =)y <) With
1s); = (1), F |4);)/V2. Dynamics is governed by a
Lindblad master equation,

—p=—ilH.p]+ > Dip=Lp, (4)

where the local dephasing superoperators are de-
fined as Dllp = y/2(65p6% — p) and L is the Liouvillian
superoperator.

MPO decomposition and OE.—For L spins, the full
many-body density matrix p of a spin-1/2 system is a 2 x
2L Hermitian matrix with unit trace. The amount of
information encoded in p can be effectively compressed
using matrix product decompositions [11,12]. This can be
done in different ways [60]: for instance, by decomposing p
into a particular (not unique) statistical mixture of pure
states, while using an MPS for the latter. Then, the Lindblad
dynamics can be computed using quantum trajectories [61].
Alternatively, one can use a direct MPO representation for
p, e.g., simply by effectively vectorizing local density
matrices [40] or by constructing MPOs in a locally purified
form that preserves positivity [62,63].

Here, we decompose p into a canonical MPO form [40],
which is formally achieved by an iterative application of the
Schmidt decomposition from Eq. (1), until each spin 7 is

described by a matrix of unique local operators yﬁ,’j},am,
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ie, p=> .11l ﬂan;?L"n],anH. By choosing local basis
operators ¢; for the density matrix of spin n, we can then
decompose

ZZHF“ ‘1n+1 a,,® € (5)

{in} {an} n

where I'" are three-dimensional tensors and A" are the
Schmidt vectors. Tensors are truncated at a maximum MPO
bond dimension y. All results shown are numerically
converged in y [36]. For ¢; we choose local eigenoperators
for the multiplication with 6° from the left and right, to take
advantage of the magnetization conservation (see below).
Both the initial state and the Hamiltonian are invariant
under translation by two lattice sites. As a consequence in
Eq. (5) one has I'"t2 = " and Al"+2] = 2" [39,41], and
only two I" and A tensors are needed to encode a density
matrix. The time evolution is then computed with a fourth-
order Trotter decomposition of the matrix exponential of
the Liouvillian exp(LA7) [39,40,42]. Importantly, since the
dynamics is nonunitary, a naive implementation of this
algorithm destroys the orthogonality of the decomposition
in Eq. (5), such that, with time, the 1’s do not correspond to
orthogonal Schmidt bases anymore. We fix this by reor-
thogonalizing the tensors after updates [39].

When considering the XXZ model, the total magneti-
zation §° = >, 6% is conserved. This means that p stays an
eigenoperator of $° in the sense that $7)(r) = Mp(z) at all
times (for the Néel state, M = 0). Note that, alternatively,
one could also define a condition for multiplication from
the right. Because of magnetization preservation, the %,[IR]
matrices in Eq. (1) can be chosen to be eigenoperators of
the “right-half magnetization” of the chain, §% =, 8%
(without loss of generality, we define the right half as

n > 0), SRTa] M RTL] Similarly, one can choose TL] to

be eigenoperators of §5 = = <005 with M; = —Mp,. This
means that the index a in Eq. (1) becomes a composite
index a —» (Mg, d’), where o' distinguishes the Schmidt
coefficients corresponding to the same Mg,

p=2 P D ity (O

Here we defined ZMR,a = AMpal/\/Pry With py =
>4 AM .« as the probability of having magnetization M
in the right half. The existence of the conservation law
makes our simulations much more efficient, since the
block-diagonal form of the tensors can be exploited.
Logarithmic increase of OE: Numerical results.—In
simulations in Fig. 1, we noticed a distinctive different
behavior of OE growth at long times (log growth) for the

magnetization conserving XXZ model compared to other

models breaking this conservation law. Quite generically,
at times t<<y~', the dynamics is dominated by the
Hamiltonian part in Eq. (4). Sufficiently pure states at
such short times can be approximated by the state
ly,) = e7|y,). In that case, the OE is simply twice
the entanglement entropy of |y;) (see, e.g., Ref. [26]), and
it is well established that the latter generically grows
linearly in time (in the absence of disorder). At times
t > y~!, the initial coherence is destroyed by dephasing,
and the OE decreases (see Supplemental Material [36] for a
more detailed discussion on the parameter dependence of
the peak heights). This rise and fall is clearly visible in
Fig. 1, and it is typical for OE dynamics, as well as other
quantities such as the mutual information [64,65].
Typically, under the dynamics in Eq. (4), the system is
expected to relax to a simple stationary state characterized
by the conserved quantities of Eq. (4) or to the identity if
there is no conservation law. The OE at late times converges
toward the OE of that stationary state. This is visible in our
simulations of the XYZ and Ising models, see Fig. 1(e). In
this case, only the parity I =Q; 67 is preserved by the
dynamics. Since the initial Néel state is an eigenstate of I,
the stationary density matrix is a projector on a fixed
parity sector, 1 (1 + I1), with the O(1) entropy Sop =
1(=log,2). For the XXZ chain with the initial tilted
Néel along the x direction, even parity conservation is
broken, and the stationary density matrix becomes the
identity, Sop = 0. In stark contrast, for the XXZ chain and
initial Néel state, after the rise and fall dynamics, the OE
increases again at long times, see Fig. 1(c), and this second
increase is logarithmic in time, see Fig. 1(d). More
precisely, we find the long-time behavior Sop(t — o) =
nlog, (tJ) 4+ Sy, which we will also understand analytically
below. The prefactor 5 converges universally to n = 1/4
independent of the precise values of y and J, as shown in
Fig. 2(a), and has also been observed with additional
disorder [66]. The offset S, depends on the characteristic
timescale of the long-time diffusive dynamics set by J, J,
and y [36]. Note that we find the evolution of OE in the
XXZ model to be independent of the signs of J and J,.
Mechanism for logarithmic growth: Abelian symmetry
and anomalous charge diffusion.—To also analytically
understand this behavior, we now consider the XXZ model
evolution in the strong dephasing limit y > J. The dis-
sipators in the master equation (4) project the density
matrix onto its diagonal part paiae = D, P46|0) (6], Where
the o denote all binary vectors of spin-z configurations.
The dynamics then reduces to a classical master equation
for the probability ps = pse dps/dt = > 5 My P The
stochastic matrix M was determined in Ref. [37] in second-
order perturbation theory starting from Eq. (4). It takes the
form of an effective ferromagnetic Heisenberg Hamiltonian,
M==J2/(8y)>;[676%,,+ 6767, + 6767, —1]. Importa-
ntly, M is the stochastic matrix of the symmetric simple
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FIG. 2. (a) Numerical determination of 5 for long times.  at time #,./ is obtained as the local tangent to Sop(t) = Sy + 7log(#J) at 1yJ.

We find n — 1/4 (gray dashed line) for all parameters and #, — oo. Top (blue): Fixed J, = —J and various y/J = 1/4,1/2,1, 2, 4.
Bottom (red): Fixed y = J and various —J,/J = 0, 1, 2, 3, 4. (b) Probabilities p(Mp) for right-half magnetization M of the infinite
chain (see text) at increasingly late times (200 < #J < 1200 from light to dark, J, = —J, y = J/2. Lines are Gaussian fits. (c) Variance &
of Gaussian fits [as in (b)] as a function of time for J, = —J and y/J = 1/4,1/2,1, 2, 4 (light to dark). The gray dashed line indicates
82 ~ \/tJ (double-log scale). (d) Symmetry-resolved operator entanglement entropies S, as a function of time (see text). For short times
and the larger M = 6, 8 the probabilities p(Mpy) are exponentially suppressed and no sub-machine-precision data could be extracted.
Same parameters as panel (b). Results converged for AtJ = 0.5 [(a)-(c)] and AzJ = 0.1 [(d)] and different values of y = 512, 1024,

2048 (see Supplemental Material [36]).

exclusion process (SEP) [43,67], a model of classical hard-
core particles that perform random walks.

Crucially, in the SEP, the mean-squared displacement of
a tagged particle grows as (X?) o /7 [58,59,68-71], as
opposed to « ¢ for a usual random walk. This anomalous
diffusion is universally found in problems of so-called
single-file diffusion [68,72,73], when classical particles
diffuse in one-dimensional channels without bypassing
each other. Here, it is now also tied to anomalous scaling
of the particle number fluctuations between the left and
right half-systems. If AN(¢) = Mg(t)/2 is the excess
number of particles (with respect to the initial Néel state)
in the right half-system at time ¢, and if we tag the parti-
cle initially at the origin, then one can estimate
AN(1) =~ poX,, where py = 1/2 is the particle density in
the Néel state. Consequently, (AN(7)?) ~p3(X?) o« /1.
More generally, the probability distribution of Mg(¢)
is found to obey a scaling form at long times [69]:
pIMg(1) = m]t:00 exp [V1G(m/+/1)]. Here, the large-
deviation function G is nonpositive, symmetric [G(u) =
G(—u)], diverges when |u| — oo, and has a single mini-
mum at ¥ = 0 (see Ref. [69]). In particular, away from the
tails, the distribution is Gaussian with standard deviation
8 =t/4/,/|G"(0)|. The Shannon entropy associated with
number fluctuations is then

Sum(1) = Y = p(m)log,p(m)

It is no coincidence that Sop grows in the same way as the
number fluctuations S, at long times (see below).

Away from the y/J > 1 limit, the XXZ chain no longer
reduces to the SEP. Nevertheless, we find that the same type
of anomalous scaling persists. This is confirmed in Fig. 2,
where we show that, for times accessible numerically,
p(Mg = m) is approximately Gaussian [Fig. 2(b)] with
width 6 o 74 [Fig. 2(c)]. Thus, even though the exact
correspondence with the SEP breaks down at finite y/J,
the scaling of S,,, in Eq. (7) remains unchanged. This
result is also consistent with previous studies of transport in
the XXZ and related models [74-77].

Symmetry-resolved OE.—We now show how the relation
between Sop and S,,, can be revealed in so-called
symmetry-resolved operator entanglement. From Eq. (6)
we can derive a decomposition of the OE into the form

SOP = ZPMRSreS(MR) + Snum(pMR)’ (8)
Mpg

where the “symmetry-resolved entanglement entropies” are
Sres(MR) = _Za l%lk.alog2(’1%/1,¢,a>’ and S, is given in
Eq. (7). Such symmetry-resolved entropies have attracted
attention recently [8,78-82]. In Fig. 2(d) we display
Sies(Mp) for different values of Mg. Also S, exhibits
the rise and fall phenomenon discussed above, but inde-
pendent of My they decrease to very small values at late
times. This means that the logarithmic increase Sgp is
solely due to the growth of S, .

Fermi- and Bose-Hubbard models.—To demonstrate the
generality of the logarithmic OE growth, we discuss two
additional paradigmatic many-body setups featuring num-

ber conservation: (i) a Fermi-Hubbard (FH) model, Ay =

_Jf Zn,a(e;snéa,n—‘rl + HC) + Uf Zn 6-;,;161,n61n&¢,n

with creation operators for spin-full fermions on site n, .
(6=1,]), and (ii) a Bose-Hubbard (BH) model,
HBH = _‘]b Zn(b;;,\bn-&-l + HC) + Ub/2 Zn b:lbjlbnbna for
bosons created by b!. In both cases, we consider dephasing
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FIG. 3. Logarithmic OE growth in the (a) Fermi-Hubbard and
(b) Bose-Hubbard models with dephasing for different interaction
strengths Uy/,. The gray dashed lines indicate the analytically
expected long-time growth [36]. The initial states are as follows:
(a) one fermion per site with alternating spins |--- 1} 1 ---) and
(b) alternating sites with 0 or 1 boson |---101 - - -). Parameters:
(a) ]/f = 8Jf and (b) Yp — 2.];,, X = 512, 256, A[Jf/b = 1/2,
maximum bosons per site n,,,, = 4.

DMp =yLipLy —y(LiLip + PLILL)/2, where L,, =
8;”?:6,” and L, = lA)jllAan in the FH and BH case, respec-
tively. As demonstrated in Fig. 3, both models also exhibit a
long-time logarithmic OE growth. In the FH model, we
observe Sop ~log,(tJy)/2. For y > J;, Uy, this can be
understood analytically by considering the FH chain as the
sum of two chains, one for each spin degree of freedom,
both of which are described by the SEP and exhibit
Sop ~log,(tJ;)/4. Here, interactions contribute only at
higher orders (see Supplemental Material [36]). The BH
model exhibits Sop ~ log,(2J,,)/4 analogous to the XXZ
model. For large U, > y > J,,, the creation of doublons is
energetically suppressed, leading back to the SEP. For finite
interaction strength (y > J,, U},), a different classical limit
is reached, which also features logarithmic OE growth with
a prefactor close to 1/4 stemming from a “symmetric
inclusion process” [36,43].

Conclusion.—We showed that, in a dissipative system
possessing a U(1) conservation law, the operator entangle-
ment grows logarithmically at long times. We pinpointed
the mechanism that leads to this logarithmic growth and
identified its prefactor with the (possibly anomalous)
exponent characterizing the fluctuations of the charge
associated with the U(1) symmetry. Our results and
methods are of general interest to studies of imperfect
quantum computation and quantum simulation platforms,
currently pushing into a regime where they may offer a
quantum advantage. The entanglement entropy dynamics
we study here connects directly to similar results obtained
for discrete quantum circuit models [27,32,83,84] or to
other dissipative simulation methods such as quantum
trajectories [85,86]. An understanding of the destructive
processes of the environment on dynamics are essential,
and the interplay between dissipation and coherent cou-
plings can lead to interesting physics or state engineering
(e.g., [87-90]). In the future, it will be interesting to
investigate how the presence of more complex symmetries
such as SU(N) impacts entanglement dynamics.
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