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Probing an isolated Majorana zero mode is predicted to reveal a tunneling conductance quantized at
2e2=h at zero temperature. Experimentally, a zero-bias peak (ZBP) is expected and its height should remain
robust against relevant parameter tuning, forming a quantized plateau. Here, we report the observation of
large ZBPs in a thin InAs-Al hybrid nanowire device. The ZBP height can stick close to 2e2=h, mostly
within 5% tolerance, by sweeping gate voltages and magnetic field. We further map out the phase diagram
and identify two plateau regions in the phase space. Despite the presence of disorder and quantum dots, our
result constitutes a step forward toward establishing Majorana zero modes.
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Majorana zero modes (MZMs) [1,2] have been exten-
sively searched in hybrid semiconductor-superconductor
nanowire devices since the first material prediction in
2010 [3,4]. One key prediction, a quantized zero-bias peak
(ZBP) in tunneling conductance [5–8], still remains illusive
[9–16]. Moreover, theory developments have proposed the
concept of quasi-MZMs due to smooth potential variation
[17–23] or disorder [24–29]. These quasi-MZMs, though
topologically trivial, can also lead to quantized ZBPs. The
quantization mechanisms for MZMs and quasi-MZMs
are similar: the conductance is solely contributed by one
isolated MZMwhile the secondMZM is decoupled. Recent
experimental progress has reported large ZBPs whose
height can reach 2e2=h [13,14]. However, a single peak
at 2e2=h is not enough to be entitled as “quantized.” A
quantized ZBP requires the peak height sticking to 2e2=h
by tuning all relevant experimental knobs: a plateau defined
by parameter sweepings. This plateau phenomenon is still
missing in experiments.
Here, we have improved the device fabrication and

report ZBPs near 2e2=h, forming a plateau defined by
sweeping gate voltages and magnetic field (B) in an
ultrathin InAs-Al nanowire device. We quantify the plateau
with a tolerance of 5%, a number commonly used in recent
literature [26,27]. In the end, we discuss their possible
connections to MZMs or quasi-MZMs.
Figure 1(a) shows the device scanning electron micro-

graph (SEM). Material and growth details can be found in
Refs. [14,30]. The InAs diameter (∼26 nm) is much thinner

than those commonly used (∼100 nm), aiming for fewer
subband occupations. Theory has shown that fewer or
single subband regimes are preferred for MZM quantiza-
tion [18,31,32]. The device was measured in a dilution
fridge, base temperature T ∼ 20 mK. The electron T can be
below 40 mK. A total bias voltage together with a lock-in
excitation was applied to contact N1 with the current I and
dI drained from S1. A voltage meter measured V and dV
between N2 and S2. This four-terminal setup can exclude
the contributions of contact resistance as a systematic
uncertainty. The tunnel gate (TG) and back gate (BG)
were used, while side gate (SG) was not well functional and
kept grounded. See Fig. S1 in the Supplemental Material
for circuit details [33].
The tunneling spectroscopy at zero B [Fig. 1(b)] resolves

a hard superconducting gap. The gap size is ∼0.39 mV due
to the thin Al film. Figure 1(c) shows the Bz dependence of
the gap. The z axis is 8° misaligned with the nanowire. For
B along other directions, see Fig. S2. The gap remains hard
below 2 T and gradually becomes soft above 3 T. Hard gap
at high B is necessary for MZM quantization, since a soft
gap destroys the quantization by dissipation [34,35].
In Fig. 1(d), we tune the device to a gate setting and find

a ZBP near 2e2=h [see Fig. 1(e) for the waterfall plots]. B is
aligned with the nanowire unless specified. Along this
direction, the maximum field allowed is 1.87 T due to the
hardware limit. From 1.3 to 1.85 T, the zero-bias conduct-
ance remains within the 5% tolerance bar, see the pink
background (from 0.95 to 1.05). The ZBP width, ∼0.3 mV,
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is 20 times larger than the thermal width (3.5kBT ∼ 15 μeV
for T ¼ 50 mK). A wide peak is necessary for MZM or
quasi-MZM quantization to minimize the effect of thermal
broadening. This requires a large tunnel transmission,
reflected by the outside gap conductance in Fig. 1(e) being
∼10 times larger than that in Fig. 1(c). Large transmission
results in a finite subgap conductance. Unlike a soft gap,
this Andreev reflection induced subgap conductance does
not affect the MZM quantization [35].
We then set B to 1.35 T and scan gate, see Fig. 1(f) (for

waterfall plots, see Fig. S3 [33]). The zero-bias conduct-
ance remains near 2e2=h over a sizable gate range.
Occasionally, it slightly deviates from the 5% tolerance
bar due to small oscillations. The oscillations in VBG, also
observed in our previous work [14], are possibly due to the

formation of an open island, as visualized by the weak
Coulomb blockade diamond in the color map. The island
is likely defined between the barrier region and the S2
contact, which forms a weak barrier due to the ultrathin
diameter. The oscillation causes a small splitting of the
ZBP, suggesting the energy is also being modified.
The three scans in Figs. 1(d) and 1(f) were in close

measurement sequence without noticeable charge jumps
in between. These three scans simultaneously pass through
one “sweet spot” in the parameter space (B ¼ 1.35 T,
VTG ¼ −9.137 V, VBG ¼ 6.886 V), and their zero-bias
line cuts all resolve a plateau feature near 2e2=h. The
plateau in VTG exceeds 100 mV, significantly wider than a
fine-tuned sharp crossing. We therefore identify this com-
bined feature as a ZBP plateau near 2e2=h, mostly within
the 5% tolerance bar.
Figure 1(g) shows the zero-bias map by scanning both B

and gate voltages, also passing through this sweet spot. The
three-color plots resolve the “red islands” as the 2e2=h
regions (within �5%). Occasionally, the conductance can
slightly exceed 1.05, by ∼1% (the cyan region). The red
island is similar to simulations on partially separated
MZMs [26]. Based on the Coulomb blockade diamond
size ∼60 μV and its period in VBG (∼12.7 mV) in Fig. 1(f),
we can extract the lever arm between VBG and the energy
scale possibly related to the electrochemical potential. The
size of the red island in Fig. 1(g) is ∼65 mV in VBG,
corresponding to an energy scale of ∼300 μeV.
In the MZM or quasi-MZM picture, several factors could

cause the deviation of ZBP from 2e2=h: (1) soft gap,
(2) thermal broadening, (3) residual tunnel coupling
between the second MZM and the probe, (4) coupling
between the two MZMs, and/or (5) multiple subband
occupation. The first factor, a soft gap [36], not only
destroys ZBP quantization, but is also detrimental to MZM
applications [37,38] and should be avoided. This problem
has been solved by the observation of a hard gap within
the interested B range [Fig. 1(c)]. The second factor lowers
the ZBP height. Since our ZBP width is mainly tunnel
broadened and ∼20 times larger than the thermal width, this
effect is also small: thermal averaging at T ¼ 50 mK only
causes a height change of ∼1% for such a wide peak. The
third and fourth factors are closely related and can either
increase or decrease the height from 2e2=h, depending on
the coupling details [26]. For the last factor, a second
channel could provide a small additional conductance
background, increasing the total height above 2e2=h [8].
Based on its saturation conductance (Fig. S2 [33]), our thin
nanowire is likely still not in the single subband regime yet.
The small zero-bias conductance in Figs. 1(d)–1(g) (at non-
ZBP regions), which can be less than 4% of 2e2=h,
suggests that the multiband contribution to the background
conductance (if any) is small.
We next fix VTG to a slightly different value and

explore the zero-bias map in (B, VBG) space, see Fig. 2(a).

(a)

(b) (c)

(d) (e)

(f)

(g)

FIG. 1. (a) Device SEM (false colored). The contacts and gates
are Ti/Au (5=70 nm in thickness). The substrate is p-doped Si
covered by 300 nm thick SiO2, serving as a global BG. (b) Hard
gap tunneling spectroscopy at 0 T. (c) Bz dependence of the gap.
(d) B scan (aligned with the nanowire) of a ZBP near 2e2=h.
Lower panel, zero-bias line cut. The pink bar marks the range
from 0.95 to 1.05 in the unit of 2e2=h for all figures. (e) “Water-
fall” plots of (d). For clarity, every other line cut is shown and two
colors are used. (f) VTG and VBG scans of the ZBP. (g) Gate and B
scans at zero bias. The three-color plots mark red as regions
within �5% of 2e2=h. (d),(f),(g) Share the same color bar.
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In addition to the red island as a “zone,” we use several
discrete colors to label other ranges that are boundarylike.
Figure 2(b) shows four B scans; see the corresponding
colored dashed lines in Fig. 2(a). The first scan is outside
the red island and resolves no ZBPs. Other scans pass
through the red island and resolve ZBPs near 2e2=h with
different B ranges. The green triangles and stars mark the
onset and ending B values for ZBPs. The ZBP region
defined by the green dashed lines in Fig. 2(a) roughly
matches the red island and can serve as a 2e2=h-ZBP phase
diagram. Note that not every line cut passing through the
red island can resolve a plateau feature. For example, the
blue line in Fig. 2(b) is more “peaklike” near 2e2=h.
Figure 2(c) shows VBG scans of the ZBP at 1.2 and 1 T,

corresponding to the middle and edge of the red island,
respectively. The zero-bias line cuts illustrate the evolution

from peaklike (red) to plateaulike (black). Figure 2(d)
shows the line cuts from the four panels in Fig. 2(b) at
B ¼ 0 T (dashed lines) and ∼1.73 T. At zero field, the
subgap peaks have similar energies. At high field (1.73 T),
some curves resolve ZBPs near 2e2=h, while others re-
solve split peaks, reflecting the phase diagram boundaries.
For waterfall plots and additional scans, see Figs. S3
and S4 [33].
The next experimental knob is the B direction. B rotation

in Al-based systems was limited before due to orbital
effects: the Al bulk gap is easily suppressed at low B
(∼0.3 T) during rotation [10]. Here, the ultrathin diameter
significantly suppresses the orbital effect and the gap can
survive at high B even if misaligned (see Fig. S2 [33]). This
advantage enables a rotation for ZBP [39].
Figure 3(a) starts with a B scan (aligned with the

nanowire) of a ZBP near 2e2=h (note the minor charge
jump at ∼1.7 T). The B amplitude is then fixed at three
values, see the arrows. Its direction, defined by the angle ψ
[Fig. 3(b)], is rotated. B is in plane during rotation (parallel
to the substrate). Figure 3(c) shows the angle dependence at
1.35 T. The ZBP remains close to 2e2=h over an angle
range of ∼50°. Outside this range, the ZBP height quickly
decreases away from 2e2=h, accompanied by a gap closing.
Finally, the ZBP vanishes at larger angles. For ψ ∼ 170°,

(a)

(b)

(d)

(c)

FIG. 2. VTG ¼ −9.03 V for all panels. (a) Zero-bias map in
(B, VBG) space. Right: the multicolor plot. (b) B scans at four VBG
settings, see the dashed lines in (a). Bottom: zero-bias line cuts,
with corresponding colors. (c) VBG scan at 1.2 T (top) and 1.0 T
(middle) with zero-bias line cuts shown in the bottom. (d) Line
cuts from (b) at 0 T (dashed) and ∼1.73 T (solid) with
corresponding colors. All panels share the same color bar.

(b)(a)

(d)

(c)

(e)

FIG. 3. (a) B scan of a ZBP near 2e2=h. Lower: zero-bias line
cut. (b) Schematic illustration of the angle ψ . B is in plane.
(c) Angle dependence of the ZBP by fixing the B amplitude at
1.35 T, see the middle black arrow in (a). Lower: zero-bias line
cut. (d) Two more rotation scans at 1.2 T (upper) and 1.499 T
(middle), see the other two arrows in (a). Lower: zero-bias line
cuts. (e) Line cuts from (d) (upper). For clarity, half of the angle
range (and every other line cut) is shown. All panels share the
same color bar.
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the zero-bias conductance drops slightly below 0.95 ×
2e2=h due to a small peak splitting, which is separated
by a minor charge jump. Figure 3(d) shows the angle
dependence at two other B values, with line cuts shown in
Fig. 3(e). For more rotation scans, see Fig. S5 in the
Supplemental Material [33].
For the last experimental check, we fix B (aligned with

the nanowire) at 1.05 T, and measure the zero-bias map in
(VTG, VBG) space, see Fig. 4(a). Because of the crosstalks
between the two gates, every gate can tune both the tunnel
transmission in the barrier region and the electrochemical
potential in the proximitized wire. Therefore, the VBG range
is adjusted simultaneously for different VTG settings to
trace the same feature. To save space from the “no-data”
region (gray), we define new gate voltage axes: VA ¼ VBG
cosϕþ VTG sinϕ and VB ¼ −VBG sinϕþ VTG cosϕ.
ϕ ¼ 30°. Figure 4(b) replots Fig. 4(a) in (VA, VB) axes.

Together with Fig. 4(c), the three-color plots show the
gradual evolution of the red island: its area increases from
none at low B to a sizable zone at high B. For a complete
evolution, see Fig. S6 [33]. Figures 4(d) and 4(e) show
three additional examples of ZBP scans within this para-
meter region.
So far, all the ZBPs [from Figs. 1(d)–4(e)] are within one

single region (region I) in the multidimensional parameter
space (B, VTG, VBG); see Fig. S7 for additional scans in this
region [33]. The measurement in region I lasts for three
weeks with several charge jumps in between. We note the
effects of jumps and hysteresis mainly shift the gate
voltages, maximally by 300 mV. The main plateau features
still remain after the shift with minor variations.
Figures 4(f) and 4(g) demonstrate another plateau region

(region II) at a very different (B, VTG, VBG) setting from
region I. To access higher B values, we apply B along the
fridge z axis (Bz). The small misalignment (8°) between Bz
and the nanowire should not bring a big difference based on
the rotation experiment in Fig. 3. In Fig. 4(f), the zero-bias
conductance can stick close to 2e2=h from 2 to 3.28 T, a B
range larger than 1.2 T (with a tolerance of 5%). Outside
this range, the ZBP height drops continuously from 2e2=h
with a faster decreasing rate, possibly due to the combined
effects of gap closing and softening for B larger than 3 T.
The fridge base T for Fig. 4(f) is slightly higher (can reach
∼30 mK), which may also play a role. Even within the
plateau region, there is still a decreasing trend with a much
smaller slope, possibly due to those mechanisms above.
The overall conductance (barrier transmission) in region

II is higher than that in region I, leading to a larger subgap
conductance. Figure 4(g) illustrates the interaction between
the zero-energy state and a quantum dot level, possibly
formed near the barrier. Tuning the dot level toward zero
energy causes the splitting of the ZBP, similar to the
behavior of partially separated MZMs [40,41]. We translate
the plateau width in VBG to an energy scale of ∼260 μeV
based on our extracted lever arm. For additional scans of
region II, see Fig. S8 [33]. Though the plateau regions
(I and II) in gate voltage space is small, only 50–100 mV, its
corresponding energy scale,∼260–300 μeV, is much larger
than the thermal energy.
We note that this Letter addresses the question of

whether ZBP plateaus near 2e2=h exist by sweeping all
relevant experimental parameters. It, however, cannot
answer the question of whether similar plateaus (for
sweeping all parameters) also exist at nonquantized values.
That would require exhausting the entire parameter space in
more devices. Based on the collected data so far, we have
not observed similar plateaus at other values yet. See
Fig. S9 [33] for additional ZBP data due to quantum dots
and disorder in regions beyond I and II. Occasionally,
we could find plateaulike features above 2e2=h for one-
parameter sweeping (but not all). We notice that, for
multiple subband occupation, even the MZM could lead

(a) (b) (c)

(d)

(e) (f)

(g)

FIG. 4. (a) Zero-bias map in (VTG, VBG) space at 1.05 T. Gray
regions have no data. (b) Replotting (a) using the new axis VA
and VB (see labeling). Right: three-color plot. (c) Zero-bias maps
at 0.3 and 1.35 T in three-color plots. (d),(e) Three additional
example scans (VBG, VTG, B) for ZBPs within region I. (f),(g) Bz
and gate scans of a ZBP in region II. All panels share the same
color bar.
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to some plateaulike features above 2e2=h in the open
barrier regime with slight disorder [8]. Finally, we compare
some scans in Fig. S10 [33] to illustrate the interplay
between the barrier transmission and the ZBP height.
To summarize, we have observed ZBPs near 2e2=h, which

form a plateau mostly within 5% tolerance by sweeping gate
voltages and magnetic field. Our result is qualitatively
consistent with the (multisubband) MZM as well as quasi-
MZM theories: the first is topological while the second is
trivial and caused by nonuniform potential or disorder. The
quasi-MZM scenario is probably more likely. This work is
from a single device whose quality is an improvement
compared to our previous one [14], but still not in the
ballistic regime yet due to the obvious presence of quantum
dots and disorder. In addition to the “end-to-end” correlation
experiment to reveal gap closing and reopening [42–44],
future devices on “single-terminal” experiments could aim at
(1) looking for zero-bias peak-to-dip transition near 2e2=h
with better tolerance [14,16,19], (2) using a dissipative probe
to reveal quantized ZBPs and suppress others [45–49], and
(3) exploring potentially better material systems [50,51].

Raw data for this Letter are openly available from the
Zenodo repository [52].
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