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We present a microscopic model for a singly charged quantum dot (QD) ensemble to reveal the origin of
the long-range effective interaction between the electron spins in the QDs. Wilson’s numerical
renormalization group (NRG) is used to calculate the magnitude and the spatial dependency of the
effective spin-spin interaction mediated by the growth-induced wetting layer. Surprisingly, we found an
antiferromagnetic Heisenberg coupling for very short inter-QD distances that is caused by the significant
particle-hole asymmetry of the wetting layer band at very low filling. Using the NRG results obtained from
realistic parameters as input for a semiclassical simulation for a large QD ensemble, we demonstrate that
the experimentally reported phase shifts in the coherent spin dynamics between single- and two-color laser
pumping can be reproduced by our model, solving a long-standing open problem of the microscopic origin
of the inter-QD electron spin-spin interaction.
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Spins confined in semiconductor quantum dots (QDs)
have been discussed as candidates for the implementation
of quantum bits (qubits) in quantum information technol-
ogies [1–3], since it allows integration into conventional
semiconductor logic elements. While superconducting
qubits are on the rise, the first semiconductor QD devices
with two qubits were realized only a few years ago [4,5]
and are still in the early stages of development. A general
understanding of inter-QD spin interactions in semicon-
ductors is essential for further development [6,7]. For
information processing, qubit initialization and readout
[8,9] are as important as manipulations of the spins.
Optical control experiments in QD ensembles [10,11] as
well as the measurements of the dephasing time as a
function of the laser spectral width [12] in such samples
provided strong evidence for long-range electron spin-spin
interactions between the different QDs in the ensemble of
unknown microscopic origin.
It was speculated [10] that it might be caused by an

optically induced [13] Ruderman-Kittel-Kasuya-Yosida
(RKKY) interaction [14–16]. Since the laser pulse duration
is on the order of picoseconds, such an optically induced
interaction, however, would decay rather rapidly and is not
compatible with the observed spin coherence on a scale of
several nanoseconds. This has remained a long-standing
open problem for the last ten years. In order to make use of
the intrinsic long-range spin-spin interaction between the
localized spins in QDs by spin manipulation protocols [1],
its origin needs to be understood.
In this Letter, we propose a microscopic mechanism

based on the analysis of a multi-impurity Anderson model
[17–19]. We start from a localized electron-bound state in

each QD that weakly hybridizes with the conduction band
(CB) of the thin wetting layer (WL) [20–22] that is left
below the QDs in the Stranski-Krastanow growth proto-
col. The basic setup is sketched in Fig. 1. By including all
virtual charge fluctuations in the leading order, significant
corrections to the conventional textbook expression start-
ing from an effective local moment picture have been
reported [17,23] for short distances. We believe that
implementing back gates below the WL would allow
one to manipulate the properties of the low concentration
WL electron gas and hence to control the effective spin-
spin interaction.
Recently a growth procedure for InGaAs QD ensembles

was proposed [24] to eliminate the WL. In such samples,
the effective spin-spin interaction between the QD electron
spins should be absent. While those types of QD ensembles
are produced to decrease the energy loss when used as
photon emitters, a detailed investigation of their spin
properties in electron-doped samples is still missing to
the best of our knowledge.
Model.—The WL is treated as a free two-dimensional

CB

FIG. 1. Sketch of two quantum dots that are linked by the InAs
wetting layer.
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in the isotropic effective mass approximation with
m�=m0 ¼ 0.023 [25]. The minimal model for the NQD

QDs in the ensemble is given by
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where εdi denotes the single-particle energy of the bound
electron state with spin σ in the ith QD and Ui is the
corresponding Coulomb repulsion preventing the bound
state to be doubly occupied. The creation (annihilation)
operator d†iσðdiσ) adds (removes) an electron to (from) the
ith QD. The electronic wave function is localized but
covers the whole diameter of the QD. The parameters Ui

and εdi depend on the individual shape of the QD. Using the
experimental estimates [26], we approximate Ui ≈ 4 meV
for a QD with a diameter dQD ¼ 25 nm.
The concentration of the donors in the QD ensemble used

in Ref. [10] was selected to match the QD density in the
sample. Each QD can capture at least one electron if the
bound state energy εdi is below the CB of theWL. It remains
empty when the chemical potential μ < εdi . Spin spectros-
copy experiments [27], however, indicate that not all QDs
are filled with one electron. This might be due to local
imperfections that shift individual εdi to higher energies.
Also doubly occupied QD states are possible when
εdi < μ − Ui. Excluding this doubly occupied QD ground
state configuration puts a lower bound on εdi .We assume that
a fraction qWL of the total donor excess electrons is filling up
theWL such that the chemical potential μ > 0 lies within the
CB of the WL. The upper bound of the chemical potential
μ ¼ εF is reached for qWL ¼ 1 yielding εF ≈ 1 meV for a
dot density of 1010 cm−2 [10].
The bound state of the ith QD can tunnel with a finite

tunneling amplitude Vi
m into the Wannier orbital m of the

WL. The resulting hybridization term between the bound
state of each QD and the WL takes the form

Hhyb ¼
XNQD

i¼1

X

σ

X

m

ðVi
md

†
iσcmσ þ H:c:Þ; ð3Þ

where cmσ is the annihilation operator of the Wannier
orbital at site R⃗m of the 2D WL and whose spatial Fourier
transform is ck⃗σ. The total Hamiltonian of the coupled QD
problem is given by H ¼ HWL þHQD þHhyb, which is
just a realization of a multi-impurity problem [18].
The effect of the WL on the dynamics of the localized

QD states is determined by the hybridization function
matrix [17,18]

ΔijðzÞ ¼
X

lm

1

N

X

k⃗

½Vi
l��Vj

meik⃗ðR⃗m−R⃗lÞ

z − εk⃗
: ð4Þ

In the wideband limit, i.e., V0=D ≪ 1, where D is the
bandwidth of the WL CB, tij ¼ ReΔijðμÞ generates an
effective hopping between the QDs i and j. The averaged
distance between the QDs is of the same order of
magnitude as the Fermi wavelength λF. The distance
variations between the WL sites, however, are small
compared to λF. Consequently, we can replace R⃗m − R⃗l
by the distance between the two centers of the QDs, i.e.,
R⃗i − R⃗j, and include the spatial extension of the QD [28] by
defining V̄i ¼

P
m Vi

m. We introduce the average hybridi-
zation matrix element V2

0 ¼ hV̄2
i i and define a reference

energy scale Γ0 ¼ πV2
0ρ0, ρ0 being the constant density of

state of the 2D WL CB. The charge fluctuation scale Γ0

determines the order of magnitude of ΔijðzÞ. The anti-
ferromagnetic (AF) part of the RKKY interaction can be
estimated [17,18] as JRKKYAF;ij ≈ 4t2ij=U ∝ 4Γ2

0=U serving as a
first estimate for Γ0 ≈ 10 − 100 μeV.
In a conventional metal, the chemical potential is located

roughly in the middle of the band continuum, and D > J̄K ,
U > J̄K holds. J̄K denotes the averaged local Heisenberg
coupling between the QD electron spin and the local CB
spin density [29], and local moments are well defined due
to large Coulomb interaction. Since in our case J̄K > U, the
conventional perturbation theory fails. Additionally, the
energy εdi is located below the lower band edge of the CB,
and the chemical potential must be small to allow for a local
moment formation.
Numerical renormalization group approach.—To cir-

cumvent the inconsistency problem of the conventional
two-stage perturbative approach, where first the charge
fluctuations are eliminated and then in a second step the
effective interaction between the local moments is calcu-
lated, we apply the numerical renormalization group
(NRG) [30,31] to the Hamiltonian with NQD ¼ 2 to
determine the distance-dependent effective Heisenberg
interaction between the localized electron spins. For each
distance R ¼ jR⃗1 − R⃗2j, the two-QD problem is mapped
onto an effective two-band model [17,32,33], where we
used Γ0, μ ¼ εF, and εdi ¼ εd as the adjustable parameters
such that each QD remains singly charged. Note that the
NRG mapping of the strongly asymmetric bands onto a
Wilson chain [30,31,34] leads to a modification of the
hopping parameters (see Supplemental Material [35]) and
of the NRG fixed point spectrum [40].
Using the NRG, we calculated the temperature-dependent

spin-spin correlation function hS⃗1S⃗2iðT; RÞ as shown for
two distances in Fig. 2(a). The sign of hS⃗1S⃗2iðT; RÞ
determines the sign of JRKKY12 ðRÞ, and jJRKKY12 ðRÞj is
obtained from the fit to the universal functions of the
spin-spin correlation function of a model comprising two
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spins s ¼ 1=2 coupled by an effective Heisenberg inter-
action J, S12ðTÞ ¼ −μ2effð1 − e−βJÞ=ð1þ 3e−βJÞ, where the
parameter μ2eff includes possible Kondo screening effects of
the localized spins [41]. We added the fit functions as solid
lines to Fig. 2(a). The extracted JRKKY12 ðRÞ are shown in
Fig. 2(b) for different fixed sets of parameters.
For two localized moments coupled by a Heisenberg

interaction JK to the local spin-density of 2D CB with a
quadratic dispersion in 2D, Fischer and Klein [29] derived
the analytic expression

JRKKYij ¼−ρ0J̄2K
v̄k2F
4π

½J0ðkFRÞN0ðkFRÞþJ1ðkFRÞN1ðkFRÞ�
ð5Þ

for the effective RKKY interaction, where JlðxÞ ½NlðxÞ� is
the Bessel [Neumann] function of order l and v̄ is the area
of the 2D unit cell. We added a fit to expression (5) to our
NRG data as a solid magenta line in Fig. 2(b). The NRG
results follow excellently the analytic predictions for
larger distances. The magnitude of JRKKYij is proportional
to Γ2

0εF as expected, but the absolute value differs from
that predicted by Eq. (5). The coupling JRKKYij ðRÞ remains
invariant under rescaling αΓ0, αU, and αεd for
RkF=π > 0.5. For short distances, RkF=π < 0.25, however,
we observe significant deviations: The NRG reveals an AF

RKKY interaction contrary to the conventional RKKY
result. The origin of this surprising effect can be linked to
the large effective single-particle hopping between the QD
orbitals [42] induced by the very strong particle-hole
asymmetry of the CB for small WL fillings. In the
literature, a diverging AF RKKY interaction was derived
by Proetto and López [43] for R → 0 contradicting the
analytical results of Žitko and Bonča [23] predicting a FM
coupling. It turns out that the system is close to quantum
phase transition for R ¼ 0 [42] where the chemical poten-
tial μ governs the transition between an AF and a FM
RKKY interaction (see Supplemental Material [35]).
Spin polarization in laser pulsed QD ensembles.—After

establishing the distance-dependent effective interaction
between the electron spins in the different QDs, we
investigate its influence on an ensemble of singly charged
QDs in an external magnetic field subject to a two-color
laser pumping with circularly polarized light [10]. We used
a semiclassical simulation [44–46] for the spin dynamics of
a QD ensemble model [12]

Harray ¼
XNQD

i

HðiÞ
1 þ

X

i<j

JijS⃗
ðiÞS⃗ðjÞ; ð6Þ

where the central spin model HðiÞ
1 ,

HðiÞ
1 ¼gðiÞe μBB⃗extS⃗

ðiÞ þ
XNi

k¼1

gðiÞN;kμNB⃗extI⃗
ðiÞ
k þ

XNi

k¼1

AðiÞ
k I⃗ðiÞk S⃗ðiÞ;

ð7Þ

includes the electron and nuclear Zeeman term in the
external magnetic field B⃗ext as well as the hyperfine

coupling between the Ni nuclei spins denoted by I⃗ðiÞk
and the electron spin S⃗ðiÞ [47–51]. We generated random
2D ensembles of NQD QDs with a dot density of 1010 cm−2

[10] and assigned Jij ¼ xixjJNRGRKKYðR; εF;Γ0Þ from the
NRG data depicted in Fig. 2(b), where xi accounts for
the variations of V̄i. We attributed NQD=2 randomly
selected QDs to be resonant to one of the two different
laser frequencies and, therefore, also assigned the

corresponding gðiÞe . We set the average ḡe ¼ 0.55, the
ratios between the two subsets g1e=g2e ¼ 1.03, and
z ¼ ḡeμB=ðḡNμNÞ ¼ 1=800.
We run three different types of semiclassical simulations

for the spin dynamics with Ik ¼ 3=2 nuclear spins: (i) a box
model with Ak ¼ A0 ¼ const, NQD ¼ 10 000, and Ni ¼
106 nuclear spins, (ii) a simulation for a frozen nuclear spin
dynamics (FOA) [48] for NQD ¼ 10 000 and Ni as
in (i), and (iii) an Ak distribution with NQD ¼ 1000 and
Ni ¼ 1000 including the full nuclear spin dynamics. In

all cases, we kept the characteristic energy scale T� ¼
½PkðAðiÞ

k Þ2hI2ki�−1=2 ¼ 1 ns fixed. The technical aspects of

(a)

(b)

FIG. 2. NRG results: (a) hS⃗1S⃗2iðT; RÞ vs T for two distances R
and the fit to an interacting two-spin model for extracting J.
(b) JNRGRKKYðRÞ=ðΓ2

0εFÞ vs RkF=π for different Γ0 and εF. We
added a fit to Eq. (5) as the solid magenta line. The graphs
corresponding to U ¼ 4 meV are calculated with
ϵd ¼ −1.5 meV, the red graph corresponding to U ¼ 40 meV
with ϵd ¼ −15 meV. NRG parameters Λ ¼ 5, high energy cutoff
D ¼ 1 eV and β̄ ¼ 40.
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the simulation including the treatment of the laser pulse
using a trion excitation cycle can be found in the liter-
ature [12,45].
The experiments reported in Ref. [10] were performed in

a transversal magnetic field of 1 T, and laser pulses of two
different colors were applied pumping two different reso-
nant QD subsets. In order to reproduce one of the
experimental key results, we first determined a reference
curve for hSzðtÞi of subset 1 subjected to a circularly
polarized laser pulse at t ¼ 0 that shows damped coherent
oscillations characterized by the Larmor frequency, see the
black curve in Fig. 3(a). Then we run the same setup,
but apply a second circularly polarized laser pulse with a
color resonating with subset 2 at a moment when hSzðtÞi
of subset 1 reached a minimum, i.e., at a delay of
Δt ≈ 0.115 ns.The incident time of the second laser pulse
is indicated by a black dot in Fig. 3(a). Clearly visible is
that the second trace of hSzðtÞi plotted as a blue curve
coincides with the reference curve for t < 0.115 ns and
then starts to acquire a relative phase shift as a function of
Δt with respect to the reference curve. Therefore, the phase
shift is zero up for t < Δt.
We tracked the relative phase shift ϕ of the coherent

oscillations between the reference curve and those in the
presence of a laser pulse onto subset 2,

ϕðtÞ ¼ arctan

�
Sð1Þz

Sð1Þy

�
− arctan

�
Sð1ÞRef;z

Sð1ÞRef;y

�
: ð8Þ

The sign of the phase shift depends only on the relative sign
of the circular polarization. The result is plotted in Fig. 3(b).
As in the experiment, the phase shift increases roughly
linearly in time. The slope is determined by the overall
magnitude of JRKKYij ðRÞ. The results that resemble the
experiments very well were obtained for Γ0 ¼ 140 μeV
and εF ¼ 0.5 meV corresponding to qWL ¼ 0.5 and
U=Γ0 ¼ 29. The order of magnitude of JRKKYij ðRÞ is
determined by the ratio ðΓ0=UÞ2, indicating that the physics
is driven by an effective local Kondo coupling [52].
Leaving the ratio U=Γ0 ¼ 29 fixed, we can also reproduce
the experimental phase shifts with Γ0 ¼ 1.25 meV,
εd ¼ −15 meV, and U ¼ 40 meV and confirm the main
scaling property. Note that the individual hybridization
strength between the bound electron QD state and the local
Wannier orbital remains small and is of the order
Vi
m ¼ 10–40 μeV. Only by the summation to V̄i, a sig-

nificant contribution arises.
We run the simulation for fixed xi ¼ 1 and for the FOA

additional with a Gaussian normal distribution with δx ¼
0.2 to reveal the influence of the local derivation of the QD
hybridization matrix element from its average value. The
phase shifts are nearly independent of the distribution of
local hybridization matrix elements V̄i. The major disorder
contributions stem from the random distribution of dis-
tances to the neighboring QDs. As a result, each QD senses
a slightly different effective coupling, converting the
quadratic increase of the phase shift in a two-QD model
to a linear increase for short times. Tracking the full
dynamics of the Overhauser field is not required on the
time scale of 3 ns: The frozen Overhauser approximation

and the case AðiÞ
k ¼ A0 yield the almost same results as the

full nuclear spin dynamics, but with a reduced NQD. We
also run the simulation for a JRKKYij ðRÞ after rescaling Γ0,
U, and εd with a factor of 10 to accommodate for errors in
the rough parameter estimates. The slope of the phase shift
ϕ came out about 50% too large, requiring a reduction of
Γ0. The origin of the increase is caused by the contribution
of the first minimum in JRKKYij ðRÞ at around RKF=π ≈ 0.2,
where we observe significant deviations from the analytic
prediction. Overall, the simulation data agree remarkably
well with the experimental findings even over a large range
of parameters.
Conclusion.—In this Letter, we present a QDWL model

to explain the microscopic origin of the inter-QD electron
spin-spin interaction conjectured in Ref. [10]. We used
Wilson’s NRG [31] to extract the strength and distance
dependency of this spin-spin interaction mediated by the
WL via an a RKKY-based mechanism. While the long-
distance behavior is in agreement with the low-filling
perturbative RKKY result [29], we found significant
deviations for shorter distances. The unconventional AF
RKKY interaction at short distances can be connected to
the large effective inter-QD hopping between the QD

(a)

(b)

FIG. 3. Semiclassical simulation of the QD ensemble. (a) Traces
of the electron spin dynamics using the frozen Overhauser field
approximation (FOA) with Γ0 ¼ 0.14 meV, ϵd ¼ −1.5 meV, and
U ¼ 4 meV. A phase shift ϕ in the coherent electron spin
oscillations between a single-color pumping reference curve
and a two-color laser pumped QD ensemble occurs. The
incidence time of the second pump is marked as a black circle.
(b) Comparison of the experimental phase shift ϕ to various
simulations. The simulations are for a FOA, for Ak ¼ const (box
model), a distribution of the Ak, including some disorder of the xj
as well as the second set of parameters with Γ0 ¼ 1.25 meV,
ϵd ¼ −15 meV, and U ¼ 40 meV. The experimental data are
taken from Ref. [10].

PHYSICAL REVIEW LETTERS 129, 167701 (2022)

167701-4



orbitals [17,18,42] as a consequence of the very low band
filling. The conventional RKKY approach [29] starts
already from an effective local moment picture and does
not include all corrections in OðV4

0Þ.
We used our NRG data as input for a semiclassical

simulation of the spin dynamics in a coupled QD ensemble,
which is able to reproduce the experimental phase shifts
reported for a two-color pumping setup [10] very accu-
rately for a variety of different realistic parameters.
Although the interaction in the effective model might
appear substantial, one has to bare in mind that all WL
Wannier orbitals below a QD contribute in Eq. (3) only by a
very weak coupling.
Our theory solves the open problem about the micro-

scopic origin of the inter-QD spin-spin interaction, which
remained unsolved for over ten years [10]. We predict that
this interaction can be eliminated by a QD growth process
that excludes an InAs WL [24]. By gating the 2D WL, it
might be possible to modulate the 2D electron gas and,
therefore, control the effective Heisenberg interactions
JRKKYij ðRÞ by a change of gate voltage.
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