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In this Letter, we investigate a new class of polarization wave front transformations which exhibit
nonconventional far field interference behavior. We show that these can be realized by double-layer
metasurfaces, which overcome the intrinsic limitations of single-layer metasurfaces. Holograms that
encode four or more distinct patterns in nonorthogonal polarization states are theoretically demonstrated.
This Letter clarifies and expands the possibilities enabled by a broad range of technologies which can
spatially modulate light’s polarization state and, for metasurfaces specifically, rigorously establishes when
double-layer metasurfaces are—and are not—required.
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Traditionally, wave front transformation is characterized
by a scalar function—a spatially varying phase and ampli-
tude profile. Recently, its scope has been extended to
incorporate the polarization degree of freedom—the polari-
zation state of light can be adjusted spatially [1–6]. In a
typical application, these devices are designed to implement
two independent phase profiles for a pair of orthogonal
polarization states. In this way, a single device can function
as two different ones, controlled by the incident polarization
[Fig. 1(a) shows this schematically for a metasurfacelike
device].
What happens if the incident polarization state differs

from the designed ones? For most previous devices, one
simply gets a weighted intensity sum of the two designed
patterns in the far field [Fig. 1(d)]. However, we point out
here that this intuitive intensity addition rule does not hold
in general. In this Letter, we show that there exists a class
of intriguing polarization wave front transformations
[Fig. 1(e)], where the output intensity pattern may change
dramatically for different input polarization states. In this
case, the far field electric field for two orthogonal incident
polarization states may interfere with each other, leading to
nonintuitive polarization-dependent behavior [Figs. 1(f)–
1(h)]. For example, one can project a triangle and rectangle
for x and y incident polarization [Figs. 1(f)–1(g)], and
obtain a circle for 45 degree incident polarization
[Fig. 1(h)]. This is in sharp contrast to previous polariza-
tion holograms, which can encode only two images.
As we will show later, a distinguishing feature of such

wave front transformations [Fig. 1(e)] is that the output
field’s spatial and polarization degrees of freedom are always
nonseparable for any plane wave incidence. In contrast, for
most previous devices, one can find a pair of orthogonal
incident states, where the output polarization is uniform
across the wave front, and thus separable [7]. We refer to
them as nonseparable and separable polarization wave front

transformations respectively. [See Appendix, Sec. 1.1
Refs. [8–17] for further discussions on (non)separable states
of light versus (non)separable transformations.]
To understand their far field polarization behavior, let us

revisit the concept of orthogonality. Consider two plane
waves incident normal to a polarization element with
orthogonal polarization states. Neglecting losses and non-
linearity, orthogonality requires that the inner product of the
two output far fields, E⃗1ðx; yÞ and E⃗2ðx; yÞ, to be zero,

Z
E⃗�
1ðx; yÞ · E⃗2ðx; yÞdxdy ¼ 0: ð1Þ

Equation (1) holds for both separable and nonseparable
transformations. However, the implications are very different.

FIG. 1. (a),(b) Schematics of separable and nonseparable
transformations. (c)–(h) The output far field patterns for different
incident polarization states. λ⃗ and λ⃗⊥ are orthogonal. Among
them, (b) and (c) are separable states; (d) and (f)–(h) are non-
separable states. In terms of far field superposition, (d) is an
intensity sum of (b) and (c), whereas (h) shows a new pattern that
is different from (f) or (g).
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For the former, we can write E⃗1ð2Þðx; yÞ ¼ f1ð2Þðx; yÞû1ð2Þ,
where f1ð2Þðx; yÞ are the complex amplitudes, and û1ð2Þ are
polarization vectors. As û1ð2Þ are independent of spatial
coordinates, Equation (1) becomes

ðû�1 · û2Þ
Z

f�1ðx; yÞf2ðx; yÞdxdy ¼ 0: ð2Þ

The complex amplitudes f1 and f2 can be arbitrary spatial
functions chosen by design. Therefore in generalR
f�1f2dxdy ≠ 0, which implies that û�1 · û2 ¼ 0, and thus

E⃗�
1ðx; yÞ · E⃗2ðx; yÞ ¼ 0. In other words, the local electric

fields are orthogonal to each other everywhere. As a result,
there is no interference between them. The far field intensity
pattern for any other incident polarization state will simply
be a weighted sum of jE⃗1ðx; yÞj2 and jE⃗2ðx; yÞj2.
However, the situation changes completely for nonsepar-

able polarization wave front transformations. In this case,
the far field polarization states û1ð2Þðx; yÞ vary spatially, and
cannot be considered independently from the integral as in
Eq. (2). The local orthogonality does not hold any more. In
fact, E⃗�

1ðx; yÞ · E⃗2ðx; yÞ can be nonzero almost everywhere,
as long as their spatial integral cancels out. Therefore, at any
location on the wave front, E⃗1ðx; yÞ and E⃗2ðx; yÞ can have a
nonvanishing interference term, which opens up an entire
new design space for polarization control.
The above discussion can be made more rigorous by

considering the near-to-far field transformation of light
(Appendix, Sec. 1.2). Immediately after light passes through
a lossless polarization element, the local orthogonality is
preserved. However, during propagation, secondary waves
emitted from different locations on the device start to
overlap spatially, which leads to nonorthogonality in the
far field.
Mathematically, a polarization wave front transforma-

tion is described by a spatially varying two-by-two Jones
matrix profile Jðx; yÞ, where each matrix element is a
spatial function [17,18] (Table I). For separable trans-
formations, the Jones matrices at different locations across
the wave front can be diagonalized simultaneously.

However, for nonseparable transformations, there are
always nonvanishing off diagonal elements for any global
polarization basis. This also results in their different
information capacity. Separable transformations have only
two usable polarization channels t11, t22, whereas for
nonseparable transformations, t11, t12, t21, t22 can all be
designed to have different spatial profiles. Therefore, the
latter can encode more optical functions in a single device,
and may find applications in optical communication and
quantum optics.
The Jones matrix formalism can be used for both near

field and far field, which are related by Fourier transforms
[17]. The properties listed in Table I hold for both. From a
device design perspective, it is usually more convenient to
work with near-field Jones matrices, which characterize the
change of polarization states immediately before and after
the device. In the following, we assume near-field Jones
matrix profiles by default, with the prefix omitted. For
lossless polarization elements, the (near field) Jones matrix
profiles are unitary, and can be visualized using the
geometrical representation introduced in the next section.
Geometrical representation.—To facilitate the analysis,

we introduce a new geometrical representation of Jones
matrices. It allows us to intuitively visualize any Jones
matrix profile, just as we can plot out the phase profile of a
phase-only element.
For any unitary Jones matrix, we define a corresponding

retarder parameter:

R ¼ sin
α

2
n̂; α ∈ ð−π; π� ð3Þ

where n̂ ¼ ðn1; n2; n3Þ is the Stokes vector of the eigen-
polarization state of the Jones matrix, and α is the phase
retardation [7,9]. The overall phase is omitted, so for
any choice of α Eq. (3) actually represents a class of
Jones matrices, all having the same polarization effect,
but may have different overall phases. Some equivalent
expressions ofR are given in Table S1 in the Supplemental
Material [19].
Using this definition, we can intuitively visualize any

unitary Jones matrix. Taking the three components
ðR1; R2; R3Þ as the Cartesian coordinates, it can now be
represented as a point in the 3D space [Fig. 2(a)].
Polarization wave front transformations, which are
described by spatial functions of Jones matrices, can
now be represented as curves or surfaces, or collections
of points, if sampled discretely, in the retarder space
[Figs. 2(b)–2(f)].
Using this representation, we can intuitively distinguish

separable and nonseparable transformations simply by
observing their geometrical shapes in the retarder space.
In fact, we prove that in general a separable transformation
is represented by an ellipse [(Fig. 2(b); Appendix, Sec. 5.4).
Nonseparable transformations, on the other hand, may have
arbitrary shapes or trajectories [Fig. 2(c)].

TABLE I. Properties of separable and nonseparable transfor-
mations. tijðx; yÞ are spatial functions. V and U are the basis
transformation matrices for the input and output electric field
respectively, and are constant across the wave front. Note that V
and U can be different.

Jones matrix (J)
Polarization
channels

Far field
superposition

Separable
transformation U

�
t11ðx;yÞ

0
0

t22ðx;yÞ

�
V† 2 Intensity sum

Non-separable
transformation U

�
t11ðx;yÞ
t21ðx;yÞ

t12ðx;yÞ
t22ðx;yÞ

�
V† 4

Interference
pattern
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Implementation with metasurfaces.—Recently, metasur-
faces—artificial interfaces patterned with subwavelength
arrays of nanostructures [5,20,21]—have emerged as an
exciting new medium in polarization optics. Each nano-
structure functions as a linearly birefringent wave plate,
whose optical axis and phase retardation can be adjusted
spatially by design [7,9,22–25]. Herewe use metasurfaces as
a general platform for polarization wave front transforma-
tion. In particular, we propose to use double-layer meta-
surfaces [Fig. 3(c)] to realize nonseparable transformations.
Separable transformations can be easily realized using

single-layer metasurfaces [Fig. 3(a)], combined with addi-
tional wave plates if necessary [Fig. 3(b)]. Essentially, we
can design the metasurface to implement two different
phase profiles for horizontal and vertical polarization, which
corresponds to the Jones matrix profile J ¼ ðt11ðx;yÞ

0
0

t22ðx;yÞÞ.
If needed, we can add additional wave plates to provide the
global basis change U and V [Fig. 3(b)]. We refer to such
implementation as generalized single-layer metasurfaces.

According to Table I, all separable transformations can be
realized in this way.
For nonseparable transformations, however, single-layer

metasurfaces are not enough. In general, the required Jones
matrices for nonseparable transformations can be arbitrarily
birefringent—linear, circular or elliptical—across the wave
front. Single-layer nanostructures, however, are constrained
to be linearly birefringent due to reciprocity. (See Appendix,
Sec. 4. for further discussion.) To overcome this limitation,
we propose to use double-layer metasurfaces [Fig. 3(c)].
The polarization effect is accumulated upon interaction
with light, i.e., Jbilayer ¼ JtopJbottom (Appendix, Sec. 7.2).
Although individually Jtop and Jbottom are linearly birefrin-
gent, their product Jbilayer can be arbitrarily birefringent
(Appendix, Sec. 6). Therefore, double-layer metasurfaces
can achieve any unitary polarization wave front trans-
formation, including both separable and nonseparable ones.
It is noted that double-layer metasurfaces have been
previously used for (polarization-independent) dispersion
engineering [26], but their unique polarization transforma-
tion capabilities have not been investigated.
While it might not be surprising that two layers can realize

more polarization functions than a single layer, importantly,
we show that two layers are sufficient (Appendix, Sec. 6).
More layers may help with the dispersion or angular
response, but will not add more polarization function at
the design wavelength.
Polarization wave front transformations that are achiev-

able with different types of metasurfaces can be illustrated
in the retarder space [Figs. 2(d)–2(f), Fig. S8 in the
Supplemental Material [19]). As single-layer metasurfaces
are made up of linearly birefringent nanostructures, they
correspond to the equatorial plane [Fig. 2(d)]. Generalized

FIG. 3. (a)–(c) Side views of single-layer, generalized single-
layer, and double-layer metasurfaces. (d) The Venn diagram
summarizes the relation between different types of polarization
transformations (marked by fill pattern) and the possible metasur-
face implementations (marked by color). Generalized single-layer
metasurfaces (light blue) can realize all separable transformations
(line pattern) and a subset of nonseparable transformations (dot
pattern). Double-layer metasurfaces (dark blue) can implement
any unitary polarization transformation.FIG. 2. (a) Schematics of the retarder space. Each point

represents a class of unitary Jones matrices (wave plates) with
the same polarization effect, up to some overall phase. The radial
distance and orientation are related to the phase retardation and the
eigenpolarization states respectively. For example, points 1–3 have
the same fast axis along x, but varying retardance, from zero to
quarter wave to half wave. Points 3–5 are all half wave plates,
but with different eigenpolarizations states. In particular, points in
the equatorial plane correspond to linearly birefringent elements.
(b)–(f) A polarization wave front transformation can be repre-
sented in the retarder space as a curve or surface or a collection of
points. (b) Separable transformations are mapped to ellipses.
(c) Nonseparable transformations can have arbitrary shapes.
(d)–(f) Polarization transformations by single-layer, generalized
single-layer, and double-layer metasurfaces are represented by
the equatorial plane, ellipsoids, and arbitrary shapes or points
respectively.
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single-layer metasurfaces deform the plane into origin-
centered ellipsoids [Fig. 2(e)] by changing the input and
output polarization basis (Appendix, Sec. 5). Representing
the most general case, double-layer metasurfaces can have
arbitrary shapes or points in the retarder space [Fig. 2(f)].
Comparing Figs. 2(b) and 2(c) with Figs. 2(d)–2(f)

reveals the relation between the polarization function and
the required implementation. For example, since an ellipse
is part of an ellipsoid, separable transformations can always
be realized using generalized single-layer metasurfaces. For
nonseparable transformations, while usually double layers
are required, there are special cases where (generalized)
single layers should suffice—if the required Jones matrix
profile happens to belong to an ellipsoid. A summary is
given in Fig. 3(d). From a practical design point of view, for
a given task, one can simply plot the target Jones matrix
profiles in the retarder space and determine straightfor-
wardly whether the transformation is separable and what
kind of metasurface is required for the implementation.
Multichannel polarization hologram.—In this section,

we provide a concrete example of nonseparable transforma-
tions. A schematic is shown in Fig. 4(a). It is a multichannel
polarization hologram that projects different far field holo-
graphic images for different incident polarization states.

For horizontal and vertical incident polarization, the device
generates an image of the letter A and B respectively in the
far field. The naive intensity addition rule would predict a
mixture of A and B for any other incident polarization state.
However, by using nonseparable transformations, we can
design the device such that it projects an image of C and D
for 45° linearly polarized light, and left circularly polarized
light respectively.
To design the device, we first developed a new algorithm

to compute the required Jones matrix profile. It is a
gradient-descent-based optimization method which is gen-
eralized from the well-known Gerchberg-Saxton phase
retrieval algorithm [16] (Appendix, Sec. 2). Note that this
algorithm considers the target intensity profiles for different
incident polarization states, instead of the far field Jones
matrix distribution. The latter is discussed in another work
in Ref. [27]. The optimized Jones matrix profile is shown in
Fig. 4(c). One can see that the points are scattered around
in the unity ball. This tells us two things: first, this is a
nonseparable transformation, since the points do not belong
to an ellipse [Fig. 2(b)]; second, a double-layer metasurface
is required for the implementation, as the points do not
belong to an ellipsoid either [Fig. 2(e)]. More details on
how to compute and utilize the retarder parameters can be
found in the Appendix, Secs. 1.3.1 and 3.2.
To implement the device, we simulated a library of

double-layer nanostructures. A schematic of the building
blocks is shown in Fig. 4(b). It consists of two layers of
TiO2 rectangular nanopillars fabricated on top of one
another. In each layer, the nanopillar length (Lt, Lb), width
(Wt, Wb), and angular orientation (θt, θb) can vary
arbitrarily and independently. One can see that the points
densely occupy the entire retarder space [Fig. 4(d)],
proving their capability of realizing any polarization wave
front transformation.
Lastly, we need to fit the target profile using the library.

At each location on the metasurface, we search for a
structure in the library that best matches the target Jones
matrix. The simulated output far field intensity profiles are
shown in Figs. 4(e)–4(h). Four different letters—A, B, C,
D—are projected for horizontal, vertical, 45 degree, and
left circular incident polarization respectively.
We denote the output fields for horizontal and vertical

incident polarization as E⃗H and E⃗V . Their polarization
distribution is illustrated in Figs. 4(i)–4(j). Clearly, the
ocal orthogonality is not satisfied. For 45 degree incident
polarization, the output field is E⃗45° ¼ ð1= ffiffiffi

2
p ÞðE⃗H þ E⃗VÞ.

Its intensity is given by

jE⃗45°j2 ¼
1

2
ðjE⃗Hj2 þ jE⃗V j2Þ þ Re½E⃗�

H · E⃗V �: ð4Þ

Similarly, for left circular polarization incidence,

jE⃗LCPj2 ¼
1

2
ðjE⃗Hj2 þ jE⃗V j2Þ − Im½E⃗�

H · E⃗V �: ð5Þ

FIG. 4. (a) A schematic of the device. It consists of two layers
of TiO2 rectangular nanopillars fabricated on top of one another.
The bottom layer is encapsulated in glass. The top layer is
exposed to air. (b) The building blocks of the metasurface.
Ht ¼ 600 nm, Hb ¼ 1600 nm. U ¼ 225 nm. The design wave-
length is λ ¼ 488 nm. (c) The optimized target Jones matrix
profile. For visualization purposes, only 1% of the points are
shown. (d) The retarder space representation of the simulated
library. (e)–(h) The simulated far field intensity pattern for
horizontal, vertical, 45 degree, and left circular incident polari-
zation state respectively. (i)–(j) The simulated far field polariza-
tion distribution for horizontal and vertical incident polarization.
(k)–(l) The real and imaginary parts of E⃗�

H · E⃗V . Red and blue
correspond to positive and negative value respectively.
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The interference term—the real and imaginary part of
E⃗�
H · E⃗V—is shown in Figs. 4(k)–4(l). One can see that

destructive interference (blue) suppresses the unwanted
pattern, and that constructive interference (red) occurs in
the desired area.
In the Appendix, we show that more than four holo-

graphic images can be encoded in a single device, at the
expense of more crosstalk (Design 1–3 in Fig. S4,
Supplemental Material [19]). Note that for illustration
purposes, we do not rely on any postselection of polari-
zation, that is, there is no polarizer after the metasurface.
With postselection polarizers, the crosstalk can be further
reduced (Design 4 in Fig. S4, Supplemental Material [19]),
but it comes at the expense that additional information
about the postselection states has to be provided in order to
successfully retrieve the holographic images.
Discussion.—In principle, the polarization function of a

double-layer metasurface can also be realized by cascading
multiple single-layer metasurfaces in sequence. In practice,
however, the optical alignment requirement can be very
challenging to meet, especially for holographic applications
where the required Jones matrix profiles may vary rapidly
at the subwavelength scale.
Besides metasurfaces, there are many other types of

polarization elements, such as liquid crystal (LC) devices
[1]. LC is tunable and low cost, but offers fewer design
degrees of freedom for polarization control. Typically only
one parameter—either phase retardation or the optical axis
orientation—can be controlled spatially. Therefore, four
cascaded LC components are required to realize a general
polarization transformation [28].
For simplicity, in this manuscript we choose to work in

the weak coupling regime—the interaction between nano-
structures in different layers is negligible. It is, however,
also possible to enhance and utilize interlayer coupling to
realize novel optical responses such as angle-dependent
polarization control [9] and exceptional points [29].
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