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Scattering or tunneling of an electron at a potential barrier is a fundamental quantum effect. Electron-
electron interactions often affect the scattering, and understanding of the interaction effect is crucial in
detection of various phenomena of electron transport and their application to electron quantum optics. We
theoretically study the partition and collision of two interacting hot electrons at a potential barrier.
We predict their kinetic energy change by their Coulomb interaction during the scattering delay time inside
the barrier. The energy change results in characteristic deviation of the partition probabilities from the
noninteracting case. The derivation includes nonmonotonic dependence of the probabilities on the barrier
height, which qualitatively agrees with recent experiments, and reduction of the fermionic antibunching.
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Interplay of potential scattering of an electron and
electron-electron interactions causes nontrivial effects.
Generally, the former is used for detecting the latter. For
example, the interaction strength of Luttinger liquids [1]
and spatial ordering of Wigner crystals [2,3] are read out
from anomalous electron tunneling through a potential
barrier. And, the latter reduces quantum coherence of the
former. It happens in electron interferometers in the
quantum Hall regime [4–7], where phase accumulation
between scattering events is smeared out by intra-edge
[8–10] or interedge-channel interactions [11,12].
The interplay has been investigated in electron quantum

optics. Electron scattering at a potential barrier provides a
tool not only for studying partition [13,14], antibunching
[15], identical particle statistics and anyon braiding
[16–20], but also for operating flying qubits [21]. It
combines with on-demand generation of wave packets
by ac driving [22–37]. An electron packet, generated on
a quantum Hall edge at the Fermi level, is partitioned at a
barrier. Using partition noise [38], one studies antibunching
between the electron and excitations of the Fermi sea [39].
When two packets collide [40,41] at a barrier as in Hong-
Ou-Mandel effects, deviation from fermionic antibunching
was observed [42,43] and attributed to charge fractionali-
zation [44–46] of Luttinger liquids.
All the above examples involve interaction effects out-

side a barrier. A recent experiment [47] implies interactions
inside a barrier. There, two single-electron wave packets are
generated far above (≳100 meV) the Fermi level by a
quantum-dot pump. These hot electrons copropagate in
a depleted region, spatially isolated from other electrons.
The observed partition probabilities of the electrons at the
barrier [Fig. 1(a)] cannot be decomposed into products of
single-electron partition probabilities. The probabilities
show nonmonotonic dependence on the barrier height.

The results are not described by noninteracting theories
[48–50] nor by the charge fractionalization. They remain
unexplained, suggesting that the characteristics of the
barrier needs to be counted.
In this Letter, we develop a scattering theory of two

interacting hot electrons at a potential barrier, and notice a
central role of the scattering delay times (sometimes called
phase times [51])

τDT ≡ ℏIm
d ln tE
dE

; τDR ≡ ℏIm
d ln rE
dE

; ð1Þ

of single-electron transmission and reflection at the barrier.
sαβðEÞ ∈ frE ; r0E ; tE ; t0Eg is the scattering amplitude of a
plane wave of energy E from an input path β to an output α
at the barrier (Fig. 1). We predict the kinetic energy change
of the electrons by their Coulomb interaction during the
delay times, and compute its effect on their partition at the
barrier, considering initially copropagating or counterpro-
pagating electrons. In the copropagating case, our theory

FIG. 1. Potential barrier (shade) on chiral paths u and d.
(a) Partition of two copropagating hot electrons ϕi¼1;2 (peaks)
at the barrier. (b) Collision of two counterpropagating electrons at
the barrier. (c) Transmission probability jtE j2 and (d) delay time
τDT of a plane wave of energy E at the barrier.
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explains the recent experiments [47]. Energy dependence
of the delay times causes nonmonotonic dependence of the
partition on the barrier height. The scattering probabilities
of the two electrons are correlated when the transmission
and reflection delay times differ. In the counterpropagating
case, we distinguish direct and exchange interaction effects
on the partition, especially on the reduction of their
antibunching.
Setup.—We consider two hot electrons generated by

quantum-dot pumps in a strong magnetic field [33,52].
They approach a potential barrier, propagating along a one-
dimensional chiral upper path γ ¼ u or a lower path γ ¼ d
in depleted regions. In Fig. 1(a), they initially copropagate,
occupying orthogonal single-electron wave packets ϕm¼1;2
which usually separate in energy or time in experiments
[47]. In Fig. 1(b), they initially counterpropagate, occupy-
ing packets ϕm¼1;2 of the same Gaussian form [31], and
arrive at the barrier simultaneously. Each initially has
kinetic energy Eð0Þ

m and energy uncertainty σE. We assume
that their propagation velocity v is energy independent, as
the dependence is not strong enough to generate the
nonmonotonicity [47].
In the strong magnetic field, the barrier is described by a

saddle point constriction [53], and mapped onto a one-
dimensional problem [54]. For a plane wave of energy E,
the barrier transmission probabilities, jtE j2 ¼ jt0E j2 ¼
1=½1þ expð−πðE − EbÞ=ΔbÞ�, change from 0 to 1 over
the energy Δb around the barrier height Eb where
jtE¼Eb

j2 ¼ 0.5 [Fig. 1(c)]. We consider the σE < Δb regime
to predict universal results; here, the wave packet form does
not change during its barrier scattering, hence, the results
are insensitive to the form. In Ref. [47], Δb ∼ 5σE.
The electrons interact through a Coulomb potential [55],

WðxrelÞ ¼ W0e−xrel=ascr=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðxrel=acutÞ2
p

. Their separation
xrel is simplified as xrel ¼ x1 − x2 when their coordinates
xm are on the same path, and xrel ¼ jx1j þ jx2j for them on
different paths (xm ¼ 0 at the barrier). ascr is the screening
length. The cutoff acut describes packet broadening to the
transverse directions by the magnetic length or the quantum
well width confining two-dimensional electrons.
Interaction during delay times.—We compute the parti-

tion probabilities Pn that n (¼ 0, 1, 2) of the two electrons
move to the lower path after barrier scattering. They have
contributions Pn ¼ PðdirÞ

n þ PðexÞ
n from direct and exchange

processes, PðdirÞ
n ¼ hP̂ni, PðexÞ

n ¼∓ hP̂nPexi. P̂n is the
projection operator onto the event of Pn. Pex is the operator
exchanging the two electrons. The sign − (þ) is for the
electrons in the spin triplet (singlet). We obtain [56] the
correction δPðdir=exÞ

n to the noninteracting probabilities Pð0Þ
n

up to the lowest order of the interaction W and σE=Δb,

δPðdirÞ
n ¼

Z

∞

0

dt

�

−
i
ℏ

�

h½P̂n;W�iϕ1ðtÞ⊗ϕ2ðtÞ

δPðexÞ
n ¼∓

Z

∞

0

dt

�

−
i
ℏ

�

h½P̂nPex;W�iϕ1ðtÞ⊗ϕ2ðtÞ ð2Þ

by perturbatively expanding the time evolution operator
with respect to W. ½� � � ; � � �� is the commutator.
ϕm¼1;2ðtÞ are the packets at time t in the noninteracting

case. Their product state is used in computing the expect-
ation values h� � �i in Eq. (2), assuming that the packets are
separable at the initial time t ¼ 0. Each is decomposed into

ϕðinÞ
m in the input path β, ϕðout;αÞ

m in an output path α, and

ϕðbarÞ
m in the barrier,

jϕmðtÞi ¼ jϕðinÞ
m ðtÞi þ

X

α¼u;d

jϕðout;αÞ
m ðtÞi þ jϕðbarÞ

m ðtÞi: ð3Þ

The expression jϕðout;αÞ
m ðtÞi includes the scattering ampli-

tude sαβ. For σE ≪ Δb, we derive [56] the probability of
electron mð¼ 1; 2Þ being in the barrier,

hϕðbarÞ
m ðtÞjϕðbarÞ

m ðtÞi ¼ τ̄mAmðtÞ þOðσ2E=Δ2
bÞ; ð4Þ

in terms of the barrier dwell time [51] (mean delay time)
τ̄m ≡ jt

Eð0Þ
m
j2τDmT þ jr

Eð0Þ
m
j2τDmR and the arrival time distribu-

tion [57] AmðtÞ (the probability per time of arrival at the
barrier at t) of electron m.
Inside the barrier, electron m has the kinetic energy

Em ¼ Eð0Þ
m þ δEðdirÞ

m þ δEðexÞ
m . The change δEðdir=exÞ

m from

the initial value Eð0Þ
m by direct or exchange interactions with

the other electron m0 occurs in their input paths or the
barrier, hence, depending on the trajectory of m0. Using
Eqs. (2)–(4), the energy change occurring in the barrier
during the dwell time τ̄m of m is found [56] as
τ̄mΓðdir=exÞ þOðσ2E=Δ2

bÞ þOðW2Þ,

τ̄mΓðdirÞ ¼−τ̄m
Z

dtAmðtÞ
�

v
∂W
∂xm

�

j0mi⊗jϕm0 jαðtÞi
;

τ̄mΓðexÞ ¼−τ̄mRe
Z

dtAmðtÞ
�

v
∂W
∂xm

Pex

�

j0mi⊗jϕm0 jαðtÞi
: ð5Þ

The Coulomb power Γðdir=exÞ comes from the force
−∂W=∂x to electron m while m is inside the barrier
(described by the state j0mi) and m0 moves along a
trajectory from its input β to output α without partitioning

at the barrier that is described by jϕm0jαðtÞi≡ jϕðinÞ
m0 ðtÞi þ

jϕðbarrÞ
m0 ðtÞi þ s−1αβ jϕðout;αÞ

m0 ðtÞi [cf. the corresponding state
with partitioning in Eq. (3)].
The energy change δEðdir=exÞ

m modifies the partition

probabilities. P2 ¼ PðdirÞ
2 þ PðexÞ

2 is found as

PðdirÞ
2 ≃

Y

m¼1;2

Z

dEjϕ̃mðEÞj2jsdβmðE þ δEðdirÞ
m Þj2;

PðexÞ
2 ≃ ∓

�

�

�

�

Z

dEðϕ̃1ðEÞsdβ1ðE þ δEðexÞ
1 ÞÞ�

× ϕ̃2ðEÞsdβ2ðE þ δEðexÞ
2 Þ

�

�

�

�

2

ð6Þ
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with (i) the amplitude ϕ̃mðEÞ of finding the initial packet of
electron m in the plane wave having energy E of its input
path βm and (ii) the scattering amplitude sdβm to the lower

output d at the energy shifted by δEðdir=exÞ
m due to the

interaction with the other electron m0 moving to the lower
output. Equation (6) is valid up to the lowest order ofW and

σE=Δb, and gives the noninteracting result at δE
ðdir=exÞ
m ¼ 0.

P0 is found similarly for two electrons moving to the upper
output and P1 ¼ 1 − P0 − P2.
Partitioning copropagating electrons.—We consider

two copropagating electrons [Fig. 1(a)], the predecessor
(labeled by m ¼ 1) and successor (m ¼ 2) initially sepa-
rated by distance l > ℏv=ð2σEÞ. Their partition is deter-
mined by direct processes. When σE ≪ Δb, the partition
probabilities in Eq. (6) are written as

P2 ≃ jt
Ẽ1þδEðdirÞ

1jTT
j2jt

Ẽ2þδEðdirÞ
2jTT

j2;
P0 ≃ jr

Ẽ1þδEðdirÞ
1jRR

j2jr
Ẽ2þδEðdirÞ

2jRR
j2: ð7Þ

In the noninteracting limit, they are P2 ¼ jt
Eð0Þ
1

j2jt
Eð0Þ
2

j2 and
P0 ¼ jr

Eð0Þ
1

j2jr
Eð0Þ
2

j2. Ẽm − Eð0Þ
m is the kinetic energy change

of electron m that happens while the electrons copro-
pagate along the input path over distance Lm¼1;2; the

predecessor gains energy, Ẽ1 − Eð0Þ
1 ¼ ΓlL1=v, and the

successor losses energy, Ẽ2 − Eð0Þ
2 ¼ −ΓlL2=v. Γl ≡

−vð∂W=∂xrelÞjxrel¼l (> 0) is the Coulomb power at their
separation l. The energy gain or loss is determined by the
sign of the force −∂W=∂xm [cf. Eq. (5)]. Electron m has

further energy change by δEðdirÞ
mjTT (δEðdirÞ

mjRR) during barrier

scattering when they both are transmitted (resp. reflected).
We roughly estimate it from Eq. (5),

δEðdirÞ
1jTT ≈ Γlτ̄1; δEðdirÞ

2jTT ≈ −Γlτ̄1 − Γl−vτD
1T
τ̄2;

δEðdirÞ
1jRR ≈ Γlτ̄1; δEðdirÞ

2jRR ≈ −Γlτ̄1 − Γl−vτD
1R
τ̄2: ð8Þ

During its dwell time τ̄1 the predecessor gains energy Γlτ̄1,
while the successor losses Γlτ̄1. After the predecessor
scatters out of the barrier, the successor enters the barrier, as
l > ℏv=ð2σEÞ. This moment, their separation is reduced to
l − vτD1T or l − vτD1R by the delay time of the barrier
transmission or reflection of the predecessor. Then the
successor further losses energy by Γd−vτD

1T
τ̄2 or Γd−vτD

1R
τ̄2

during its dwell time τ̄2.
Using Eq. (6), we compute Pn in Fig. 2 for a symmetric

saddle point constriction Vsym ¼ Eb −m�ω2
0ðx2 − y2Þ=2

on the two dimension ðx; yÞ. The results qualitatively
follow Eqs. (7) and (8). This constriction has Δb ¼
ℏω2

0=ð2ωcÞ [54] and the symmetric delay times, τDmT ¼
τDmR ¼ τ̄m, hence δEðdirÞ

2jTT ¼ δEðdirÞ
2jRR. ωc is the cyclotron

frequency and m� is the electron effective mass. The
partition probabilities exhibit nonmonotonic dependence
on Eb in various energy configurations of Ẽm¼1;2. This
originates from the peak structure in the energy dependence
of the delay times [Fig. 1]. For instance, the energy
exchange Γlτ̄1 is maximal when the energy Ẽ1 of the
preceding electron aligns with the barrier height so that τ̄1 is
the largest. The resulting nonmonotonic features of Pn at
Ẽ1; Ẽ2 ∼ Eb, the enhanced P1 [see (ii) in Fig. 2(h) and
Fig. 3(a)] and the reduced P0 and P2 accompanied by peaks
[(i) and (iii)], agree with the corresponding features of
Fig. 3(d) of the experimental report [47].
In an asymmetric saddle point constriction, the trans-

mission and reflection delay times τD1T and τD1R differ. Then
the partition can violate

ffiffiffiffiffiffi

P0

p þ ffiffiffiffiffiffi

P2

p
≤ 1, a condition [50]

for uncorrelated scattering of noninteracting electrons.
To see this, we choose an asymmetric constriction
Vasymðx; yÞ ¼ Eb −m�ðω2

xx2 − ω2
yy2Þ=2, where ωx ¼ ωxL

and ωy ¼ ωyL for x < 0, ωx ¼ ωxR and ωy ¼ ωyR for
x > 0, and ωxL=ωyL ¼ ωyR=ωxR ¼ 1=2; ωyL=ωxR; the vio-
lation does not rely on this specific choice for simplicity of
calculation. It has Δb ¼ ℏωxLωyL=ð2ωcÞ and τD1T < τD1R
[56]. Then the reflection of the predecessor, in comparison
with the transmission, causes larger energy loss of the

FIG. 2. Partition probabilities Pn¼0;1;2 of two copropagating
electrons in Fig. 1(a) by the symmetric saddle point constriction
Vsym, as a function of the barrier height Eb measured with respect
to ðẼ1 þ Ẽ2Þ=2. Left panels: The noninteracing case. Middle:
The interacting case. Right: P0 versus P2 in the noninteracting
(solid curve) and interacting (dotted) cases. The thick dashed
curve follows

ffiffiffiffiffiffi

P0

p þ ffiffiffiffiffiffi

P2

p ¼ 1. Insets: Schematic kinetic energy
change of the electrons during barrier scattering. In (a)–(c),
Ẽ1 ¼ Ẽ2 þ 2Δb. In (d)–(f), Ẽ1 ¼ Ẽ2 − 2Δb. In (g)–(i), Ẽ1 ¼ Ẽ2.
We choose W0 ¼ 144 meV [56], ascr ¼ 500 nm, acut ¼ 10 nm,
Δb ¼ 5.4 meV [47], σE ¼ 1 meV [31], v ¼ 5 × 104 m=s [52],
and l ¼ 3ℏv=ð2σEÞ.
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successor during its dwell time τ̄2 so that the scattering
probabilities of the two electrons are correlated, violating
ffiffiffiffiffiffi

P0

p þ ffiffiffiffiffiffi

P2

p
≤ 1 [Eqs. (7)–(8), Fig. 3]. This may explain

the violation observed in Fig. 4 of Ref. [47]. The marks (i),
(ii),(iii) in Fig. 3(b) correspond to the nonmonotonic
features (i),(ii),(iii) of Fig. 3(a), respectively, in agreement
with Ref. [47].
Collision.—We next consider two counterpropagating

hot electrons that simultaneously arrive at the symmetric
constriction [Fig. 1(b)]. Their wave packets have the same
Gaussian form of mean energy Ẽ at the barrier entrance.
Their spins are in a product state jχ1i ⊗ jχ2i, as generated
by independent pumps. In this case, the partition proba-
bilities satisfy P0 ¼ P2 and P1 ¼ 1–2P2. In Fig. 4, we
compute Pn, using Eq. (6). The results qualitatively agree
with the relations

P2 ≃ jtẼþδEðdirÞ j2jr0
ẼþδEðdirÞ j2

− jhχ1jχ2ij2jtẼþδEðexÞ j2jr0
ẼþδEðexÞ j2 ð9Þ

valid at σE ≪ Δb. δEðdir=exÞ is the kinetic energy change by
direct or exchange interactions during the collision.
In Fig. 4(a) we consider electrons having opposite spins,

hχ1jχ2i ¼ 0. In the noninteracting case, δEðdirÞ ¼ 0 and the
dependence of P2 on Eb has a peak of height P2 ¼ 1=4 at
Eb ¼ Ẽ at which jtẼj2 ¼ jr0̃

E
j2 ¼ 1=2. In the interacting

case, Pn is determined by Ẽþ δEðdirÞ. δEðdirÞ is negative, as
the distance between the electrons decreases in the colli-
sion. The peak of P2 is shifted to lower Eb by jδEðdirÞj, but
the peak height is still 1=4.
In Fig. 4(b) we consider electrons having the same spin,

hχ1jχ2i ¼ 1. In the noninteracting case, the antibunching
of P1 ¼ 1 and P2 ¼ P0 ¼ 0 happens in the plane wave
limit of σE ¼ 0. However, deviation P2 ≠ 0 from the
antibunching occurs at finite σE=Δb, where the form of

the wave packet changes during barrier scattering [55].
In the interacting case, further deviation happens, since
jδEðexÞj is smaller than jδEðdirÞj as usual.
Nonmonotonic behaviors of Pn, similar to those of

Fig. 3(a), can happen in the collision, when the electrons
arrive at the barrier at different times more than acut=v.
Discussion.—We develop a theory for scattering of two

interacting electrons by a potential barrier, and emphasize
kinetic energy change by their interaction during scattering
delay times. The change depends on whether they cop-
ropagate or counterpropagate to approach the barrier, their
relative arrival time at the barrier, and the nonmonotonicity
and asymmetry in the delay times. For copropagating
electrons, the preceding electron gains energy while the
succeessor losses energy. For counterprogating cases, they
both loss energy. The energy change results in nonmonotic
dependence of their partition on the barrier height, corre-
lation of their scattering probabilities, and reduction of
fermionic antibunching in the collision. Our finding provides
a basic example ofmultiparticle scatteringproblems, andwill
be useful in application of electron quantum optics to flying
qubits, as combination of barrier partitioning and Coulomb
interactions is essential for coupling multiple qubits.
Our finding does not rely on a specific form of the

barrier and Coulomb potentials. Our perturbative treatment
of the Coulomb interaction is applicable when Γlτ̄∼
ℏΓl=Δb ≲ Δb; this condition is satisfied with usual con-
strictions [47] where τ̄∼ subpicoseconds.
We note that in the quantum Hall regime [23,27,41,58]

where electron wave packets move along a quantum Hall
edge channel, having low energy (≤ 0.1 meV) close to the
Fermi level, Γl=Δb may be so small that our effects are
negligible. When the scattering amplitudes of those packets
at a quantum point contact are manipulated to be energy
dependent (e.g., in nonequilibrium), the scattering delay
times will play a role, as in our study. It will be interesting
to study interplay between the delay times and electron
interactions of chiral Luttinger liquids along the edge.
We considered initial two-electron (anti-symmetrized)

product states. This is supported by experiments [59],
where the purity of electron states generated by a

FIG. 3. Partition probabilities Pn of two copropagating elec-
trons, having Ẽ1 ¼ Ẽ2, by the asymmetric constriction Vasym.
(a) Pn as a function of Eb in the interacting case [cf. the
corresponding symmetric constriction in Figs. 2(g)–2(i)].
(b) P0 versus P2 in the noninteracting (solid curve) and
interacting (dotted) cases. The interacting case violates

ffiffiffiffiffiffi

P0

p þ
ffiffiffiffiffiffi

P2

p
≤ 1 (the dashed curve in the zoom-in plot). (c) Delay times

τDT and τDR for the transmission and reflection of a packet of
energy E at the asymmetric constriction. The same parameters
with Fig. 2 are chosen, except ωxL=ωxR ¼ 1=2.

FIG. 4. Partition probabilities Pn by collision of two counter-
propagating electrons at the symmetric constriction, as a function
of Eb in the noninteracting (dashed curves) and interacting (solid)
cases. Eb is measured with respect to Ẽ. The electrons have
(a) opposite spins or (b) same spins. The same parameters with
Fig. 2 are chosen.
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quantum-dot pump is very low. Nonetheless, entanglement
in initial states can affect Pn, depending on its detailed
form. For example, when two electrons are initially in
an equal superposition of the initial states of Figs. 2(b) and
2(e), their partition probability Pn equals the average of the
results in Figs. 2(b) and 2(e). In this case, Pn does not show
the nonmonotonicity. Studies on the effects of general
entanglement will be valuable.
When the electrons occupy incoherent wave packets,

exchange interactions vanish, so their collision is governed
by direct processes. In this case, our theory is appli-
cable [60] also to the regime of Δb < σE with classical
ensemble average, although it is developed for Δb > σE.
It is known that in mesoscopic devices, scattering delay

times play a role in nonlinear current response [61–64] at
scatterers due to charge screening, although they are short
as subpicoseconds (∼ℏ=Δb). Our Letter identifies their new
role in multiparticle scattering. This role was unnoticed in
theories on two-particle scattering [65] including those for
capacitively coupled conductors [66], numerical studies
[55] for colliding electrons, and classical descriptions [67].
Note that the delay times differ from the traversal time
[31,68,69].
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[23] G. Fève, A. Mahé, J.-M. Berroir, T. Kontos, B. Plaçais,
D. C. Glattli, A. Cavanna, B. Etienne, and Y. Jin, An on-
demand coherent single-electron source, Science 316, 1169
(2007).

[24] M. Moskalets, P. Samuelsson, and M. Büttiker, Quantized
Dynamics of a Coherent Capacitor, Phys. Rev. Lett. 100,
086601 (2008).

[25] J. Keeling, I. Klich, and L. S. Levitov, Minimal Excitation
States of Electrons in One-Dimensional Wires, Phys. Rev.
Lett. 97, 116403 (2006).

[26] J. Keeling, A. Shytov, and L. S. Levitov, Coherent Particle
Transfer in an On-Demand Single-Electron Source, Phys.
Rev. Lett. 101, 196404 (2008).

PHYSICAL REVIEW LETTERS 129, 166801 (2022)

166801-5

https://doi.org/10.1103/PhysRevLett.68.1220
https://doi.org/10.1103/PhysRevB.45.8454
https://doi.org/10.1126/science.aat0905
https://doi.org/10.1038/nature01503
https://doi.org/10.1103/PhysRevLett.96.016804
https://doi.org/10.1103/PhysRevB.75.033315
https://doi.org/10.1103/PhysRevB.75.033315
https://doi.org/10.1103/PhysRevB.76.161309
https://doi.org/10.1103/PhysRevB.76.161309
https://doi.org/10.1103/PhysRevLett.100.196807
https://doi.org/10.1103/PhysRevLett.100.196806
https://doi.org/10.1103/PhysRevLett.100.196806
https://doi.org/10.1103/PhysRevB.80.161306
https://doi.org/10.1103/PhysRevB.80.161306
https://doi.org/10.1038/nphys627
https://doi.org/10.1103/PhysRevB.78.045322
https://doi.org/10.1126/science.284.5412.296
https://doi.org/10.1126/science.284.5412.299
https://doi.org/10.1126/science.284.5412.299
https://doi.org/10.1038/34611
https://doi.org/10.1038/34611
https://doi.org/10.1103/PhysRevLett.123.016803
https://doi.org/10.1103/PhysRevLett.123.016803
https://doi.org/10.1126/science.aaz5601
https://doi.org/10.1103/PhysRevLett.125.196802
https://doi.org/10.1103/PhysRevLett.125.196802
https://doi.org/10.1103/PhysRevB.105.075433
https://arXiv.org/abs/2202.03649
https://doi.org/10.1088/1361-6633/aaa98a
https://doi.org/10.1088/1361-6633/aaa98a
https://doi.org/10.1103/RevModPhys.85.1421
https://doi.org/10.1126/science.1141243
https://doi.org/10.1126/science.1141243
https://doi.org/10.1103/PhysRevLett.100.086601
https://doi.org/10.1103/PhysRevLett.100.086601
https://doi.org/10.1103/PhysRevLett.97.116403
https://doi.org/10.1103/PhysRevLett.97.116403
https://doi.org/10.1103/PhysRevLett.101.196404
https://doi.org/10.1103/PhysRevLett.101.196404


[27] J. Dubois, T. Jullien, F. Portier, P. Roche, A. Cavanna, Y. Jin,
W. Wegscheider, P. Roulleau, and D. C. Glattli, Minimal-
excitation states for electron quantum optics using levitons,
Nature (London) 502, 659 (2013).

[28] S. P. Giblin, M. Kataoka, J. D. Fletcher, P. See, T. J. B. M.
Janssen, J. P. Griffiths, G. A. C. Jones, I. Farrer, and D. A.
Ritchie, Towards a quantum representation of the ampere
using single electron pumps, Nat. Commun. 3, 930
(2012).

[29] F. Hohls, A. C. Welker, Ch. Leicht, L. Fricke, B. Kaestner, P.
Mirovsky, A. Müller, K. Pierz, U. Siegner, and H.W.
Schumacher, Semiconductor Quantized Voltage Source,
Phys. Rev. Lett. 109, 056802 (2012).

[30] B. Kaestner and V. Kashcheyevs, Non-adiabatic quantized
charge pumping with tunable-barrier quantum dots: A
review of current progress, Rep. Prog. Phys. 78, 103901
(2015).

[31] S. Ryu, M. Kataoka, and H.-S. Sim, Ultrafast Emission and
Detection of a Single-Electron Gaussian Wave Packet: A
Theoretical Study, Phys. Rev. Lett. 117, 146802 (2016).

[32] G. Yamahata, S. Ryu, N. Johnson, H.-S. Sim, A. Fujiwara,
and M. Kataoka, Picosecond coherent electron motion in a
silicon single-electron source, Nat. Nanotechnol. 14, 1019
(2019).

[33] L. Freise, T. Gerster, D. Reifert, T. Weimann, K. Pierz, F.
Hohls, and N. Ubbelohde, Trapping and Counting Ballistic
Nonequilibrium Electrons, Phys. Rev. Lett. 124, 127701
(2020).

[34] S. Hermelin, S. Takada, M. Yamamoto, S. Tarucha, A. D.
Wieck, L. Saminadayar, C. Bäuerle, and T. Meunier,
Electrons surfing on a sound wave as a platform for
quantum optics with flying electrons, Nature (London)
477, 435 (2011).

[35] R. P. G. McNeil, M. Kataoka, C. J. B. Ford, C. H. W.
Barnes, D. Anderson, G. A. C. Jones, I. Farrer, and D. A.
Ritchie, On-demand single-electron transfer between distant
quantum dots, Nature (London) 477, 439 (2011).

[36] S. Takada, H. Edlbauer, H. V. Lepage, J. Wang, P.-A.
Mortemousque, G. Georgiou, C. H. W. Barnes, C. J. B.
Ford, M. Yuan, P. V. Santos et al., Sound-driven single-
electron transfer in a circuit of coupled quantum rails, Nat.
Commun. 10, 4557 (2019).

[37] F. Brange, A. Schmidt, J. C. Bayer, T. Wagner, C. Flindt,
and R. J. Haug, Controlled emission time statistics of a
dynamic single-electron transistor, Sci. Adv. 7, eabe0793
(2021).

[38] Y. M. Blanter and M. Büttiker, Shot noise in mesoscopic
conductors, Phys. Rep. 336, 1 (2000).

[39] E. Bocquillon, F. D. Parmentier, C. Grenier, J.-M. Berroir, P.
Degiovanni, D. C. Glattli, B. Plaçais, A. Cavanna, Y. Jin,
and G. Fève, Electron Quantum Optics: Partitioning Elec-
trons One by One, Phys. Rev. Lett. 108, 196803 (2012).

[40] S. Ol’Khovskaya, J. Splettstoesser, M. Moskalets, and M.
Büttiker, Shot Noise of a Mesoscopic Two-Particle Collider,
Phys. Rev. Lett. 101, 166802 (2008).

[41] T. Jullien, P. Roulleau, B. Roche, A. Cavanna, Y. Jin, and
D. C. Glattli, Quantum tomography of an electron, Nature
(London) 514, 603 (2014).

[42] E. Bocquillon, V. Freulon, J.-M. Berroir, P. Degiovanni, B.
Plaçais, A. Cavanna, Y. Jin, and G. Féve, Coherence and
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