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The interplay between various symmetries and electronic bands topology is one of the core issues for
topological quantum materials. Spontaneous magnetism, which leads to the breaking of time-reversal
symmetry, has been proven to be a powerful approach to trigger various exotic topological phases. In this
Letter, utilizing the combination of angle-resolved photoemission spectroscopy, magneto-optical Kerr
effect microscopy, and first-principles calculations, we present the direct evidence on the realization of the
long-sought spontaneous ferromagnetism induced topological transition in soft ferromagnetic EuB6.
Explicitly, we reveal the topological transition is from Z2 ¼ 1 topological insulator in paramagnetic state to
χ ¼ 1magnetic topological semimetal in low temperature ferromagnetic state. Our results demonstrate that
the simple band structure near the Fermi level and rich topological phases make EuB6 an ideal platform to
study the topological phase physics.

DOI: 10.1103/PhysRevLett.129.166402

In the past decades, the investigation of topological
phases has aroused a great deal of interest due to the
breakthrough on the paradigm of condensed matter physics
and various potential applications. One core issue of these
research activities is to understand the interplay between all
kinds of symmetries and topology [1]. In fact, topologically
nontrivial materials are defined as a specific class of
materials in which electronic structure can be classified
by topological invariants protected by various symmetries
[2–5]. Among them, time-reversal symmetry (TRS) is an
important one and has attracted much attention. For
example, it is TRS that protects the novel gapless helical
surface states in topological insulator (TI) [6–9]. While, the
breaking of TRS can significantly alter the electronic
structure and may give rise to some exotic topological
phases, such as the formation of magnetic Weyl nodes from
topological trivial bands through the application of external
magnetic field in half-Heusler compounds [10–12], and the
realization of quantum anomalous Hall state through
magnetic doping in TIs [13–16]. In particular, the search
for topological transitions due to spontaneous time-reversal
symmetry breaking (TRSB) is of particular interest for the
interaction between intrinsic magnetism and topology may
introduce a variety of novel physics [17–23]. For example,

in two-dimensional (2D) ferromagnetic (FM) or antiferro-
magnetic TIs, spontaneous TRSB can lead to topological
transitions to quantum anomalous Hall insulators [24–28]
or topological axion insulators [29–34]. As for three-
dimensional (3D) systems, spontaneous TRSB is as well
expected to give rise to Weyl semimetals (WSM) or Wely
nodal-line semimetals (WNLSM) [35–39]. Nevertheless,
topological transitions directly driven by spontaneous
magnetism have not been reported experimentally so far.
Recently, it was suggested that europium hexaboride

(EuB6), a typical soft magnetic material, should undergo a
topological transition from a small gap semiconductor in its
paramagnetic (PM) state to a TRS broken topological
semimetal in the ferromagnetic state, considering that the
effective magnetic exchange splitting renders opposite
effect on the two bands and consequently leads to the
band inversion in the spin-up subbands [39–42]. Previous
angle-resolved photoemission spectroscopy (ARPES)
studies on EuB6 suggested an X-point band gap as large
as 1 eV with the Fermi energy (EF) near the bottom of
the conduction band [43,44] and no sign of the band in-
version, in conflict with the semimetal character with a
small X-point band overlap revealed by bulk-sensitive
techniques, such as the quantum oscillation [45,46].
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Furthermore, a spin split surface state has been reported
in a recent STM work [47]. EuB6 becomes ferromagnetic
below Tc2 ¼ 12.5 K, and the large negative magneto-
resistance, which is related to percolation-type transition
resulting from the overlap of magnetic polarons, occurs
at another magnetic phase transition temperature Tc1 ¼
15.3 K [48–54]. The experimental exploration of the low-
lying electronic structure of EuB6, particularly for the
detailed evolution upon magnetic phase transition, would
shed light on the comprehensive understanding of its
nontrivial topological property.
In this Letter, combining ARPES, magneto-optical Kerr

effect (MOKE) microscopy, and first-principles calcula-
tions, we have systematically investigated the evolution of
bulk band structure with temperature in a soft magnetic
material EuB6 and provided a direct evidence for the
realization of topological transition induced by the sponta-
neous ferromagnetism.
Details of our experiments and calculations can be found

in the Supplemental Material (SM) [55]. EuB6 has a CsCl-
type structure with space group Pm3m (no. 221) as shown
in Fig. 1(a) [61]. Cleaving between Eu and B6 octahedron
planes will give two polar terminations, which have been
confirmed by STM experiments [47]. The bulk and (001)-
projected surface Brillouin zones (BZs) of EuB6 are shown
in Fig. 1(b). Our samples have been characterized by the
single-crystal XRD (Fig. S1 of SM [55]), and the results
along high-symmetry directions show individual dots with
no impurity phases appearing, suggesting the excellent
quality of these samples. After cleaving, the sample shows
typical flat and shining surface. Moreover, the low-energy
electron diffraction pattern, as shown in Fig. S1 (b) of
SM [55] (i), confirms the square (001) cleavage surface
of EuB6.
In the first-principles calculations for paramagnetic EuB6

(see Figs. S2 and S3 of SM [55]), the band overlap (gap) at
X (Z) is sensitive to the internal parameter u, a parameter
characterizing the relative size of the B6 octahedron in one
unit cell. Here, according to the XRD refinement on the
very EuB6 sample which we conducted ARPES measure-
ments on, the lattice constant was determined to be
4.1851 Å, and the distances between two B atoms inside
the octahedron and between two octahedrons are 1.7756
and 1.6740 Å, respectively, which suggest the internal
parameter u ∼ 0.200. Based on these crystal parameters,
our calculation reveals a small band inversion between
conduction and valence bands at three XðY; ZÞ points
without spin-obit coupling (SOC) [Figs. 1(c) and 1(d)].
In fact, due to the absence of special symmetry protection,
EuB6 is a typical topological insulator after considering
SOC. We note that this result is different from the conven-
tional insulator with a small gap predicted for paramagnetic
EuB6 by the previous Letter [39], which is related to
the sensitivity of band gap to the internal parameter
u [62].

In the FM state, the exchange field will induce the spin
splitting of the bulk bands. Interestingly, the relatively large
exchange splitting would remove the original band inver-
sion in the spin-down channel. However, the band inversion
still exists and even becomes more prominent in the spin-up
channel. Such a band inversion in this magnetic centro-
symmetric system gives rise to the topological invariant
χ ¼ 1; here, χ is defined by

ð−1Þχ ≡ Y

j¼f1;2;…;noccg;Γi¼TRIMs

ξji ; ð1Þ

where ξji is the parity eigenvalue of the jth band at the time-
reversal-invariant-momentum (TRIM) Γi and nocc is the
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FIG. 1. (a) Crystal structure and (b) bulk and (001)-projected
surface BZs of EuB6. (c) Calculated band structure of EuB6 in its
paramagnetic state without SOC. The valence band and con-
duction band with opposite parity near EF are labeled as Γ−

3 and
Γþ
3 , respectively. Here the lattice constant a ¼ 4.1851 Å and u ¼

0.200 are used, determined directly from the fitting of XRD data.
(d) Enlargement of the band crossing at ZðX; YÞ point.
(e) Schematic plot of emergent topological phases with TRSB
in centrosymmetric 3D systems. “þ” and “−” represent even and
odd parity of corresponding band, and “↑” and “↓” represent
spin-up and spin-down, respectively. Black bands are spin
degenerated bulk bands, while red and blue bands are spin-up
and spin-down branches, respectively. DNLSM (Dirac nodal line
semimetal): without considering SOC, the spin degenerated
conduction and valence band crossing with each other gives rise
to the fourfold degenerate nodal line.
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total number of the occupied bands. χ ¼ 1 guarantees that
the band crossings cannot be fully gapped by SOC,
making EuB6 to be a magnetic topological semimetal
[39]. Generally, it can be either a magnetic WSM or
WNLSM, depending on whether the mirror symmetry is
broken or not in the unit cell after considering the ordered
magnetic moments as illustrated in Fig. 1(e).
By taking a comprehensive survey on the electronic

structure of EuB6 through synchrotron radiation-based
mirco-ARPES (with a tiny 30 × 30 μm beam spot) and
numerous attempts of cleavage, we achieved two sets of
data with obvious contrasts between them. Previous
ARPES studies on EuB6 have revealed the gradually
enlarger electron pocket with time [44]. A similar temporal
change was also detected on one set of data, as shown in
Figs. 2(b) and 2(c). More details about the temporal change
on photoemission spectra can be found in Fig. S4 of SM
[55]. Additionally, we found that the chemical potential of

samples could be recovered when heated (Fig. S5 of SM
[55]), demonstrating typical atomic adsorption effects on
polar surfaces. The surface-state character of the bands SS1
in Fig. 2(b)(II) and SS2 in Fig. 2(j) is revealed by the
negligible kz dispersion in Fig. 2(d). On the contrary, on
another set of data showing the opposite chemical potential
shift with time [Figs. 2(f) and 2(g)], we found a clear
dispersion with periodic modulation along kz as shown
in Fig. 2(h), which confirms their bulk-band nature.
Moreover, in Fig. 2(b), only the electron pocket from Eu
5d orbitals and Eu 4f peak can be seen, while in contrast,
the valence bands have strong intensity in Fig. 2(f).
According to previous calculation of divalent hexaborides,
the conduction band comes mainly from cation, while the
low-energy valence band mainly consists of B-atom orbi-
tals [62]. Thus we believe the distinct difference in the
photoemission spectra between Figs. 2(b) and 2(f) is due to
the surface sensitivity of ARPES. Based on this, we suggest
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cleaved on the Eu termination surface. The probing photons are of 71 eV. (c) Energy distribution curve (EDCs) along the corresponding
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SS2 [for details, see (i) and (j)]. (e) Sketch plot of the B termination surface. (f) (I),(II) ARPES intensity plots along Γ̄–X̄ at different time
after sample cleaved on the B termination. Photons are of 71 eV. (g) EDCs along the corresponding dashed lines in (f). (h) Photoemission
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direction at 4.9 K with the photon energy 103 eV.
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that the data in Fig. 2(b) are mainly collected on Eu
termination surface while in Fig. 2(f) it is collected on the B
termination surface, which is further confirmed by detailed
photoemission spectroscopic study on B 1s core level and
Eu 4f spectra (Fig. S6 of SM [55]). The opposite shift
direction of the chemical potential on these two termination
surfaces shown in Figs. 2(c) and 2(g) might be caused by
the opposite polarities of them. In addition, our calculation
on a nine-layer slab indicates that the electron pockets SS1
and SS2 are mainly contributed by the outermost Eu atoms
(Fig. S7 of SM [55]), consistent with our conclusion.
In Fig. 2(i), we present the intensity map at EF on Eu

termination surface in the FM state (9.5 K) after the
adsorption saturation, in which two concentric circular
electron pockets and two elliptical ones appear around the
BZ center and boundary, respectively. The circular pockets
are more clearly visible in the second BZ, and we note that
this strong matrix element effect can also manifest itself on
the bulk bands. The band dispersion along the high-
symmetry directions on the Eu and B termination surface
is shown in Figs. 2(i), 2(j), 2(l), and 2(m) for comparison.
Figure 3(a) illustrates the detailed evolution of bulk

bands around the Z point with temperature. At the lowest
temperature (4.9 K), the valence band is split into two
branches due to the exchange coupling, and we then mark
that crossing the Fermi level as the up branch (spin-up
branch according to calculations) and the lower one cross-
ing the bottom of the conduction band as the down branch
[Fig. 3(e)]. As the temperature increases, the up branch
keeps shifting downward while the down branch moves up,

gradually shrinking the exchange splitting. Meanwhile, the
down branch of the conduction band also hikes up with
the rising temperature. Above 10.5 K, the splitting of the
valence band can hardly be observed. After the measure-
ment taken at 16.9 K, we then chilled the sample to ∼5 K to
check whether the spectral change upon temperature is
intrinsic or not. After confirming that our findings were
well reproducible in the FM phase, we increased the
temperature again to 21.8 K, well above the phase
transition temperature. The nearly same spectra between
Figs. 3(a)(VI) and 3(a)(VIII) further verified the temper-
ature reversibility of the electronic structure changes cross-
ing the phase transition. Moreover, we note that our MOKE
data illustrate that magnetic domains start to form at nearly
the same critical temperature [Fig. S8(a) in the SM [55] ],
indicating that the band splitting is indeed induced by the
exchange field.
To directly compare the electronic structure in the PM

and FM states, we present photoemission intensity plots
and corresponding momentum distribution curves in
Figs. 3(b)–3(e). In the PM state, the conduction and valence
bands have an overlap in energy, which can be further
confirmed by some other EuB6 samples with less carrier
density, as shown in Fig. S9 of SM [55]. Our calculations
determined that the conduction and valence bands of EuB6

should belong to the same irreducible representations when
considering the SOC [see Fig. S10(b) of SM], and full gaps
would definitely open at band crossings [55,63]. Because
the inverted conduction and valence bands have opposite
parities at three X (Y, Z) points, in the presence of both
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inversion and time-reversal symmetries, we can unambig-
uously determine that paramagnetic EuB6 is a topological
insulator with Z2 ¼ 1 [64]. However, we note that the tiny
SOC gap is hard to observe on the photoemission data,
which might be due to its rather small energy size and the
relatively low energy resolution (see more details in SM
[55]). In the FM state, the exchange field results in the spin-
up conduction band branch sinking and the spin-up valence
band branch rising simultaneously. In this way, the band
crossing in the spin-up channel would persist and becomes
more prominent with the decrease of temperature. But as
highlighted in Figs. 3(d) and 3(e), the spin-down con-
duction band branch has been pushed above EF while the
spin-down valence band branch shifts down to high binding
energy, removing the original band inversion in spin-down
channel.
As shown in Fig. 3(f), the band inversion can be further

confirmed along the Γ–X direction in the PM state, while in
the FM state the exchange splitting manifests itself as in
Fig. 3(g). Unlike the band structure along T–Z, where the
band overlap region is slightly below EF, along this
direction, the OP of the spin-up channel is slightly above
the Fermi level, consisted with calculations [39]. This kind
of band inversion at three X (Y, Z) points would give rise to
χ ¼ 1, making EuB6 to be a magnetic topological semi-
metal. Recently, one similar phase transition between
different topological nontrivial states has been reported
in EuAs3 through transport measurements [65]. We note
that our current findings are not fully consistent with the
previous Letter [39] since the band inversion has been
found to occur in the PM state. Such band evolution caused
by the FM order is more systematically illustrated in
Fig. 1(e).
In summary, we have successfully disentangled the

three-dimensional bulk-band structure of EuB6 on photo-
emission spectra. In the PM state, we have found the band
inversion at three X (Y, Z) points of EuB6, and it can be
assigned as a topological insulator with Z2 ¼ 1. When
EuB6 undergoes the FM transition confirmed by our
MOKE experiments, the bulk states split, and we have
found that the band inversion only remains in one spin
channel due to the relatively large exchange splitting at low
temperatures. Thus, it would make EuB6 to be a magnetic
topological semimetal with χ ¼ 1. Our Letter provides a
direct evidence on the topological transition in EuB6

induced by the spontaneous ferromagnetism.
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