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The dissipation of magnetized turbulence is an important paradigm for describing heating and energy
transfer in astrophysical environments such as the solar corona and wind; however, the specific
collisionless processes behind dissipation and heating remain relatively unconstrained by measurements.
Remote sensing observations have suggested the presence of strong temperature anisotropy in the solar
corona consistent with cyclotron resonant heating. In the solar wind, in situ magnetic field measurements
reveal the presence of cyclotron waves, while measured ion velocity distribution functions have hinted at
the active presence of cyclotron resonance. Here, we present Parker Solar Probe observations that connect
the presence of ion-cyclotron waves directly to signatures of resonant damping in observed proton-velocity
distributions using the framework of quasilinear theory. We show that the quasilinear evolution of the
observed distribution functions should absorb the observed cyclotron wave population with a heating rate
of 10−14 W=m3, indicating significant heating of the solar wind.
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Introduction.—Observations of the solar corona reveal
plasma that is millions of degrees hotter than the blackbody
temperature of the solar surface. While the energy required
to heat the corona and accelerate the solar wind originates
from solar convection and the magnetic fields produced by
the solar dynamo, the specific pathways to heating and
particle acceleration remain elusive [1]. The dissipation of
Alfvénic turbulence at kinetic scales has become a common
paradigm in explaining the dynamics of coronal heating
and solar wind acceleration [2–5]; possible dissipative
mechanisms include Landau or cyclotron resonant damping
[6–10], stochastic heating [11], or magnetic reconnection
[12,13]. Additionally, the portion of energy deposited by
these processes at ion scales, versus that which is subject to
a kinetic cascade and dissipated by electrons, remains an
open question [10,14–17].
It is well known that the observed ion temperature

profiles in the solar wind require significant perpendicular
heating [18,19], which is likely initiated at ion kinetic
scales where particles interact efficiently with electromag-
netic waves [9,16,20–24]. Cyclotron resonant coupling of
electromagnetic fluctuations with ion gyromotion [25] has
received particular attention as a potential perpendicular
heating mechanism [26–30]. Ultraviolet spectroscopic
measurements of coronal ion temperature anisotropy

suggest large T⊥=Tk, consistent with cyclotron resonant
heating [28,31–33]. The presence of ion-cyclotron waves
has been well documented in in situ observations through-
out the heliosphere both as solitary waves and as part of
the background spectrum of fluctuations [34–40]. Obser-
vations of magnetic helicity at ion scales have been
interpreted as evidence for active cyclotron damping of
quasiparallel Alfvénic fluctuations, which contribute to
turbulent heating [8,9,41,42].
Theoretical signatures of resonant interactions in particle

distribution functions are often studied in the framework of
quasilinear (QL) diffusion [15,43–45]; observations of the
solar wind have suggested evidence for QL cyclotron
resonant diffusion in signatures of the proton-velocity
distribution function fpðvÞ [46–48]. While the generation
of cyclotron waves through instabilities has been widely
discussed [37,38,40,49,50] and signatures of cyclotron
resonant dissipation have been suggested [8,9,46,48,51–
53], definitive cyclotron resonant heating sufficient to
power the solar wind has not been observed.
In this Letter, we apply the QL theory of resonant

cyclotron interactions [43,44] to empirically measured
cyclotron wave spectra and ion-distribution functions.
Our results provide evidence of substantial heating at
levels comparable with bulk solar wind heating rates,
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providing a compelling picture of ion heating in the
solar wind.
Data.—Parker Solar Probe (PSP) [54] observations from

the electromagnetic FIELDS [55] and Solar Wind Electron
Alpha and Proton (SWEAP) [56] instruments aim to
constrain fundamental processes that result in coronal
heating and solar wind acceleration. PSP has revealed
prevalent ion-scale electromagnetic waves [39,40], ion
distributions out of thermal equilibrium [57,58], and
evidence for resonant wave-particle interactions predicted
by QL theory [59]. To constrain cyclotron resonant heating,
we study a stream from PSP perihelion 4 on January 30,
2020 from 00:00–08:00 hrs with resolved proton distribu-
tions. During the interval, PSP was ∼30R⊙ from the solar
surface. We use merged search coil and fluxgate magne-
tometer data from PSP FIELDS [55,60] enabling meas-
urement of the inertial, transition, and kinetic scales of
turbulence; the merged dataset only has two axes available
[61], thus we use vector-fluxgate magnetometer data to
study wave polarization. Figure 1(a) shows B in radial-
tangential-normal (RTN) coordinates. Proton-velocity dis-
tribution functions fpðvÞ are obtained from the PSP
SWEAP Solar Probe ANalyzer (SPANi). The proton
population is often parametrized with a pair of drifting
bi-Maxwellian fits to model fpðvÞ using separate thermal
(core) and nonthermal (beam) populations [1]. Fits to a
proton core and field-aligned beam provide estimates of

bulk velocity u, anisotropic temperatures perpendicular and
parallel to the backgroundmagnetic fieldTk;⊥, and the beam-
to-core proton density ratio nb=nc [56,58]. Figure 1(b)
shows measurements of u in RTN coordinates. The stream
is relatively slow with an average speed of ∼220 km=s and
moderately Alfvénic with a cross helicity of ∼0.85.
The phase-space density of fpðvÞ is calibrated to

quasithermal noise (QTN) from FIELDS to recover the
absolute density [55,62]. The mean proton density is
np ¼ 1100=cm3; SPANi gives an average beam-to-core
density ratio of 0.48. The core has T⊥ of 15 eV and Tk of
12 eV; the beam has T⊥ of 22 eV and Tk of 30 eV. The
average drift of the beam relative to the core is 83 km=s.
The individual core and beam have βc ¼ 0.65 and
βb ¼ 1.1. The mean magnetic field was directed
Sunward, with an Alfvén speed of 60 km=s. Figure 1(c)
shows the magnetic field spectra of the interval with a steep
transition range at ion-kinetic scales [63–65].
We apply a Morlet wavelet transform to the vector

magnetic field data rotated into field-aligned coordinates
[66]. Signatures of circular polarization are found using

σBðf; tÞ ¼ −2ImðB⊥1B�⊥2Þ=ðB2⊥1 þ B2⊥2Þ; ð1Þ

with left- and right-handed waves corresponding to positive
and negative σB [35,36,67,68]. Circular polarization is
measured in the spacecraft frame, such that the measured
sign may not correspond to the innate plasma frame
polarization [67]. A sign change in σB occurs if the wave
is Doppler shifted to negative frequencies in the spacecraft
frame. However, it has been demonstrated that the majority
of waves propagate outward, and thus, that Doppler shift
does not change their handedness when observed in the
spacecraft frame [69].
Previous work has shown that circularly polarized ion-

scale waves are parallel propagating and evident when θvB ∼
0 [40]. However, observations of parallel-propagating, cir-
cular polarized waves are strongly inhibited when the angle
between the solar wind and the mean magnetic field is
oblique. This effect occurs because (a) the wave polarization
plane is not well resolved by the spacecraft and (b) the
turbulence is anisotropic with increasing power with larger
θvB [67,70–72]. The lack of circular polarization signatures
when θvB is moderately oblique is consistent with sampling
effects of quasiparallel waves at oblique angles in anisotropic
turbulence [40], suggesting that ion-scalewaves canpersist at
oblique θvB. In order to estimate the parallel-propagating,
left-hand polarized spectrum, wavelet power with σB > 0.9
is identified when θvB < 15°. We assume homogeneity and
stationarity, such that the circularly polarized spectrum
measured at θvB < 15° represents the wave spectrum at
all times (i.e., when θvB > 15°). Figure 1(c) shows the
power spectrum of circularly polarized fluctuations with
σB > 0.9 and σB < −0.9, corresponding to strong left- and
right-handed power. The right-handed modes have been
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FIG. 1. (a) Magnetic field measurements from PSP-FIELDS.
(b) Velocity measurements from PSP-SPANi. (c) Spectra of
magnetic field data. Spectral indices at −3=2, −4 and −2.7 are
shown. Wavelet coefficients for total power are shown as black ⋄.
Wavelet coefficients filtered by left- and right-handed σb are
shown in red and blue ⋄.
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shown to be statistically consistent with a fast magnetosonic
mode [69].
Distribution functions.—Figure 2 shows the SPANi

proton distribution function fpðv⊥; vkÞ from the stream
at January 30, 2020 04∶10∶21 hrs. Figure 2(a) shows a
interpolation of the 3D measurements in the v⊥–vk plane
constructed by identifying values of v⊥ and vk for each 3D
energy bin, assuming gyrotropy. A drifting two-component
bi-Maxwellian fit, assuming gyrotropy, is shown in
Fig. 2(b). The drifting bi-Maxwellian fit provides an
approximation to fpðvÞ using two individual proton pop-
ulations, though this parametrization may not resolve all
nonthermal features that affect resonant interaction with

cyclotron waves. Indeed, the presence of strong and
persistent cyclotron resonant interactions should affect
the shape of fpðvÞ, leading to an equilibrium distribution
that deviates from a bi-Maxwellian [44]. To explore a
nonparametric fpðv⊥; vkÞ, which may better represent the
data [73–75], we fit a set of orthonormal Hermite functions
using linear least-square methods,

fpðv⊥; vkÞ ¼
X
m;n

gmnϕmðv⊥=v⊥thÞϕnðvk=vkthÞ; ð2Þ

HnðvÞ ¼ ð−1Þnev2 dn

dxn
e−v

2

; ð3Þ

ϕm ¼ HmðvÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mπ1=2m!

p e−v
2 ð4Þ

[76,77]. Figure 2(c) shows the best-fit estimate to fpðvÞ for
Hermite functions of order mmax ¼ 6 and nmax ¼ 6. The
distributions are shown in field-aligned coordinates with
B̂0 along the vertical axis. In carrying out this fit, we
effectively extend fðv⊥; vkÞ to negative values of v⊥ by
treating fðv⊥; vkÞ as an even function of v⊥, thereby
omitting the terms in the sum corresponding to odd values
of m. Our use of Hermite functions is meant solely as a
nonparametric interpolative scheme and is not intended to
represent a natural basis for fpðvÞ [76]. Over the studied
interval, the average χ2 residual of the Hermite representa-
tion is 90% of the bi-Maxwellian fit. No intervals were
significantly better fit by the drifting bi-Maxwellian,
though some distributions are equally well represented
by either approximation.
The ion-cyclotron resonance condition is ωðkkÞ ¼ Ωþ

kkvk such that outward-propagating cyclotron waves res-
onate with the inward-propagating portion of the distribu-
tion function. The evolution of fpðvÞ in the presence of
resonant interactions can be described by QL diffusion
theory [43,44]. In a reference frame moving with a wave,
the particles conserve kinetic energy as they scatter off that
wave, tracing contours in v⊥ and vk that can be computed
using the wave dispersion relation and resonance condition
[29,43,44,46]. The QL diffusion contours [44,78] are
overlaid on fpðvÞ in Figs. 2(a)–2(c). If fpðvÞ decreases
as v⊥ increases along the contours, cyclotron resonance
diffuses energy across in the region where resonant waves
are present, heating the plasma. Conversely, if fpðvÞ
increases as v⊥ increases, then fpðvÞ is unstable, generat-
ing waves and cooling the plasma. Cyclotron resonant
equilibrium corresponds to a flattening of fpðvÞ along the
contours. Figures 2(d)–2(f) show fpðvÞ evaluated along QL
diffusion contours, parametrized on v⊥; for each represen-
tation, fpðvÞ is characteristically flat along contours,
suggesting that fpðvÞ has been processed by cyclotron
resonance [46,48].
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FIG. 2. (a) Interpolation of fpðvÞ from SPANi in the v⊥ − vk
plane, with the mean magnetic field pointing vertically. Points
show SPANi measurement locations. Solid lines show vkth, and a
set of cyclotron resonant diffusion contours are plotted. (b) Drift-
ing bi-Maxwellian fit to fpðvÞ. (c) Hermite representation of
fpðvÞ. Integration of fpðvÞ in (a)–(c) over v⊥ − vk is normalized
to the QTN density. (d) Contours of fpðvÞ determined by
interpolating the gyrotropic distribution along QL diffusion
contours for parallel cyclotron resonance. (e),(f) Drifting bi-
Maxwellian and the Hermite representations of fpðvÞ evaluated
along cyclotron resonance contours.
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The QL proton heating rate due to resonance with
parallel-propagating cyclotron waves is given by

H ¼
Z

mpv2

2

∂fpðvÞ
∂t

d3v

¼ πe2

2m2
p

Z
∞

0

dkk
1

v⊥
Ĝk½v⊥δðωk − kkvk −ΩpÞ

×
ω2
k

k2kc
2
IðkkÞĜkfpðvÞ�d3v ð5Þ

with

Ĝk ¼
�
1 −

kkvk
ω

�
∂

∂v⊥
þ kkv⊥

ω

∂

∂vk
ð6Þ

[43]. Using the observed left-handed spectrum in Fig. 1, the
cold-plasma dispersion relation, along with the bulk veloc-
ity to correct for Doppler shift [69], an average parallel left-
handed cyclotron spectrum IðkkÞ is established.
For each observed fpðvÞ, a value of H is obtained

numerically through Eq. (5) using bi-Maxwellian and
Hermite representations of fðv⊥; vkÞ. For the distribution
shown in Fig. 2, a heating rate of 10−14 W=m3 is found
using the Hermite representation and 4 × 10−15 W=m3

using the drifting bi-Maxwellian spectrum. The measured
H is similar to estimates of bulk ion heating due to
turbulent dissipation at the spacecraft’s location (30R⊙)
[79–81].
Figures 3(a)–3(d) show the differential volumetric heat-

ing rate H as a function of resonant parallel velocity
measured in each distribution function. The top panels,
Figs. 3(a) and 3(b), show positiveH, the “heating” rate, as a
function of vk and time for the (a) bi-Maxwellian and
(b) Hermite representations. The bottom panels, Figs. 3(c)
and 3(d), show negative H, the “cooling” rate over the
interval as a function or resonant vk due to emission of
waves through instability. Figure 3(e) shows the net
integrated H for each measured distribution function.
The integrated H is uniformly positive, indicating that
cyclotron waves present in the plasma are likely absorbed.
There is very little cyclotron resonant emission from this
plasma. However, the Hermite representation shows
that cyclotron instability, when present, is focused at the
parallel thermal speed, vkth. The median heating rate is
3 × 10−15 W=m3 for the bi-Maxwellian fits and 1 ×
10−14 W=m3 for the Hermite representation. Using third-
order moments of the inertial range turbulence [82], a
cascade rate of 4.7 × 10−14 W=m3 is measured, which is
consistent with previous measurements of the energy
cascade rate at a similar radius [83,84]. The measured
cyclotron heatingH ranges from approximately 10%–20%
of the measured cascade rate. While uncertainties on the
cascade rate exist due to the assumption of stationarity,

isotropy, and homogeneity [82], previous work has sug-
gested that the cascade rate estimates through third-order
moments are accurate to a factor of approximately 2 or 3
[83,85,86].
Observations from SPANi are partial measurements of

fpðvÞ and are subject to both uncertainties and ongoing
calibration work. However, during this interval, fpðvÞ is
well resolved, and while uncertainties in fpðvÞ will
dominate uncertainties in our measured heating rates, we
argue that the measurements reliably suggest net energy
transfer from waves to the particles. Specifically, the bi-
Maxwellian fit removes fine structure in fpðvÞ that is
present in the measurements and replicated by the Hermite
function; importantly, we find that removing fine structure
(i.e., the bi-Maxwellian fit) produces heating rates of the
same sign and order of magnitude as when fine structure in
fpðvÞ is included. In essence, while fine structure in fpðvÞ
is observed by SPANi, it neither drastically affects the order
of magnitude, nor, importantly, the sign of the cyclotron
heating rate H. However, these results highlight the
importance of modeling fine structure and local gradients
in fpðvÞ, e.g., with Hermite functions, which may yield
heating rates more than double those found by smoother
approximations to fpðvÞ, e.g., a bi-Maxwellian fit.
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Discussion.—Cyclotron resonance may play a signifi-
cant role in shaping observed magnetic field spectra and
distribution functions [8,9,23,42,46,48,52] observed in the
solar wind. While flattening along QL diffusion contours
has been previously reported [46,48,59], our observations
directly couple an observed spectrum of cyclotron waves to
heating rates in measured distribution functions. Our
measured heating rates are on the order of the measured
energy cascade rates ð∼10−14 W=m3Þ, obtained through
third-order moments of the observed turbulence [82]; while
this estimate may have significant uncertainty, we find
good agreement with previous estimates of the cascade rate
[83,84]. We furthermore show that incorporating fine,
nonthermal structures in the distribution function using a
Hermite functional decomposition introduces relatively
little effect on the extent or sign of measured cyclotron
heating. We thus argue that the measured levels of cyclo-
tron heating provide significant evidence for the mediation
of turbulent dissipation through cyclotron resonance that is
potentially sufficient to power the solar wind [79–81].
Studying the radial scaling of the turbulent energy cascade
alongside quasilinear cyclotron heating rates promises to
further constrain cyclotron resonance as a dissipation
process.
There are several sources of uncertainty in this analysis,

rising predominantly in the estimate of the cascade rate and
in the gradients of fpðvÞ due to limited resolution.
Furthermore, if the occurrence rates of cyclotron waves
decreases with θvB, then the heating rate may be limited at
oblique θvB. Additionally, there is the potential that heating
by oblique kinetic Alfvén waves or oblique cyclotron waves
may generate parallel cyclotron waves as a secondary
process [87,88]. The spectrum of oblique cyclotron waves
is difficult to distinguish due to the strong anisotropy of the
background turbulence [40], though future work will
explore signatures of oblique cyclotron resonance. In any
case, observed ion distributions are often flat along the
quasiparallel cyclotron diffusion contours and are rarely
unstable to the growth of thewaves. This flattening suggests
that even if other physical processes contribute to bulk
heating, the parallel cyclotron resonance [43,44] plays a
significant role in shaping the distribution functions.
The measured heating rate indicates a near total lack of

cyclotron emission through instabilities; thus, the origin of
cyclotron waves remains an important unresolved point.
Our observations show that 95% of the time that left-
handed signatures are present, the net heating rate is
positive, suggesting absorption of waves [53]. We note
the studied interval does not have strong cyclotron wave
storms [40,57], though application of our method to a
similar interval with more significant cyclotron wave events
similarly suggests net heating. There are two main possible
physical origins for these Alfvén–ion-cyclotron waves.
First, it is possible they are excited by beam instabilities
[89], though recent work has suggested that dominant

instability associated with the strong beam is associated
with right-handed modes [57,58]. Second, they may be
generated by turbulence, though canonical theories of
Alfvénic nonlinearity preferentially transport energy to
large k⊥, but not large kk [90,91], which is a hurdle to
the turbulent generation of cyclotron resonant waves.
However, recent work suggests that imbalance, i.e., the
dominance of the outward Alfvén mode, may prevent
energy from cascading to kinetic scales [92]. Fully kinetic
simulations in the presence of such a barrier [88] show the
generation of quasiparallel cyclotron modes, similar to
those observed in the solar wind, providing a novel method
for generating cyclotron waves that is consistent with a
variety of observations [39,40,65,93–98]. Further work is
required to specifically investigate the origin of the
observed cyclotron waves and their connection to turbu-
lence, though our observation of localized instability at the
proton-core thermal speed (Fig. 3) may be a clue regarding
the origin of the waves and their connection to the net
heating measured in this study.
This Letter explicitly shows that the measured distribu-

tion functions in the solar wind contain evidence of
cyclotron resonant heating at a level that may power the
expanding solar wind. These results are significant step
toward understanding the underlying physics of collision-
less heating and a kinetic description of astrophysical
plasmas.
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