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An exactly solvable family of models describing the wrinkling of substrate-supported inextensible
elastic rings under compression is identified. The resulting wrinkle profiles are shown to be related to the
buckled states of an unsupported ring and are therefore universal. Closed analytical expressions for the
resulting universal shapes are provided, including the one-to-one relations between the pressure and tension
at which these emerge. The analytical predictions agree with numerical continuation results to within
numerical accuracy, for a large range of parameter values, up to the point of self-contact.
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In-plane buckling of inextensible elastic rings under
pressure has been studied over many years [1–4] and exact
expressions for the buckled profiles are known [5–7]. Recent
interest has centered on the effects of a supporting substrate.
The inclusion of substrate forces leads to the emergence of
an intrinsic scale λ.When compressed, a substrate-supported
ringwrinkles with a critical wavelength defined by this scale
instead of simply buckling [8–13]. Periodic buckled and
wrinkled states may emerge quasistatically, for example, in
externally confined rings [14,15] or crumpled spherical
shells [16], in centrifugally or magnetically driven inter-
facial fingering in a Hele-Shaw cell [17–21], and in the
swelling of water-lecithin vesicles [22,23], but may also
arise dynamically, for example, during the dynamic collapse
of an elastic ring around a soap film [24], the dynamic
wrinkling of compressed floating elastica [25], or in pulsat-
ing blood vessels [26]. The spatial profiles present in these
very different systems are often strikingly similar, and this
similarity remains unexplored.
Recent work on a family of simple, yet realistic, models

for substrate-supported elastic rings under compression
[27] revealed that these models have a special structure that
suggests that exact wrinkle solutions can be constructed,
and that these may, in turn, be related to the well-known
buckled states of the substrate-free case. In this Letter, we
show that this is indeed the case. Specifically, we show that,
for this family of substrate forces, the wrinkle profiles
generated by compression are related to the buckled states
of the free, unsupported ring [5]. We thereby show that
the resulting wrinkle profiles are universal for this set of
substrate forces. We determine the parameter space map-
ping that relates the buckled solutions of the classical,
unsupported ring problem to the wrinkle solutions for rings
with substrate support. We use this mapping to predict
bifurcation diagrams for this class of supported-ring prob-
lems and test the predictions via numerical continuation.

In order to study the wrinkling of a thin elastic
inextensible ring supported by a soft substrate, we consider
the following model, which can be derived from the
Kirchhoff equations for elastic rods [27,28]:

∂
2
sκ þ

1

2
κ3 − Tκ − P −

1

2
FðrÞ ¼ 0;

κðsÞ≡ ∂sϕ; ∂sr ¼ ðcosϕ; sinϕÞ: ð1Þ

As shown in Fig. 1, ϕðsÞ is the tangential angle relative to
the x axis, s is the arclength along the solution profile with
length 2πR1, κðsÞ is the curvature, and rðsÞ≡ ½xðsÞ; yðsÞ� is
the radial vector from the ring center to the point s.
The boundary conditions ϕð2πR1Þ ¼ ϕð0Þ þ 2π and the
continuity of x, y, ∂sϕ at s ¼ 0 and 2πR1 rule out non-
smooth solutions. The quantities P and FðrÞ are the
pressure load inward across the ring and the external force
per unit of surface due to the substrate, respectively (Fig. 1).

FIG. 1. Possible regimes of interest. The blue curves represent
the solution profiles rðsÞ. Left panel: competition between
pressure and substrate forces (F > 0) leads to a nontrivial critical
wrinkle wave number m ¼ 5. Right panel: the substrate-free
(F ¼ 0) case leads to a buckled state with m ¼ 2. The problem
variables are shown in the right panel.
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The Lagrange multiplier T imposes inextensibility and is a
nonlinear eigenvalue related to the tension τ by T¼τþ3

2
κ2.

In particular, we study exact solutions for FnðrÞ ¼
αnðrn − rn0Þ, n ¼ 0, 2, 4, 6, where the constant term
αnrn0=2 is absorbed into P. Our solutions also describe
rings tethered to r ¼ 0, provided FnðrÞ ¼ −αnrn < 0 and
P < 0 (interior overpressure).
The model provides a basis for understanding the non-

linear response of an elastic ring to competing pressure and
body forces across a wide range of physical systems. For
example, the case n ¼ 2was used as a simple model able to
capture the wrinkle-to-smooth transition that takes place in
the endothelium of an artery as the internal blood pressure
oscillates [27]. In this case, α2 ¼ ðR1=λÞ5, where λ≡
ðB=KÞ1=5 is the bending length scale. Here, B is the
bending modulus of the endothelium lining and K is the
arterial substrate stiffness. The equations also describe
the wrinkling of a circular elastic membrane separating a
higher density interior fluid from a lower density exterior
fluid in a rotating Hele-Shaw cell [18,19,21]. In this case,
α2 ¼ ΔρΩ2R5

1=B, whereΩ is the rotation rate and Δρ is the
density difference between the interior and exterior fluids.
In both cases, the wrinkling arises from a competition
between the pressure difference favoring buckling and an
opposing force generating wrinkling with length scale λ.
Our finding relies on a remarkable feature of weakly

nonlinear theory describing periodic perturbations of the
circle solution of Eq. (1) in powers of the perturbation
amplitude ϵ [27]: for the case n ¼ 2, the solution ϕðsÞ is
independent of the force-strength parameter α2 at every
order. To show this we expand ϕ, T, and P in powers of ϵ,
and compute the correction terms in ðT; PÞ ¼ ðT0; P0Þ þ
ϵ2ðT2; P2Þ þOðϵ4Þ by requiring that the solution at
each order is periodic in s with given fundamental wave
number m:

ϕðsÞ ¼ sþ ϵ sinðmsÞ þ ϵ2
sinð2msÞ

8m
þOðϵ3Þ: ð2Þ

The dependence of P and T on α2 is linear at every order:

T0 ¼
1

2
ð1 − α2Þ − P0; ð3Þ

P2 ¼
2m4 − 9m2 þ 3

8ðm2 − 1Þ2 α2 þ
3ðm2 − 1Þ

8
; ð4Þ

T2 ¼
3

8ðm2 − 1Þ α2 þ
3ðm2 þ 1Þ

8
: ð5Þ

Higher order expressions for ϕjðsÞ and ðTj; PjÞ supporting
these observations can be found in the Supplemental
Material [29].
The absence of any α2 dependence in the profile,

Eq. (2), has deep physical implications: wrinkle profiles

are universal, i.e., identical wrinkles can be observed on
rings with substrates of different strength, or even for the
free ring α2 ¼ 0, for appropriate values of the pressure P
and tension T. The transformation ðT; PÞ → ðT; PÞ is linear
in α2 and hence is equivalent to a one-to-one relation
between the pressure P and the substrate force measured by
α2. Moreover, since the α2 ¼ 0 problem has closed-form
solutions for ϕðsÞ, so does the problem for any α2 > 0. In
the following, we demonstrate this fact and determine the
transformation ðT;PÞ→ðT;PÞ that maps a given wrinkle
profile at α2 > 0 into the same profile for the free ring
α2 ¼ 0.
The free inextensible elastic ring problem described by

Eq. (1) with F ¼ 0 was studied in detail in [2], and is
completely integrable [5,30]. Closed-form analytical sol-
utions are known and allow the construction of branches of
highly nonlinear wrinkle solutions up to the point of self-
contact as shown in the (T, P) plane in Fig. 2. The wave
numbersm come in in the orderm ¼ 2; 3;… as P increases
above zero, a consequence of the absence of an intrinsic
length scale.
In order to establish the connection between the cases

F ¼ 0 and FðrÞ ¼ α2r2, we consider the equation for
F ¼ 0 on a domain of length 2πR2. This extra degree
of freedom is needed to ensure the solutions of both
systems are periodic. We define the curvature Q as a
function of arclength t and the tension and pressure
parameters μ, σ such that

d2QðtÞ
dt2

þ 1

2
Q3ðtÞ − μ

2
QðtÞ − σ

2
¼ 0: ð6Þ

This equation has the integral

�
dQ
dt

�
2

¼ 2E −
1

4
Q4 þ μ

2
Q2 þ σQ; ð7Þ

FIG. 2. Free-ring buckling for F ¼ 0 and R1 ¼ 1. Solutions
with wave numbers 2 ≤ m ≤ 7 (black) bifurcate from the circle
solution (gray) as P increases starting with m ¼ 2. Sample
solution profiles for m ¼ 2 (light blue) and m ¼ 7 (dark blue)
are shown. Crosses represent points of self-contact.
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where E is a constant of integration. We also note a key
geometric identity satisfied by the corresponding radius
ρ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2 þ Y2
p

,

ρ2ðtÞ − 8Eþ μ2

σ2
−
4QðtÞ
σ

¼ 0; ð8Þ

identified in [5]. Equation (6) has exact solutions given
by [30]

QðtÞ ¼ ðAβ þ BαÞ − ðAβ − BαÞcnðut; kÞ
ðAþ BÞ − ðA − BÞcnðut; kÞ ; ð9Þ

where A, B, u, and k are functions of the four roots
α < β ∈ R, γ ¼ δ̄ ∈ C of the quartic polynomial on the
right side of Eq. (7), and cnðut; kÞ is the elliptic cosine
function with modulus

ffiffiffi
k

p
(explicit expressions are given

in the Supplemental Material [29]). Other solutions exist
but are unphysical owing to self-intersection.
Finding an exact physical solution to Eq. (6) then

reduces to finding combinations of the three parameters
μ, σ, and E that yield closed, non-self-intersecting curves
when employed in Eq. (9). Moreover, adding an appro-
priate multiple of Eq. (8) to Eq. (6) and rescaling t ¼ sR,
Q ¼ κ=R, ρ ¼ rR, where R ¼ R2=R1, we obtain

d2κðsÞ
ds2

þ 1

2
κ3ðsÞ − R2

�
μ

2
− α2

2

σR5

�
κðsÞ

− R3

�
σ

2
− α2

8Eþ μ2

2σ2R5

�
−
1

2
α2r2ðsÞ ¼ 0: ð10Þ

There is thus a one-to-one correspondence between Eqs. (1)
and (6) under the mapping

T ¼ μR2

2
−
2α2
σR3

; ð11aÞ

P ¼ σR3

2
−
8Eþ μ2

2σ2R2
α2; ð11bÞ

r2ðsÞ ¼ 8Eþ μ2

σ2R2
þ 4κðsÞ

σR3
: ð11cÞ

Consequently, the closed-form analytical solutions of
Eq. (6) also apply to Eq. (1) with n ¼ 2 and hence describe
the wrinkling of rings subject to any force of the form
F ∝ r2, cf. [7]. The α2-independent terms in Eqs. (11a),
(11b) correspond to the substrate-free tension and pressure.
The remaining terms correspond to the additional tension
and pressure needed to counteract the substrate force to
produce an equivalent spatial profile. The dependence of T
and P on both σ, μ, and α2 leads to a reordering of the
branches in the (T, P) plane.
We confirm the analytical results for α2 > 0 obtained

with the use of the above mapping using numerical
continuation of Eq. (1) in AUTO [31] to show that these
correspond to the analytical result [Eq. (9)] at appropriate
locations in the ðT; PÞ plane. To do so we solve Eq. (11)
using numerically generated values of x, y, κ at known
ðT; PÞ to obtain the values of μ, σ, E needed to construct the
corresponding solution, Eq. (9). We then use the mapping
in Eqs. (11a), (11b) to compare the parameter-space
location of these solutions with that of the free-ring
problem or to map the free-ring solutions to the corre-
sponding location in parameter space for the substrate-
supported ring problem with nonzero α2. The results for
n ¼ 2 and two values of α2 are shown in Fig. 3 for
comparison with Fig. 2 and demonstrate perfect agreement

FIG. 3. Top: Numerical continuation for two values of α2 showing solution branches in the ðT; PÞ plane for R1 ¼ 1; R2 ¼ 3.4108 and
wave numbersm ¼ 3 (red triangles), m ¼ 4 (purple squares), andm ¼ 5 (blue pentagons). Solid lines: α2 ¼ 0 (see Fig. 2); dashed lines
α2 ¼ 64 (left) and α2 ¼ 576 (right). Colored markers on the dashed lines map to the corresponding markers on the solid lines. Bottom:
Color-coded solution profiles at points indicated in the top panels. The solid profiles show the analytical solution while the superposed
orange dashed profiles are from numerical continuation (right half of each profile). The solutions agree to within numerical accuracy. In
each case, the final profile corresponds to self-contact.
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between numerical continuation and the closed-form sol-
utions of the free-ring problem at the corresponding
points in the ðT; PÞ plane. A quantitative comparison
(see Supplemental Material [29]) confirms this geometric
universality.
Remarkably, this universality extends beyond F ∝ r2: an

analogous procedure, involving the addition of powers of
the identity Eq. (8) to Eq. (6), can be used to map the free-
ring solutions onto a broader family of substrate forces
including those for which n ¼ 4, 6. A simple translation
and rescaling of the curvature (see Supplemental Material
[29]) then shows that the free-ring solutions may be used to
construct new analytical solutions for both n ¼ 4 and
n ¼ 6. Figure 4 shows overlays of the resulting analytical
and numerical solutions for these values of n.
The presence of an additive constant in the curvature

results in spatial solutions that are no longer exactly identical,
although in the limit of largeR orm or small αn, the additive
term is heavily suppressed and the solutions approach a
universal profile. In Fig. 5 we show how the geometrical
features forn ¼ 2, 4, 6 compare across awide range ofαn and
m. The above construction also suggests a straightforward
extension to substrate forces of the form F ∼

P
αnrn,

albeit with a more complicated ðT; PÞ → ðT; PÞ mapping,

allowing analytical solution of the wrinkle problem with
more complex (and more realistic) substrate forces.
Although the wrinkle profiles are the same, the ðT; PÞ

mapping modifies the physical response of the system
under study as the pressure load increases. In the free-ring
problem (F ¼ 0) the wave numbersm set in monotonically
for P > 0 as P increases so the first mode to bifurcate from
the circle branch is the m ¼ 2 (buckling) mode. As a
consequence of the absence of an intrinsic length scale,
none of the primary branches (m ¼ 2; 3;…) undergoes any
secondary bifurcations right up to self-contact. However,
when this length scale is present (αn > 0) wrinkle branches
may set in in a different order, and the first mode to
bifurcate as P increases may have m > 2 (wrinkle mode)
and set in at negative P. Moreover, as αn increases,
secondary bifurcations move down along the wrinkle
branches, eventually passing the point of self-contact.
Thus, for large enough αn, secondary bifurcations take
place prior to self-contact, and these generate “folds” if the
resulting secondary branch does not connect to another
wrinkle branch or “mixed modes” if it does. The mixed
modes are characterized by the simultaneous presence of
two distinct wave numbers m1, m2 whenever they connect
primary branches with wave numbers m1 and m2 [27].
When n ¼ 4, 6, similar structures are observed. Figure 6
shows examples of fold states with intrusion and extrusion,
but these are no longer universal and have no counterpart in
the free-ring problem with F ¼ 0. Mixed states are also
present when n ¼ 4, 6 but their behavior is complicated by
the presence of tertiary bifurcations (not shown). Note that
despite the mapping of the wrinkle solutions of Eq. (1) with
αn > 0 onto the free-ring problem, the presence of folds
(and mixed modes) does require substrate support.
We have shown that equations of the form Eq. (1)

possess identical closed-form solutions when n ¼ 0, 2,
albeit at different locations in parameter space, and near-
identical closed-form solutions when n ¼ 4, 6. This is
despite the presence of an intrinsic length scale when
αn > 0. This remarkable result for n ¼ 0, 2 is consistent
with the perturbation theory result that ϕ is independent of
α2 to all orders (see Supplemental Material [29]), while T,
P do depend on α2 but only linearly [cf. Eqs. (4) and (5)].

FIG. 5. The compression Δ≡ 1 − A=π for area A plotted
against maximal curvature κmax form ¼ 6 andm ¼ 15. Solutions
for n ¼ 2 (dark red, α2 ¼ 10; light red, α2 ¼ 1000), n ¼ 4 (dark
blue, α4 ¼ 10; light blue, α4 ¼ 1000), and n ¼ 6 (dark green,
α6 ¼ 10; light green, α6 ¼ 1000). Solutions are shown at A ¼ 0.4
(Δ ≈ 0.87) and R1 ¼ 1.

(a) (b)

FIG. 6. Secondary fold states for αn ¼ 576 and R1 ¼ 1 at the
point of self-contact bifurcating from the first primary branch in
each case: n ¼ 2 (red, bifurcates from m ¼ 5), n ¼ 4 (blue,
bifurcates from m ¼ 6), and n ¼ 6 (green, bifurcates from
m ¼ 7). (a) Fold states with intrusion. (b) Fold states with
extrusion. The profiles are strongly dependent on the exponent n.

FIG. 4. Analytical solutions (n ¼ 4 blue, n ¼ 6 green)
overlaid with numerical solutions (orange) for α4;6 ¼ 500

and R1 ¼ 1; R2 ¼ 1.
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These facts suggest that we may differentiate Eq. (1) with
respect to α2, yielding

Tα2κ þ Pα2 þ
1

2
r2 ¼ 0; ð12Þ

where Tα2 , Pα2 are constants, an equation that is equivalent
to Eq. (11c). Thus, the mapping of Eq. (1) onto the free-ring
problem applies to the primary wrinkle solutions for which
ϕ is independent of α2 but not to secondary states where
this condition no longer holds. The supported ring problem,
Eq. (1), is therefore integrable in this limited sense.
We have presented a simple but tractable mechanics-

based model that provides a unified description of the
competition betweenwrinkling and buckling of elastic rings
across a family of models characterized by different non-
linear substrate forces. The model predicts the critical
pressure for the onset of wrinkling in terms of the mechani-
cal properties of the ring and predicts secondary bifurcations
that limit the wrinkling process and initiate folding.
Furthermore, the model allowed us to relate the primary
wrinkle states to the buckled states of the substrate-free case.
Our results are relevant to many fluid-structure interaction
problems in both fluid dynamics and biophysics.

This work was supported in part by the National Science
Foundation under Grant No. DMS-1908891 (B. F., N. V.,
and E. K.). The work of N. V. was funded by the National
Agency for Research and Development (ANID) through
the Scholarship Program: Becas de Postdoctorado en el
Extranjero, Becas Chile 2018 No. 74190030. L. G. was
funded by Grant ANID/CONICYT FONDECYT Regular
1221103.

*Corresponding author.
ben_foster@berkeley.edu

†Corresponding author.
nverschueren@berkeley.edu

‡Corresponding author.
knobloch@berkeley.edu

§Corresponding author.
leonardo.gordillo@usach.cl
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