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Temperature-Dependent Decay of Quasi-Two-Dimensional Vortices across
the BCS-BEC Crossover
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We systematically study the decay of quasi-two-dimensional vortices in an oblate strongly interacting
Fermi gas over a wide interaction range and observe that, as the system temperature is lowered, the vortex
lifetime increases in the Bose-Einstein condensate (BEC) regime but decreases at unitarity and in the
Bardeen-Cooper-Schrieffer (BCS) regime. The observations can be qualitatively captured by a phenom-
enological model simply involving diffusion and two-body collisional loss, in which the vortex lifetime is
mostly determined by the slower process of the two. In particular, the counterintuitive vortex decay in the
BCS regime can be interpreted by considering the competition between the temperature dependence of
the vortex annihilation rate and that of unpaired fermions. Our results suggest a competing mechanism for
the complex vortex decay dynamics in the BCS-BEC crossover for the fermionic superfluids.
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The dynamics of vortices and antivortices in a superfluid
play a pivotal role in various fascinating quantum phenom-
ena, such as quantum turbulence [1,2], the Berezinskii-
Kosterlitz-Thouless phase transition [3-5], and large-scale
vortex clustering [6-8]. Of particular interest is the decay
dynamics of vortices. Different from the low-energy phonon
excitations, which are usually quickly thermalized, topo-
logical high-energy vortices are quasistable and can survive
for a significantly longer time before dying out, during
which the system approaches equilibrium and the global
phase coherence of superfluidity builds up. At nonzero
temperature 7, vortex decay is mainly driven by two energy
dissipation mechanisms, i.e., diffusion of vortices and
annihilation of vortex and antivortex pairs. The diffusive
spread of vortices is due to their frictional interactions with
the normal component of a superfluid [9-11], and the
diffusion constant D is proportional to 7. When a vortex
and antivortex pair gets close to each other, the effective
transverse superfluid Magnus force [12], which is propor-
tional to the superfluid density, further attracts them,
yielding a collective annihilation accompanied by the
emission of sound waves [13]. Despite decades of efforts,
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how the decay time (or lifetime) of vortices evolves with the
system temperature and interaction strength remains an
open question.

A platform for addressing such a question can be
provided by atomic fermionic superfluids. By virtue of
the Feshbach resonance, the system can be tuned from a
Bardeen-Cooper-Schrieffer (BCS) superfluid of Cooper
pairs to a Bose-Einstein condensate (BEC) of molecular
dimers [14,15]. Based on the Kibble-Zurek mechanism
[16—18], dozens of spontaneous vortices have already been
generated in fermionic superfluids across the BCS-BEC
crossover [19-21]. This allows us to experimentally inves-
tigate vortex decay dynamics with drastically different
microscopic details, such as interaction strength, atomic
density, and even the statistics of constituent particles. Very
recently, universal power-law scaling decay behaviors of
quasi-2D vortices have been observed [21].

In this Letter, we report the measurements of the
T-dependent decay dynamics of quasi-2D vortices
[20,21] across the BCS-BEC crossover. The large number
of randomly distributed vortices are spontaneously gener-
ated via thermally quenching the Fermi gases across the
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FIG. 1. Quasicondensate fraction # for different trap ramping

time #,,, at unitarity, as obtained from a Gaussian plus Thomas-
Fermi distribution fitting to the column density profile [taken
after 10 ms time-of-flight (TOF)]. The error bars represent
standard statistical errors, calculated from three individual mea-
surements. The solid line is for guiding eyes. The inset displays a
TOF image and the corresponding fitting.

superfluid transition [20,21]. For a given magnetic field or
interaction strength, we extract a series of vortex lifetimes
(decay times) by measuring the total vortex density as a
function of holding time ¢ for different quench rates. The
fraction 5 of quasicondensate (i.e., consisting of bosonic
pairs in the vicinity of zero momentum) is also measured at
time ¢ = 0 to qualitatively characterize the system temper-
ature 7. In the BEC regime, as expected for a weakly
interacting Bose gas, the vortices decay more slowly in a
lower-T" superfluid. In contrast, in the unitarity and BCS
regimes, the lifetime of vortices is longer for a hotter
superfluid. As an attempt to understand the observations,
we present a simple diffusion-annihilation model, in which
vortices randomly move and, when a pair of vortex and
antivortex are sufficiently close to each other, they might
disappear with an annihilation rate K. In this model, it is
shown that the vortex decay time 7 is mainly from the slower
one of the diffusion and annihilation processes. Considering
the strong friction and diffusion of vortex motion in the
unitarity and BCS regimes [13], we argue that the counter-
intuitive vortex decay behavior is qualitatively explained by
the diffusion-annihilation model.

The experimental method for generating randomly dis-
tributed quasi-2D vortices in a °Li fermionic superfluid
has been described in our previous work [20-22]. About
1 x 107 SLi atoms with balanced populations of the two
lowest hyperfine spin states are first confined in an oblate
optical trap [1/e? radii are 200 and 48 ym (gravity
direction)]. Then, the trap potential is ramped down in a
short time interval (compared with a sufficient evaporative
cooling time of about 2 s) to effectively quench the system

across the superfluid transition temperature 7', near the
broad Feshbach resonance at 832 G. The number of
quasicondensate and spontaneous vortices are measured
in real time by taking an absorption image along the tight
direction of the trap after 10 ms time of flight [20,21]. For
the following study, the initial time ¢t = O is defined as the
saturation time point of the quasicondensate fraction, when
the vortex cores become clearly visible. The ability to
prepare Fermi gas with a large atom number at a temper-
ature slightly above T, enables us to generate many
spontaneous vortices over a wide range of trap ramping
time 7,y,. Furthermore, due to the better thermal equilib-
rium during evaporative cooling, a lower final system
temperature is expected for a longer 7, implying that
the final system temperature can be effectively tuned by
changing the f,y,,. This is confirmed by the measured
quasicondensate fraction n at 1 =0 for a series of 7y,
ranging from 300 to 800 ms, where # monotonically
increases with the increase of 7, (see Fig. 1).

We first investigate the temperature dependence of the
vortex decay time at unitarity. To this end, we perform a
series of measurements on the temporal evolution of total
vortex density p, for f,y,, =300, 400, 600, 700, and
800 ms. Based on the universal power-law decay behavior
of the quasi-2D vortices [21], we fit the experimental data
by 1/p,(t) = a + At, where 4 is the decay rate. Unlike the
conventional exponential decay dynamics, the vortex life-
time is characterized by 7z = 1/A. An example of the fits is
given by the inset of Fig. 2(c). Note that data points with
less than two vortices are excluded in the fit, as the trivial
one-body process dominates the following decay dynamics
(i.e., t > 1s). The results of z=1/1 versus 1 —pn are
presented in Fig. 2(c). It is remarkable that 7 monotonically
increases as 7 decreases (i.e., the increase in temperature).
This observation is counterintuitive in that the vortices are
expected to decay faster at a higher temperature because of
more frequent collisions with thermal atoms, as is the case
for a weakly interacting bosonic gas [23].

To explore atom-atom interaction effects, we carry out a
systematic study of the vortex lifetime in the BEC (783 and
809 G) and BCS (847 and 861 G) regimes. Unfortunately,
the system temperature cannot be quantitatively determined,
due to the highly nonequilibrium feature of the cloud (i.e.,
the presence of many vortices) and the lack of reliable
knowledge of the equation of state [24,25]. Alternatively,
the quasicondensate fraction # is probed at ¢ = 0 for each
measurement to qualitatively characterize the system tem-
perature, i.e., 1 —# monotonically increases with 7. The
experimental results of 7 = 1/4 are shown in Fig. 2 as a
function 1 —#. In the BEC regime [Fig. 2(a)], the vortex
lifetime 7 becomes longer when temperature 7" is lowered,
which is within expectation. Nevertheless, as unitarity is
approached, this tendency is significantly weakened
[Fig. 2(b)]. At unitarity and in the BCS regime [Figs. 2(c)-
2(e)], the lifetime 7 is even shortened as 7" decreases. Despite
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FIG. 2. Temperature dependence of vortex lifetime 7 in the BCS-BEC crossover, where larger values of 1 — 5 correspond to higher
temperature. (a)—(e) Results at 783, 809, 832, 847, and 861 G, respectively, with the curves for guiding eyes. An example of the power-
law fit 1/p, = a + At is given in the inset of (c), and the solid line represents the linear fit. The vortex lifetime is defined as r = 1/4, and
the temperature is effectively represented by 1 — 7, with quasicondensate fraction # measured at t = 0.

the experimental complexity of controlling the temperature
of the strongly interacting fermionic superfluid, the
T-dependent tendencies of 7 in Fig. 2 is expected to be
reliable, as the quasicondensate fraction 7, in general,
decreases with the temperature.

For an understanding of the vortex decaying behavior
across the BEC-BCS regime, first-principle calculations
were desired but would be extremely challenging, par-
ticularly for nonequilibrium dynamics of such strongly
interacting fermionic systems. Nevertheless, in the deep
BEC regime and for qualitative temperature dependence,
one can assume a universality class and seek for the
Ginzburg-Landau field theoretical description to avoid
experimental complexity and microscopic details.

As in Ref. [21], we consider a single-site Glauber
quench dynamics by simulating the classical XY model
on the square lattice. This simplified lattice model, while
ignoring the quantum origin of superfluidity and all
microscopic details, still exhibits a superfluid phase
transition, which is further in the same universality class
as that for experimental systems. A random spin configu-
ration is prepared and instantly quenched to a temperature
T well below the Berezinskii-Kosterlitz-Thouless (BKT)
transition Tggt = 0.89 (see Supplemental Material [26]).
The Metropolis simulation is applied by sequentially
picking up a spin and rotating it to a random phase with
proper acceptance probability. The number of vortices per
site p, is recorded as a function of Monte Carlo “time” ¢,
which is defined as one averaged updating step per spin.
The procedure is repeated for tens of thousands of times
with different random number seeds. According to the
Ginzburg-Landau theory, the decaying dynamics of the
vortices is p, ~ In¢t/t, with a logarithmic correction In 7 to

the algebraic behavior 1/1. The data of In(¢) /p, versus ¢ are
plotted in the inset of Fig. 3, and the decay rate A is
extracted. The T dependence of the vortex lifetime 7 = 1/4
is shown in Fig. 3. Consistent with the experimental results
in the BEC regime [Fig. 2(a)], = drops as T increases, and,
further, the decreasing factor is about 4 from 7 = 0.01
to 0.4.

As an attempt to reveal the underlying mechanism in the
intriguing vortex decay dynamics near unitarity and on the
BCS side, we further follow the coarse-grained principle
and consider a diffusion-annihilation model [33]
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FIG. 3. Temperature dependence of the vortex lifetime 7 = 1/1

in the Glauber dynamics of the square-lattice XY model. The
inset displays the modified inverse vortex density In(z)/p,, versus
Monte Carlo time ¢ for various temperature 7.
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FIG. 4. Normalized decay time 7 [in units of 1/(p,oK)] in the
diffusion-annihilation model with L = 4a,. The solid line is
a B-spline guide line, and the dashed line is an asymptote at the
large diffusion limit. The inset shows an example of time
evolution of the dimensionless total vortex density p.

ony — Dﬁzni =—Kn,n_, (1)

which is analogous to the equation of the diffusive
Coulomb gas dynamics composed of electrons and posi-
trons [34]. The vortex configurations are described by
vortex densities n, (X, ) and n_(X, t) with plus and minus
representing opposite circulations, respectively. The param-
eter D characterizes the vortex diffusion due to the
collisions of vortices with noncondensed fermions or other
thermally excited quasiparticles. The parameter K quanti-
fies the annihilation rate when two vortices with opposite
circulations collide. Note that we focus on a balanced case,
ie, [d?X[n,(X,t)—n_(X 1)) =0, since no net angular
momentum is injected during the thermal quenching.
Furthermore, the long-range interaction between vortices,
given the logarithmic correction that can hardly be
observed in our experiments, is neglected.

With the total vortex density p, =n, +n_ and the
vortex polarization m = n_ —n_, we have

=2
0Py — DV Py = _K(p% - mz)v
o,m —DV’m = 0. (2)

We further introduce four dimensionless variables, p, =
PooPs M = Py, 0; = (pU0K>ai’ and v2 = (D_lvaK)a,Z'p
where p,o = (1/L?) [ d*xp(¥,t =0) is the initial total
vortex density and L is the linear system size. Note that
D, K, p,, and L are independent parameters in our
simulation. Then, Eq. (2) can be reformulated as

0ip — 0kp = —(p* — in?),

X

0;in — 02im = 0. (3)

Given the generic dimensionless differential equation (3),
the normalized vortex lifetime 7 obeys a scaling form

. (¢ a L _
T—f<g’g’g>[ﬂyolq L (4)

where ¢ is the vortex correlation length, I, = /(D/p,oK)
is the diffusion length, a characteristic length scale repre-

senting the relative strength of diffusion, and a, = L/v/N is
the average initial intervortex distance.

We numerically solve Eq. (3) and average over different
initial vortex configurations. As in the inset of Fig. 4, the
1/t decay behavior of p is well captured by our model.
From the fit, we obtain the normalized decay time 7 [in
units of 1/(p,0K)] as a function of I, (Fig. 4). It can be
seen that 7 has a sharp dependence on I, when the diffusion
is slow—I{p/L < 1. In contrast, when the diffusion is fast
(Ip/L — 1), 7 saturates to a constant, yielding an inverse
relation between 7 and K.

The results in Fig. 4 can be understood by an intuitive
physical picture. Given a pair of randomly placed vortex
and antivortex, they will first undergo a random diffusion
process due to thermal fluctuations, and, when being
sufficiently close to each other, they form a quasibound
state, survive for a while, and then disappear via a two-body
collision. The decay time is effectively the sum of the times
taken by both processes. Thus, if the diffusion is fast, the
vortex lifetime is mostly determined by the stability of the
quasibound state and is mainly from the annihilation
process. In contrast, if the random motion of vortices is
slow, a significantly long time might be taken before
vortices are brought close to each other.

From these observations, we argue that the different
temperature dependences of the vortex lifetime 7 in Fig. 2
can be explained as follows. In the BEC regime, almost all
the fermions are paired into bosonic molecules, while at
unitarity or in the BCS regime, there is a substantial fraction
of unpaired fermions. In a very recent study, as the system
is tuned from BEC to the BCS regime, the sharp increase of
vortex diffusion has been observed, due to the rapid
increase of mutual collisions between vortices and unpaired
fermions [13]. This suggests that, in the BCS regime, the
diffusion process is relatively fast, and thus, the relatively
slow annihilation process contributes mostly to the vortex
lifetime. As T is lowered, the annihilation rate K is
enhanced since the superfluid fraction increases [35],
leading to a shorter lifetime. In the BEC regime, the vortex
lifetime is from the relatively slow diffusion process and
thus becomes longer as 7" decreases.

In conclusion, we carry out a systematical experimental
study on the temperature-dependent decay dynamics of
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quasi-2D spontaneous vortices in the BCS-BEC crossover.
In the BEC regime, the vortex lifetime decreases with the
increase of system temperature. In contrast, at unitarity and
in the BCS regime, the vortex lifetime increases with the
increase of system temperature. Based on a phenomeno-
logical diffusion-annihilation model and the existing vortex
diffusion experiment [13], we propose a qualitative explan-
ation for the counterintuitive experimental observations.
Our experiment is an important step in the study of
intriguing vortex dynamics in the BCS-BEC crossover.
Further theoretical investigation, e.g., with the density
functional theory [36], and experimental studies, e.g., in
a 2D uniform trap [37-39], may bring us a quantitative
understanding of the quantum vortex turbulence [1,2] in the
atomic Fermi gas.
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