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We present exact solutions of test particle orbits spiraling inward from the innermost stable circular orbit
(ISCO) of a Kerr black hole. Our results are valid for any allowed value of the angular momentum a
parameter of the Kerr metric. These solutions are of considerable physical interest. In particular, the radial
four-velocity of these orbits is both remarkably simple and, with the radial coordinate scaled by its ISCO
value, universal in form, otherwise completely independent of the black hole spin.
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Introduction.—Classes of exact orbital solutions in the
full Kerr geometry are a known, but underutilized com-
modity. Examples include pure circular orbits, radial
plunges [1], so-called zoom-whirl orbits, and homoclinic
orbits, which separate long-lived bound and plunging states
[2] (see Ref. [3] for a useful “periodic table” of different
black hole orbits). The study of relativistic test-particle
orbits characterized by the energy and angular momentum
of a circular orbit, but which are not moving on that orbit,
is not new [4], but has yet to be astrophysically fully
exploited. In this Letter, we analyze an important subclass
of these orbits and present exact Kerr orbital solutions in
a parameter regime of direct physical interest to black hole
accretion. While simple in mathematical form, these
solutions exhibit revealing features that are important for
understanding the accretion process, but have not been
discussed before.
One of the most salient features of orbits in Kerr

spacetimes is the existence of an innermost stable circular
orbit (ISCO). Exterior to the radial ISCO coordinate r ¼ rI ,
circular orbits are stable and approach their Keplerian 1=

ffiffiffi
r

p
velocity behavior on scales large compared to the horizon
radius. Interior to r ¼ rI , the angular momentum of a
circular orbit increases inward, which means that the orbits
are unstable: a tiny perturbation from circular motion will
eventually acquire a significant inward radial velocity,
even while formally conserving its angular momentum
and energy.
Orbits interior to the ISCO are of astrophysical interest

because of their direct relevance to black hole accretion
theory (e.g., [5–7]). In particular, the question of whether,
and if so under what conditions, there can be significant x-
ray emission or other observational signatures from matter
flowing inward from the ISCO is an active area of current
research [8,9]. This problem is generally approached via
numerical techniques (e.g., [9,10]), as the assumptions of
the classical analytic “viscous” solutions of black hole

accretion theory completely breakdown at, and within, the
ISCO. The classical viscous disk solution forUr diverges at
the formal ISCO radius [5,6], and without a more funda-
mental understanding of the inflow dynamics, it is not even
clear how to frame the underlying equations. With a few
notable exceptions [8,9,11], virtually all existing accretion
models are artificially cutoff at the ISCO.
In this Letter, we show that there is an overlooked but

dramatic simplification of this problem, which provides a
clear path forward. The implicit averaging procedure asso-
ciated with viscous (more accurately, turbulent) disk theory
no longer makes sense when the orbits are not circular, but
plunging [11]. The need to shed angular momentum
vanishes. Instead, in the Kerr geometry, angular momentum
is simply advected inward with the fluid elements and thus
remains approximately constant and independent of posi-
tion. What is new here is an explicit solution for the Kerr
radial four-velocity, which determines the surface density
directly from mass conservation and is both simple and
universal in form. This is a key result of this Letter. WithUr

known, we present exact, closed analytic solutions to the
general problem of a test particle starting at r ¼ rI at time
t ¼ −∞, thereafter inspiraling toward the origin. The orbital
shape (radial coordinate as a function of azimuthal angle ϕ)
is determined entirely in terms of elementary functions. For
the Schwarzschild geometry, this orbital shape is excep-
tionally simple [see Eq. (16)]. Despite making an appear-
ance in Chandrasekhar’s classic text [12], it seems to have
remained dormant and largely unreferenced in the astro-
physical literature. The orbital solutions for more general
Kerr geometries, also of astrophysical interest but which
seem not to have been discussed in the literature, are best
expressed in parametrized rðψÞ;ϕðψÞ form, in a manner
analogous to the classical Friedman matter-dominated
cosmologies.
Preliminary analysis.—Throughout this Letter, we use

geometric units in which both the speed of light c and the
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Newtonian gravitational constant G are set equal to unity.
In coordinates xμ, the invariant line element is
dτ2 ¼ −gμνdxμdxν, where gμν is the usual covariant metric
tensor with spacetime indices μ, ν. (We use the signature
convention −þþþ). The coordinates are standard
ðt; r; θ;ϕÞ Boyer-Lindquist, where t is time as measured
at infinity, and the other symbols have their usual quasi-
spherical interpretation. We shall work exclusively in the
Kerr midplane θ ¼ π=2. For black hole mass M and
angular momentum a (both having dimensions of length
in our choice of units), the nonvanishing gμν required
for our calculation are presented here for convenience
(e.g., [13]),

g00 ¼ −1þ 2M=r; g0ϕ ¼ gϕ0 ¼ −2Ma=r;

gϕϕ ¼ r2 þ a2 þ 2Ma2=r; grr ¼ r2=ðr2 − 2Mrþ a2Þ:
ð1Þ

The four-velocity vectors are denoted by Uμ ¼ dxμ=dτ.
Their covariant counterparts Uμ, in particular U0 and Uϕ,
have a significance as conserved quantities and are dis-
cussed further below. Test-particle orbits that spiral inward,
starting at a distant time t ¼ −∞ from a circular orbit at
r ¼ rI , will preserve their energy and angular momentum.
General expressions for the circular angular momentum
and energy at radius r may be found in [13],

Uϕ ¼ ðMrÞ1=2
D

ð1þ a2=r2 − 2aM1=2=r3=2Þ; ð2Þ

U0 ¼ −
1

D
ð1 − 2M=rþ aM1=2=r3=2Þ; ð3Þ

where

D2 ¼ 1 − 3M=rþ 2aM1=2=r3=2: ð4Þ

The circular orbits described by Eqs. (2) and (3) are not
stable at all radii, and it may be shown (e.g., [13]) that these
orbits are stable only when the following condition is
satisfied:

�
1 −

6M
r

−
3a2

r2
þ 8aM1=2

r3=2

�
> 0; ð5Þ

which corresponds to ∂rUϕ > 0. The location of marginal
stability r ¼ rI corresponds to this expression vanishing,

r2I ¼ 6MrI − 8a
ffiffiffiffiffiffiffiffiffi
MrI

p
þ 3a2

¼ 2MrI
3

þ 16MrI
3

�
1 −

3a
4
ffiffiffiffiffiffiffiffiffi
MrI

p
�

2

: ð6Þ

The form of the second equality will be especially
convenient in what follows below.

We label the constants ofmotion J¼UϕðrIÞ, γ¼−U0ðrIÞ,
and use Eq. (6) to substitute for r2I . The resulting numerators
and denominators factor cleanly, leading to an additional
simplification,

J ¼ 2
ffiffiffi
3

p
M

�
1 −

2a
3
ffiffiffiffiffiffiffiffiffi
MrI

p
�
; ð7Þ

γ ¼ 4

3

ffiffiffi
3

p �
M
rI

�
1=2
�
1 −

3a
4
ffiffiffiffiffiffiffiffiffi
MrI

p
�

¼
�
1 −

2M
3rI

�
1=2

; ð8Þ

where in the second γ equality we have made use of Eq. (6).
Notice that γ is independent of a, apart from the simple
implicit rI dependence.

Orbital solutions.—Radial velocity of the ISCO inspiral:
As noted earlier, general relativistic dynamics allows for
radial motion in orbits whose angular momentum and
energy values correspond to an exactly circular orbit. While
the governing equation is easily stated,

grrðUrÞ2 þU0U0 þ UϕUϕ ¼ −1; ð9Þ

its direct solution is generally a matter of some algebraic
complexity. Expressing all nonradial four-velocities in
terms of J and γ, and multiplying through by 1=grr, we have

ðUrÞ2þ J
r2

�
2Maγ
r

þ
�
1−

2M
r

�
J

�

−
γ

r2

��
r2þa2þ2Ma2

r

�
γ−

2MaJ
r

�
¼−1−

a2

r2
þ2M

r
: ð10Þ

Equation (10) is of the form ðUrÞ2 þ VeffðrÞ ¼ 0, where
Veff is a cubic in 1=r which may always be factored,

VeffðrÞ ¼ −V0

�
r1
r
− 1

��
r2
r
− 1

��
r3
r
− 1

�
; ð11Þ

where r1, r2, and r3 are the general (possibly complex)
roots of Veff . (Veff is, up to an irrelevant factor of 2, the
usual effective potential.)
For an arbitrary circular orbit of radius r ¼ rc, both

VeffðrcÞ ¼ 0 and ∂rVeffðrcÞ ¼ 0, and rc will thus be a
double root of the polynomial. For the particular case of a
marginally stable circular orbit, there is an additional
condition, ∂2rVeffðrcÞ ¼ 0. Thus, rI must be a triple root
of Ur. The normalization constant V0 may be found by
going back to Eq. (10) and taking the formal limit r → ∞.
We find

V0 ¼ 1 − γ2 ¼ 2M
3rI

; ð12Þ

which leads directly to our final equation for Ur,
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Ur ≡ dr
dτ

¼ −

ffiffiffiffiffiffiffi
2M
3rI

s �
rI
r
− 1

�
3=2

: ð13Þ

This may also be verified by a (considerably more lengthy)
direct computation. Note the universality of this remarkable
result: there is no a dependence in this expression other
than implicitly through rI . Every Kerr orbit inspiraling
from an ISCO is self-similar in its radial motion. As expec-
ted, no radial velocity solutions exist for r > rI. Despite its
generality, simplicity, and importance, Eq. (13) does not
appear to have been recognized before in the literature.
The azimuthal component of the intra-ISCO four-

velocity is also simple,

Uϕ ¼ −gϕ0γ þ gϕϕJ ¼ 2Mγaþ Jðr − 2MÞ
rðr2 − 2Mrþ a2Þ : ð14Þ

Schwarzschild orbits: We begin with the Schwarzschild
limit a ¼ 0. Then rI ¼ 6M, J ¼ 2

ffiffiffi
3

p
M, and Uϕ ¼

2
ffiffiffi
3

p
M=r2. Defining x ¼ r=rI , we find

dϕ
dx

¼ 6M
Uϕ

Ur ¼ −
ffiffiffi
3

p 1

x2

�
1

x
− 1

�
−3=2

; ð15Þ

which immediately integrates to

x ¼ r
6M

¼ 1

1þ 12=ϕ2
; ð16Þ

with the convention that ϕ increases from −∞ to 0 as x
goes from 1 to 0. This is an exact orbital solution for the
standard Schwarzschild metric, which is both noncircular
and nonradial, extending from rI to r ¼ 0. The reader
may verify this by direct substitution into the exact
Schwarzschild orbit equation for u ¼ 1=r,

d2u
dϕ2

þ u ¼ M
J2

þ 3Mu2: ð17Þ

Equation (13) is also easily integrated. This result,
moreover, holds for any Kerr ISCO-inspiral orbit, not just
for those in the Schwarzschild geometry. With x ¼ r=rI ,
we find

τ ¼
ffiffiffiffiffiffiffi
3r3I
2M

r �
3 sin−1

ffiffiffi
x

p þ ðx − 3Þ
ffiffiffiffiffiffiffiffiffiffiffi
x

1 − x

r �
; ð18Þ

a universal relationship between proper time τ and coor-
dinate r. It may also be written in parametric form,
reminiscent of closed Friedmann cosmologies,

x ¼ 1

2
ð1 − cos ψÞ ¼ sin2ðψ=2Þ; ð19Þ

τ ¼
ffiffiffiffiffiffiffi
3r3I
2M

r �
1

2
ð3ψ − sinψÞ − 2 tan

�
ψ

2

��
; ð20Þ

with ψ running from π to 0.

General solution: The general parametrized azimuthal
solution ϕðψÞ is considerably more complicated. Start with

dτ
dψ

¼ −

ffiffiffiffiffiffiffi
3r3I
2M

r
sin2ðψ=2Þ tan2ðψ=2Þ; ð21Þ

whence

dϕ
dψ

¼ −Uϕ

ffiffiffiffiffiffiffi
3r3I
2M

r
sin2ðψ=2Þtan2ðψ=2Þ: ð22Þ

With Uϕ substituted from (14) and r ¼ rI sin2ðψ=2Þ, this
equation has the formal solution

ϕðψÞ ¼
ffiffiffiffiffiffiffi
3r3I
2M

r
1

r3I
½2MðJ − aγÞI1 − JrII2�; ð23Þ

where I1 and I2 may be written in the single compact form,

Ij ¼
Z

ψ

π

tan2ðψ 0=2Þf1þ ½1 − j�cos2ðψ 0=2Þgdψ 0

sin4ðψ 0=2Þ − 2Msin2ðψ 0=2Þ=rI þ a2=r2I
: ð24Þ

Both I1 and I2 have poles at the Kerr event horizons rþ and
r−, at the ψ values given by

rIsin2ðψ�=2Þ ¼ r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
: ð25Þ

I1 and I2 may be evaluated by the Weierstrass substitution

t ¼ tanðψ 0=2Þ: ð26Þ
We then find I1 ¼ K1 þ K2, I2 ¼ K2, where

Kj ¼
Z

2t2j

αt4 − 2βt2 þ a2=r2I
dt; ð27Þ

α ¼ 1 − 2M=rI þ a2=r2I ; β ¼ M=rI − a2=r2I : ð28Þ

The two roots of the denominator of the K integrals are

t2� ¼ α−1ðβ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 − a2=r2I

q
Þ; ð29Þ

which, from (25), are

t� ¼ tanðψ�=2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x�

1 − x�

r
; x� ≡ r�=rI: ð30Þ

After factoring the denominators, the K integrals may be
evaluated by partial fraction expansions. Omitting the
lengthy but straightforward details, the final result for ϕ is

ϕðψÞ ¼ C0 tanðψ=2Þ þ C−tanh−1
�
tanðψ−=2Þ
tanðψ=2Þ

�

− Cþtanh−1
�
tanðψþ=2Þ
tanðψ=2Þ

�
: ð31Þ

We have defined the constants

C0 ¼
ffiffiffiffiffiffiffi
6rI
M

r
2MðJ − aγÞ − rIJ
r2I − 2MrI þ a2

; ð32Þ
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C� ¼ t�
t2þ − t2−

ffiffiffiffiffiffiffi
6rI
M

r
2MðJ − aγÞð1þ t2�Þ − rIJt2�

r2I − 2MrI þ a2
: ð33Þ

This can also be written explicitly as a function of radius,

ϕðrÞ ¼ C0

ffiffiffiffiffiffiffiffiffiffiffiffi
r

rI − r

r
þ C−tanh−1

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r−
r

ðr − rIÞ
ðr− − rIÞ

s !

− Cþtanh−1
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rþ
r

ðr − rIÞ
ðrþ − rIÞ

s !
: ð34Þ

(The arguments of the tanh−1 functions should be inverted
for radial coordinates within the horizons r < r�.) The C
coefficients are plotted as a function of black hole spin in
Fig. 1. The Schwarzschild limit a → 0 and rI ¼ 6M, for
which C� ¼ 0, C0 ¼ −2

ffiffiffi
3

p
, is easily verified. An example

inspiral trajectory given by Eq. (34) with a=M ¼ þ0.75 is
shown in Fig. 2. These solutions have been verified against
numerical integration of the geodesic equations.
Extremal spin limit: The above solution for ϕðrÞ is ill

defined in the maximal a=M ¼ �1 limit, as the two event
horizons of the Kerr geometry coincide (tþ ¼ t−), and the
partial fraction approach used in solving Eq. (23) must be
revisited. For the a ¼ þM solution, the ISCO and event
horizons formally coincide in Boyer-Lindquist coordi-
nates. For a ¼ −M, the orbit is more interesting, and we
are able to solve exactly for rðϕÞ. We rewrite Eq. (23)
(with J ¼ 22

ffiffiffi
3

p
M=9, γ ¼ 5

ffiffiffi
3

p
=9, rI ¼ 9M, a ¼ −M, and

t ¼ tan½ψ=2�) as

ϕ

9
ffiffiffi
2

p ¼
Z

6t2

ð8t2 − 1Þ2 dt −
Z

16t4

ð8t2 − 1Þ2 dt; ð35Þ

which becomes

ϕ

9
ffiffiffi
2

p ¼ 2t3

1 − 8t2
: ð36Þ

With t2 ¼ r=ðrI − rÞ, we find for ϕðrÞ,

ϕðrÞ ¼ 2
ffiffiffi
2

p

3M3=2

r3=2

ð1 − r=MÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − r=9M

p : ð37Þ

Inverting Eq. (36) to solve for tðϕÞ [and thus rðϕÞ] is
interesting, as it highlights the solutions from all branches
of the resulting cubic equation

t3 þ 4ϕ

9
ffiffiffi
2

p t2 −
ϕ

18
ffiffiffi
2

p ¼ 0: ð38Þ

In fact, there are actually four branches of interest in this
problem. Physically, this arises from frame dragging, which
produces a multivalued ϕðrÞ. The three nominal roots of the
cubic tj may be written as

tj ¼
2
ffiffiffi
2

p
ϕ

27

�
2 cos

�
1

3
cos−1

�
2187

128ϕ2
− 1

�
þ 2πj

3

�
− 1

�
;

ð39Þ
with j ¼ 0, 1, 2. The fourth branch t3 may be formally
identified with the (j ¼ 0) t0 root, but one must change cos
and cos−1 into cosh and cosh−1, respectively, as the
argument of the cos−1 exceeds unity for t3 orbits. All four
branches are needed, as we now discuss.
The radial solutions for these roots are

rj ¼
9Mt2j
1þ t2j

; ð40Þ

with different roots corresponding to different “legs” of the
orbit. The path of a test particle inspiraling from the
retrograde ISCO of a maximally rotating Kerr black hole

FIG. 1. Coefficients C0; Cþ, and C− appearing in the para-
metric ϕðψÞ solution [Eqs. (32) and (33)], as a function of a=M.
(Spin axis plotted for −0.998 < a=M < 0.998). FIG. 2. Inspiral [Eq. (34)] of a test particle from ISCO

(r ≃ 3.158M) to event horizon (rþ ≃ 1.661M) of a Kerr black
hole, a=M ¼ þ0.75.
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is as follows. The particle starts at r ¼ 9M, with ϕ ¼ −∞.
It spirals inward toward the event horizon, with increasing
ϕ, until it crosses the special radius r⋆ ¼ 27M=11 at an
angle

ϕ⋆ ¼ −
27

ffiffiffi
3

p

16
; ð41Þ

whereupon frame dragging bends the orbit backward, and
the particle begins to corotate with the black hole (Fig. 3).
Note that this location is exterior to the ergosphere
rE ¼ 2M. During this initial phase the radial coordinate
is given by the r1ðϕÞ solution [Eq. (39)]. Beyond this point,
the orbit transitions onto the r2ðϕÞ branch, with ϕ once
again tending toward −∞ as the particle approaches
the event horizon rH ¼ M. Within the event horizon, the

orbit is first described by the r0ðϕÞ expression, with
jϕ⋆j < ϕ < ∞, and then the final branch r3ðϕÞ for 0 <
ϕ < jϕ⋆j (Fig. 3).

Discussion: accretion inside the ISCO.—The most important
result of this Letter for the modeling of black hole accretion
flows is also the simplest, namely, Eq. (13) for UrðrÞ, the
universal form of the radial four-velocity for a test particle
inspiraling from the ISCO radius of a Kerr black hole while
retaining its circular energy and angular momentum. This is
of great astrophysical interest because the accretion of a
steady mass flow _M in a thin disk is characterized by a
constant value of the mass flux 2πΣrUr (here, Σ is the disk
surface density). Here, we have learned that, within the
ISCO, Ur is generally known a priori and is extremely
simple (at least for midplane orbits). A stress term is not
needed in this region and may be ignored since now gravity
alone is much more efficient at powering inward flow. By
way of contrast, external to the ISCO, to have any
systematic radial velocity at all, an enhanced stress is
absolutely essential [5,6]. With this external stress remain-
ing finite at the ISCO itself, the interior and exterior
solutions both have vanishingly small velocities at rI , so
that joining these two branches to form a global black hole
accretion solution is a natural, and potentially very revea-
ling, next step.
The energetics of the post-ISCO flow is also very

important and becomes much more accessible once the
radial velocity is known a priori. The prompt acceleration
results in a rapid drop in Σ, and therefore, the hot internal
radiation field will escape more easily. Offsetting this is a
radial expansion producing global cooling. This radial
expansion is to some extent offset by the vertical com-
pression of the flow near the outer Kerr event horizon, a
process that acts to heat the flow. An understanding of the
interaction between these competing adiabatic effects,
together with self-heating of the disk by its own emission
will be needed to account for recent observations that
appear to show an additional hot disk component, beyond
the expectations of standard theory, in some sources [8].
A more precise knowledge of Ur is a very important aid

for numerical accretion disk modelers. With a simple form
for Ur ¼ dr=dτ, and detailed mathematical formulas for
rðτÞ and rðϕÞ, these results promise to be of great practical
utility for numerical code calibration [14].
Finally, the imaging capabilities now available through

the Event Horizon Telescope are on the verge of resolving
the flow between the ISCO and event horizon itself [15].
The dynamic properties of the flow in the intra-ISCO
region may one day soon be imaged directly. The data from
such a study would no doubt provide interesting tests of the
models derived here.
We conclude by noting that the mathematical methods

used here also work well for other classes of noncircular
orbits, which are defined by the energy and angular
momentum of a non-ISCO circular orbit, and also for

FIG. 3. Inspiral of a test particle from ISCO (r ¼ 9M) to
singularity of an extremal Kerr black hole a ¼ −M [Eq. (37) et
seq.]. Upper figure shows the magnitude of the ϕ coordinate over
the infall, with the four rjðϕÞ branches of the solution color coded
(see text). The value of the frame-dragging angle ϕ⋆ [Eq. (41)] is
shown by the horizontal dashed line. The lower figure shows the
inspiral in quasi-Cartesian coordinates with the same color-
coding scheme. Note the pronounced effect of counterrotating
frame dragging upon the orbit.
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photon orbits. The analytic results of these studies will be
fully described in a more lengthy investigation to follow.
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