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We investigate the effect of kinetic constraints on classical many-body chaos in a translationally invariant
Heisenberg spin chain using a classical counterpart of the out-of-time-ordered correlator (OTOC). The
strength of the constraint drives a “dynamical phase transition” separating a delocalized phase, where the
classical OTOC propagates ballistically, from a localized phase, where the OTOC does not propagate at all
and the entire system freezes. This is unexpected given that all spin configurations are dynamically
connected to each other. We show that localization arises due to the dynamical formation of frozen islands,
contiguous segments of spins immobile due to the constraints, dominating over the melting of such islands.
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Ergodicity lies at the heart of bridging microscopic
theories of many-body systems to macroscopic thermody-
namic descriptions of such systems via their statistical
mechanics [1]. Much of this is underpinned by the notion of
chaos captured by the butterfly effect—an infinitesimal
local change in the initial condition, a wingbeat of the
proverbial butterfly, can amplify exponentially and spread
ballistically in spacetime to effect drastic changes in the
global state at later times, such as cause a tornado in a
different part of the world [2–4].
Recently, the out-of-time-ordered correlator (OTOC) has

emerged as a prominent diagnostic for many-body quantum
chaos [5–15]. Defined as Oðx; tÞ ¼ −h½Wðx; tÞ; Vð0; 0Þ�2i,
it measures the effect on a local operator W at position x
and time t of perturbing the system with an operator V at
x ¼ 0 and t ¼ 0. A classical counterpart of the OTOC was
developed to characterize spatiotemporal chaos in classical
many-body systems [16–20]. It quantifies how the degrees
of freedom in two copies of a system dynamically decor-
relate in spacetime due to an infinitesimal local difference
in their initial conditions. For chaotic systems, the OTOC or
its classical counterpart has a ballistically propagating
front, which might be sharp or broaden diffusively.
Although ergodicity is generally considered the default,

it is by now clear that there exist several classes of systems
where ergodicity is broken, often strongly and robustly.
Such systems therefore violate conventional statistical
mechanics and thermodynamics; fundamental questions
thus emerge about their universal, macroscopic descrip-
tions. Telltale signatures of ergodicity breaking include
long, often divergent, relaxation timescales, absence of
thermalization, suppressed transport, and specific to quan-
tum systems, arrested growth of entanglement. All of these

above phenomena can be loosely brought under the
umbrella of (quasi)localization of classical or quantum
information.
Among the earliest examples of ergodicity breaking,

perhaps the most significant ones are structural and spin
glasses, which become nonergodic usually at low temper-
atures [21–27]. A key ingredient in these systems is the
presence of quenched random disorder. At the same time,
disorder in low-dimensional quantum systems is also
understood to cause strong ergodicity breaking, even at
infinite temperatures, via Anderson localization [28,29] in
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FIG. 1. (a) Schematic of the constrained spin chain. The red
spins are frozen as both their neighbors lie inside the spherical
sector (gray shade) which has a polar angle ϕπ, whereas the black
spins are free to evolve. (b) The classical OTOCs and decorre-
lators hDðx; tÞi as color maps in spacetime for several values of ϕ.
Note the rapid slowing down of the light cone with ϕ near
ϕc ≈ 0.53, above which the light cone is fully arrested.
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noninteracting and many-body localization [30–32] in
interacting systems.
However, disorder is not a prerequisite for ergodicity

breaking. In translation-invariant systems, kinetic con-
straints have long emerged as one of the most prominent
pathways to classical glassy behavior at low temperatures
[33–39]. Also in quantum systems, at infinite temperatures,
kinetic constraints have been shown to result in slow
relaxation [40–42] and stabilize a many-body localized
phase as well [43]. This motivates our investigation of the
fate of classical many-body chaos, characterized by the
classical OTOC, in the presence of local kinetic constraints
and at infinite temperatures.
Remarkably, we find that, as a function of a parameter ϕ

quantifying the strength of the constraints, the dynamics
undergoes a sharp dynamical phase transition between an
ergodic phase, where the OTOC spreads out ballistically,
and a nonergodic phase, where spreading is completely
arrested—see Fig. 1 for a summary. As the constraints in
our model keep the entire configuration space dynamically
connected, localization is not due to fragmentation of
configuration space [44–47].
Instead, localization occurs because the distribution of

waiting times (the time the front of the classical OTOC
waits at a site before moving onto the next) above some
critical constraint strength acquires a heavy enough power-
law tail that the mean waiting time diverges (Fig. 2).

We link this distribution to the broadening of the front
caused by the constraints and provide insight into the
mechanism of localization by showing that melting of
initially frozen regions happens locally, starting at the edges
of the islands, while formation of frozen islands can occur
anywhere in the system. Whether the entire system
becomes localized is then a question of the lifetimes of
these islands, which diverges at the same ϕ as the mean
waiting time (Fig. 3).
Further evidence for localization is provided by the fact

that, in the ergodic phase, islands of initially frozen spins
(due to the constraints) melt from the edges and eventually
the entire system becomes active. In the localized phase,
not only is melting of these initial frozen islands arrested,
but the system also dynamically develops several frozen
islands with divergent lifetimes, which eventually prolif-
erate and freeze the entire system.
For simplicity, we strip our model of all conservation

laws (including energy) so that in the unconstrained limit
(ϕ ¼ 0), the OTOC has a sharp front with no broadening. In
the presence of constraints but in the ergodic phase the
distribution of waiting times broadens the front diffusively.
For concreteness, we consider a periodically driven

classical Heisenberg chain of length L with periodic
boundaries described by the Hamiltonian,

HðtÞ¼
8<
:
PL=2

x¼−L=2ðJSzxSzxþ1þhSzxÞ; t∈ ½nT;ðnþ1
2
ÞTÞPL=2

x¼−L=2gS
x
x; t∈ ½ðnþ1

2
ÞT;ðnþ1ÞTÞ

;

ð1Þ

where the spin at site x is a three-dimensional unit vector
Sx ¼ ðSxx; Syx; SzxÞ. Since the model defined in Eq. (1) is time
periodic, we consider the dynamics only at stroboscopic
times t ¼ nT with integer n. In the presence of kinetic
constraints, the stroboscopic evolution of the spins is
given by

(a) (c)

(b)

FIG. 2. (a)Dðx; tÞ for a randomly chosen initial condition along
with the trajectory of the front xRFðtÞ, extracted using Eq. (6),
shown in green. Inset: a small spacetime portion enlarged, as
well as the definition of τ. Data for ϕ ¼ 0.53 and η ¼ 0.01.
(b) Distributions of the waiting time PτðτÞ for three different ϕ,
each for three different maximum simulation times tmax. While
the distributions are converged with tmax and not tailed in
the delocalized phase, they have heavy power-law tails in the
localized phase that persist for longer τ for larger tmax and have
exponents such that the mean hτi is divergent. (c) The numerical
data suggest that hτi diverges as a power law with δϕ ¼ ϕc − ϕ
and ϕc ≈ 0.525ð5Þ. All statistics accumulated over 5 × 105 initial
conditions.

(a) (c)(b)

FIG. 3. Melting of an initially frozen island of length LF ¼ 100
in the delocalized phase (a) or lack thereof in the localized phase
(b). The plots show a color map of AxðtÞ with black denoting
frozen spins AxðtÞ ≈ 0 and yellow denoting active with AxðtÞ ≈ 1.
In each panel, the left half shows averaged data hAðx; tÞi, whereas
the right half shows it for a single initial condition. The data in
(c) suggest that the mean melting time tM, diverges as the critical
ϕc is approached from the delocalized side. The red dashed line
denotes the estimated ϕc from the decorrelator data.
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Sx½ðnþ1ÞT�¼
�
Rx½gT=2�Rz½θxðnTÞ�SxðnTÞ; ΘxðnTÞ¼1

SxðnTÞ; ΘxðnTÞ¼0
;

ð2Þ

where Rz½θxðnTÞ� denotes a 3D rotation matrix about the
z axis by an angle θxðnTÞ≡ ½Szx−1ðnTÞþSzxþ1ðnTÞþh�T=2
and similarly for Rx. The constraints are encoded in the
Heaviside step function,

ΘxðnTÞ ¼ Θ½cosðπϕÞ −minðSzx−1ðnTÞ; Szxþ1ðnTÞÞ�: ð3Þ

The form of the constraint implies that a spin at site x is
frozen if both its neighbors lie inside the spherical sector
defined by the polar angle πϕ; see Fig. 1(a) for a visual
schematic. In this sense, it can be considered as the
Heisenberg generalization of the Fredrickson-Andersen
constraint defined originally for Ising spins [33,34].
Physically, in the context of glassy dynamics, interpreting
spins inside (outside) the sector as proxies for (for example)
high(low)-density regions in a system where density is the
dynamical variable, the constraints forbid dynamics in a
region if it is surrounded by dense immobile regions [38].
In what follows, we set T ¼ 2π, J ¼ 1, h ¼ 0.1, and
g ¼ 0.4 without loss of generality.
The classical OTOC is defined by considering two initial

conditions fSx;Aðt¼0Þg and fSx;Bðt¼0Þg identical every-
where except at x ¼ 0, where they are infinitesimally
different,

δSxð0Þ≡ Sx;Að0Þ − Sx;Bð0Þ ¼ εδx;0½ẑ × Sx;Að0Þ�: ð4Þ

The classical OTOC, henceforth referred to as the
“decorrelator,” is then given by [16]

Dðx; tÞ ¼ 1 − Sx;AðtÞ · Sx;BðtÞ: ð5Þ

As we are interested in the infinite temperature dynamics of
the decorrelator, we average it over several randomly and
uniformly chosen initial conditions; we denote the average
as hDðx; tÞi [48] and use ε ¼ 10−3 throughout.
The results for hDðx; tÞi are shown in Fig. 1(b) for

several values of ϕ. For ϕ ¼ 0, the dynamics is completely
unconstrained. Since the system has no conservation laws,
we observe a sharp ballistic light cone for hDðx; tÞi, the
front of which does not broaden. On increasing ϕ, the
constraints come into play and within the “delocalized”
phase, while the light cone still has a well-defined butterfly
velocity, there is broadening of the front. We shall shortly
explain this using the distribution of waiting times. In the
vicinity of ϕc ≈ 0.53, the light cone slows down while the
front broadens significantly. We attribute this slow dynam-
ics with large fluctuations to the fact that we are at or near a
dynamical phase transition separating the delocalized and
localized phases. The localized phase is evident from the

data for ϕ ¼ 0.6, where the light cone is completely
arrested; the front neither propagates nor broadens.
A key ingredient that determines the spatiotemporal

profile of the decorrelator is the “waiting time” denoted
by τ. This is defined as the time the front of the decorrelator
waits at x before moving to site xþ sgnðxÞ. The front of the
decorrelator is defined as follows. For a fixed time t, the

right (left) front, xðR=LÞF ðtÞ is at

xðR=LÞF ðtÞ ¼ max =minfxjDðx; tÞ ≥ ηg; ð6Þ

where η ≪ 1 is an empirically chosen cutoff. A represen-
tative trajectory of xRF over time is shown in Fig. 2(a),
where a series of vertical steps (the length of each being a
waiting time τ) is visible. These steps are distributed over
spacetime and initial conditions with a distribution Pτ,
shown in Fig. 2(b) for various ϕ and simulation times.
In the delocalized phase ðϕ ¼ 0.52Þ, Pτ converges with
increasing maximum simulation time tmax, decaying
faster than any power law and having a finite mean
hτi ¼ R∞ dτ τPτðτÞ. As the system transitions into the
localized phase (ϕ ¼ 0.53 and ϕ ¼ 0.6), PτðτÞ develops
power-law tails, PτðτÞ ∼ τ−α. These tails are cut off by tmax
but, crucially, extend up to longer τ for larger tmax This
suggests that when tmax → ∞ the tail remains a power law
all the way to τ → ∞. For ϕ ≥ ϕc ≈ 0.525ð5Þ, the exponent
α ≤ 2, i.e., the tail of Pτ becomes heavy enough that
hτi → ∞. From the data in Fig. 2(b), we conjecture that, at
ϕ ¼ ϕc, α ¼ 2. The time taken by the front to reach a site at
a given x is ∼xhτi, which diverges so that the front gets
stuck and the light cone does not spread at all [49]. In
Fig. 2(c), we show how hτi diverges as ϕ → ϕc from the
delocalized side. The data on logarithmic axes show that it
diverges as a power law with an exponent ν ≈ 0.4 [50].
So far we have established that the constraints (3) induce

a “localized” phase, wherein classical many-body chaos as
quantified by the decorrelator (5) is completely arrested.
We next show that, in fact, the entire system actually
freezes in a random spin configuration, which depends on
the initial condition, and provide a physical picture for
localization.
The mechanism can be understood in terms of “frozen

islands”: contiguous segments of spins such that Θx ¼ 0
[see Eq. (3)] for all of them. All spins in such a segment and
the spins immediately on either side have Sz > cosðπϕÞ;
hence they are frozen. During the evolution, such islands
can melt (the spins becoming active) progressively inward
from the edges of the island. In the delocalized phase, these
islands melt at a finite velocity and the entire system
becomes active at late times. In the localized phase, new
frozen islands appear, proliferating through the entire
system such that it freezes into a random configuration.
Of course, for any value of ϕ, new frozen islands appear
dynamically. However, the crucial difference is that, for
ϕ < ϕc, these islands quickly melt with timescales that are
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proportional to the length of the island. On the contrary, for
ϕ > ϕc, the rate at which new islands appear overwhelms
the rate at which they melt, such that the entire system
becomes one frozen island.
We next present numerical evidence for this picture. We

start with an ensemble of initial conditions with a frozen
island of size LF in the middle and the rest of the spins
random. We then define a function AxðtÞ ¼ Θ½cosðπϕÞ−
minðSzx−1ðtÞ; Szxþ1ðtÞÞ�, taking a value 1(0) if the spin is
active (frozen), and track this dynamically. The results are
shown in Fig. 3 and are in agreement with the discussion in
the previous paragraph. Furthermore, from the data for a
single initial condition, it can be seen that new frozen
islands form dynamically in the initially active regions,
quickly melt in the delocalized phase, and persist and
eventually take over the entire system in the localized
phase.
To quantify this further, we define a melting time tM for

each initial condition as the earliest time the spin at x ¼ 0
(furthest from the edges of the island) becomes active,
tM ¼ minftjA0ðtÞ ¼ 1g. In the delocalized phase, since the
melting happens at the constant velocity on average, we
expect that the average melting time htMi ∝ LF. However,
in the localized phase, since the initial frozen island never
melts, the spin at site x ¼ 0 is never active for any finite t.
This is consistent with the apparent divergence of htMi as
ϕ → ϕc from the delocalized side in Fig. 3(c).
Finally, we discuss the spatiotemporal profile of the

decorrelator in the delocalized phase, focusing in particular
on the broadening of the front. For ϕ ¼ 0 there is no
broadening, so that any broadening at ϕ ≠ 0must be due to
the constraints. As Fig. 4(a) demonstrates for a represen-
taive value of ϕ, the mean decorrelator for different times
can be collapsed onto a scaling function,

hDðx; tÞi ¼ F
�
x ∓ xvðtÞ

ξðtÞ
�
; x ≷ 0: ð7Þ

Fitting for each t, Figs. 4(b) and 4(c) show that the
parameters xvðtÞ ¼ vBðϕÞt and ξðtÞ ¼ γðϕÞt1=2, so that
the front moves ballistically while broadening diffusively.
The broadening is a direct result of the finite width of the
distribution Pτ. Defining l as the distance the front moves
in a single period, the finite width of Pτ naturally implies
that the distribution Pl has a nonzero width. Moreover,
since the model is local, l is strictly bounded from above,
which means all the moments of Pl are finite. Let us denote
the first two moments by �μl (for the front at x ≷ 0 and
with μl > 0) and σ2l, respectively. According to the central
limit theorem, the distance moved after t periods, Xt ¼P

t
n¼1 ln with ln distributed according to Pl, is normally

distributed with mean tμl and standard deviation
ffiffi
t

p
σl.

Modeling the decorrelator for a single initial condition by a
Heaviside step function Dðx; tÞ ¼ ΘðXt − jxjÞ and averag-
ing over the normal distribution of the Xt, we find

hDðx; tÞi ¼ 1

2
erfc

�
x ∓ tμlffiffiffiffiffiffiffiffiffi

2tσ2l

q
�
; x ≷ 0; ð8Þ

so that vBðϕÞ ¼ μlðϕÞ and γðϕÞ ¼ ffiffiffi
2

p
σlðϕÞ. An implica-

tion of Eq. (8) is that, on a spacetime ray with velocity v
(x ¼ vt) outside the light cone, we can write hDðx; tÞi∼
exp½λvt�, where λvðϕÞ≈−½v−vBðϕÞ�2=γðϕÞ is the velocity-
dependent Lyapunov exponent [15].
To summarize, we have demonstrated that constrained

dynamics can completely arrest classical many-body chaos
as measured via the classical counterpart of the OTOC. Our
results also provide compelling evidence for a dynamical
phase transition, driven by the strength of the constraint,
separating a delocalized phase where the classical OTOC
spreads ballistically from a localized phase where it does
not spread at all. The physical mechanism behind this
localization was shown to be that, in the course of the
dynamics, frozen islands of spins form and proliferate
through the system, freezing it entirely. These islands also
form dynamically in the delocalized phase but they quickly
melt away. A consequence of the constraint-induced frozen
spins is that, as correlations spread in spacetime, they
encounter the frozen spins and need to wait until they are
dynamically active again. The arrest of spreading is
reflected in the distribution of these waiting times acquiring
heavy power-law tails in the localized phase.
It is worth emphasizing that our results are general,

holding for a variety of systems with and without con-
servation laws and both in one and two dimensions

(a)

(b) (c)

FIG. 4. (a) Collapse of hDðx; tÞi onto a function F ½ðx −
xvðtÞÞ=ξðtÞ� for x > 0 with F ðyÞ ¼ erfcðyÞ denoted by the red
dashed line. Inset: raw data. The plots use ϕ ¼ 0.4. (b) xvðtÞ as a
function of t for several values of ϕ in the delocalized phase. The
linear behavior indicates the presence of a well-defined butterfly
velocity vB ¼ xvðtÞ=t. (c) ξ2ðtÞ for the same values of ϕ, rescaled
(arbitrarily) with ξ2ð300Þ for visual clarity. The linear behavior
indicates the diffusive broadening of the decorrelator front.
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(see Supplemental Material [51]). The form of the con-
straint we employ (3) allows for a spin to be active even if
just one of its neighbors is not in the cone (i.e., “OR”
condition). In this sense, the constraint is weaker than the
generalizations of “XOR” or “AND” constraints, where
exactly one of the two or both neighbors, respectively, need
to be outside the cone for a spin to be active. This therefore
suggests that the localized phase will be present for the
latter two cases.
While we have established the presence of a transition

between an ergodic and a localized phase, its precise nature
is a question for future work. In a separate work [52], we
discuss how it can be mapped onto a directed percolation
problem.
Looking further afield, one may ask what lessons can be

learned from this classical problem for constrained quan-
tum dynamics. Amid the fragility of many-body localized
phases in disordered quantum systems, particularly in
higher dimensions, the emergence of constraints as an
effective ingredient for localizing quantum information is
significant. This aspect also has important practical impli-
cations. Modern day noisy intermediate scale quantum
devices simulate dynamics to store, manipulate, and
retrieve quantum information [53]. An essential challenge
there is scrambling of information accompanied by run-
away entropy growth, or heating, of the system. Constraints
as a way of mitigating this issue without relying on disorder
to break ergodicity is an important and timely development.
Our results point to a clear direction for further studies
on how to arrest quantum chaos leading to information
localization.
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