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Symmetries in a Hamiltonian play an important role in quantum physics because they correspond
directly with conserved quantities of the related system. In this Letter, we propose quantum algorithms
capable of testing whether a Hamiltonian exhibits symmetry with respect to a group. We demonstrate that
familiar expressions of Hamiltonian symmetry in quantum mechanics correspond directly with the
acceptance probabilities of our algorithms. We execute one of our symmetry-testing algorithms on existing
quantum computers for simple examples of both symmetric and asymmetric cases.
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Introduction.—Symmetry is a key facet of nature that
plays a fundamental role in physics [1,2]. Noether’s
theorem states that symmetries in Hamiltonians correspond
with conserved quantities in the related physical systems
[3]. The symmetries of a Hamiltonian indicate the presence
of superselection rules [4,5]. In quantum computing and
information, symmetry can indicate the presence of resour-
ces or lack thereof [6], and it can be useful for improving
the performance of variational quantum algorithms [7–10].
Identification of symmetries can simplify calculations by
eliminating degrees of freedom associated with conserved
quantities—this is at the heart of Noether’s theorem. This
makes symmetries extraordinarily useful in the context of
physics.
Quantum computing is a significantly younger field of

study. First introduced as a quantum-mechanical model of a
Turing machine [11], the intrigue of quantum computers
lies in their potential to outperform their classical counter-
parts. The most obvious asset of quantum computers is the
inherent physics behind the calculation, which includes
nonclassical features such as superposition and entangle-
ment. Classical simulations of quantum systems quickly
become intractable as the size of the Hilbert space grows,
needing exponentially many bits to explore the state space
which multiple qubits naturally occupy. Intuitively, the
quantum mechanical nature of these computers allows for
simulations of quantum systems in a forthright way (see
Ref. [12] and references therein).
A pertinent example of this, Hamiltonian simulation

[13], garners high interest in the field [14–17]. Much work
has been done toward understanding how to simulate these
dynamics on quantum hardware such that they can be
efficiently realized; however, to the best of our knowledge,
there is currently no algorithm that tests Hamiltonian
symmetries on a quantum computer, even though simu-
lating Hamiltonians in this manner and identifying the

symmetries of said Hamiltonians are both deemed to be of
utmost importance.
In this Letter, we give quantum algorithms to test

whether a Hamiltonian evolution is symmetric with respect
to the action of a discrete, finite group. This property is
often referred to as the covariance [18] of the evolution.
If the evolution is symmetric, then the Hamiltonian it-
self is also symmetric, and thus, our algorithms test for
Hamiltonian symmetry. Furthermore, we show that, for a
Hamiltonian with an efficiently realizable unitary evolu-
tion, we can perform our first test efficiently on a quantum
computer [17]. Here, “efficiently” means that the time
necessary to complete the calculation to within a constant
error bound scales, at most, polynomially with the number
of qubits in the system. Our second quantum algorithm
for testing Hamiltonian symmetry can be implemented by
means of a variational approach [19,20]. The acceptance
probabilities of both algorithms can be elegantly expressed
in terms of familiar expressions of Hamiltonian symmetry
[see Eqs. (13), (18), and (19)]. Here, we note that our
algorithms can be understood as particular kinds of pro-
perty tests [21] of quantum systems. As examples, we con-
sider the transverse-field Ising model, the Heisenberg XY
model [22], and the weakly J-coupled NMR Hamiltonian
[23], whose evolution we test for various symmetry cases.
The consequences of such results extend through-

out many areas of physics. Any study of a physical
Hamiltonian can benefit from finding its symmetries,
and our algorithms allow for an efficient check for these
symmetries. With this knowledge, dynamics can be sim-
plified by excluding symmetry-breaking transitions, calcu-
lations can be reduced into fewer dimensions, and intuition
can be gained about the system of interest. Our first
algorithm also scales well, meaning that systems too large
and cumbersome to be studied by hand or classical
computation can be investigated in a practical time scale,
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instead. Our quantum tests offer meaningful insight into
physical dynamics.
In what follows, we begin by describing covariance

symmetry of a unitary quantum channel—of which
Hamiltonian dynamics are a special case. Next, we briefly
review how Hamiltonian dynamics can be simulated on a
quantum computer through the Trotter-Suzuki approxi-
mation [24]. Then, we present our main result—quantum
algorithms to test the covariance symmetry of Hamiltonian
dynamics. Finally, we demonstrate examples of symmetry
tests on currently available quantum computers, and we
discuss additional implications of our Letter.
Covariance of a quantum channel.—Before describing

the symmetries of a Hamiltonian, first, we address the
notion of covariance symmetry of a quantum channel [25].
Quantum channels transform one quantum state to another
and are described by completely positive, trace-preserving
maps. They serve as a convenient mathematical description
of the dynamics induced by a Hamiltonian. The symmetries
of a Hamiltonian naturally correspond to a covariance
symmetry in the channel given by its evolution, and we
exploit this in our algorithms.
We recall the established concept of covariance sym-

metry in more detail in Appendix A of the Supplemental
Material [26], but briefly summarize the notion here.
Suppose there is a channel sending Alice’s quantum system
to Bob’s. For simplicity, we consider their systems to have
the same dimension, though this is not required, in general.
Further, suppose that we wish to determine whether this
channel is symmetric with respect to some finite, discrete
group G, which has a projective unitary representation
[usually denoted fUðgÞgg∈G]. Then the channel is covariant
if Alice, acting with her representationUðgÞ before sending
the system through the channel, is completely equivalent to
Bob acting on his system with his representation of g after
the state has been sent through the channel. In this sense,
the channel commutes with the action of the group.
One method for testing this property given some channel

involves using its Choi state, formally defined in
Appendix A of [26]. The Choi state is generated by
sending one half of a maximally entangled state through
the channel, which, now, we assume to be unitary. Given
the same group and its unitary representation, we define a
projector

ΠG ≔
1

jGj
X
g∈G

ŪRðgÞ ⊗ UBðgÞ; ð1Þ

onto the space of states of a composite system RB that are
symmetric with respect to the group G, where the overline
denotes complex conjugation. (Here, we use R to refer to a
reference system and B to refer to Bob’s system after the
channel, a notion we use throughout.) The Choi state of the
channel is equal to its projection onto the symmetric space
if and only if the Choi state is symmetric with respect to G,

given unitary representations of the system. If the Choi
state of a channel exhibits this symmetry, then the channel
itself is covariant [18], and the converse is true as well. This
symmetry is necessarily dependent on the unitary repre-
sentations used, although this is typically suppressed when
referenced in the literature. We will also suppress this on
the assumption that all representations are faithful.
This last notion of symmetry allows us to directly

prescribe an algorithm to test for Hamiltonian symmetries.
If we can emulate the dynamics of a Hamiltonian effi-
ciently, we can test for the symmetry of its Choi state. The
symmetry of the Choi state, then, directly implies sym-
metry of the Hamiltonian being tested.
Quantum simulations of Hamiltonians.—Quantum simu-

lations provide a method for implementing Hamiltonian
dynamics on quantum computers, usually by approximat-
ing them as sequences of quantum logic gates [12,13].
Much work has been conducted in this field, including
work on implementations on near-term hardware [17,29],
simulation by qubitization [30], simulation of operator
spread [31], and more. Here, we review an example imple-
mentation.
One common approach [13] employs the Trotter-Suzuki

approximation [24,32]. This method allows for decom-
position into local Hamiltonian evolutions with some
specified error. In this approximation, we suppose that
the Hamiltonian H is of the form H ¼ P

m
i¼1Hi, where

each Hi is a local Hamiltonian. Then, we can describe its
evolution by

e−iHt ¼
�Ym

j¼1

e−iHjt=r

�r

þO
�
m2t2

r2

�
; ð2Þ

where the correction term is negligible for mt=r ≪ 1 and
vanishes when the terms in the decomposition commute
(Here and throughout, we take ℏ ¼ 1). By other methods,
the error can be reduced to higher orders in t [33].
An efficient quantum algorithm to test Hamiltonian

symmetries.—Given the notion of covariance recalled
above and a way to simulate the applicable Hamiltonian,
now, we propose a quantum algorithm to test a Hamiltonian
for covariance symmetry. We begin by supposing that we
have a Hamiltonian composed of a finite sum of k local
Hamiltonians, as described previously, with dynamics
realized by higher-order methods such that the simulation
error is Oðt4Þ. Then, we claim a test for symmetries of this
Hamiltonian with respect to a group G with a projective
unitary representation fUðgÞgg∈G can be performed effi-
ciently on a quantum computer.
The circuit presented in Fig. 1 implements such a test,

and we sketch its action here. Let the input state to the
circuit be the maximally entangled state ΦRA. Then, act on
the A subsystem with the unitary Hamiltonian dynamics.
As indicated in Fig. 1, the depth of the circuit to realize this
algorithm can be cut in half by taking advantage of the
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transpose trick ðX ⊗ IÞjΦi ¼ ðI ⊗ XTÞjΦi and the decom-
position e−iHt ¼ W1W

†
2, which is clearly possible for

Hamiltonian simulations of the form in (2) or from [33].
The state of the system is now given by

Φt
RB ≔ ðIR ⊗ e−iHtÞΦRAðIR ⊗ eiHtÞ; ð3Þ

which is exactly the Choi state of the channel generated by
e−iHt. Then, we use the quantum Fourier transform (QFT)
to generate a control register in the following superposed
state:

jþiC ≔
1ffiffiffiffiffiffiffijGjp

X
g∈G

jgi: ð4Þ

Implementing the controlled ŪðgÞ andUðgÞ gates using the
above control register yields the state

1

jGj
X
g;g0∈G

½ŪRðgÞ ⊗ UBðgÞ�ðΦt
RB ⊗ jgihg0jCÞ

× ½Ū†
Rðg0Þ ⊗ U†

Bðg0Þ�: ð5Þ

Finally, we perform the measurement M ¼ fjþihþjC; I −
jþihþjCg on the control register and accept if and only if
the outcome jþihþjC is observed. With this condition, the
acceptance probability is given by

Pacc ¼ Tr½ΠGΦt
RB�; ð6Þ

where we have used the projector defined in (1) [see
Appendix C of [26] for a quick derivation of (6)]. As a
limiting case of the gentle measurement lemma [34–36], we
have that

Tr½ΠGΦt
RB� ¼ 1 ⇔ Φt

RB ¼ ΠGΦt
RBΠG; ð7Þ

where the second statement is equivalent to the condition
on the Choi state given in Appendix A of [26]. Therefore,
by implementing this algorithm, we can determine whether
a Hamiltonian exhibits a symmetry under a group G with

some projective unitary representation fUðgÞgg∈G. See
Appendix B of [26] for further details of an approximate
version of the equivalence in (7), which demonstrates that
the acceptance probability is near to one if and only if the
Choi state is approximately Bose symmetric.
This algorithm can be further simplified. By invoking the

transpose trick (see, e.g., Ref. [37]), we can identify the
unitary on the reference system, ŪRðgÞ, with an equivalent
action on A given by U†

AðgÞ. Since the action of the circuit
would then take place solely on the subsystem A, the
reference system R is traced out. This is equivalent to
preparing the maximally mixed state (denoted by π) on A,
such that this variation of our algorithm bears some
resemblance to a one-clean-qubit algorithm [38] (also
known as a DQC1 algorithm), with the exception that it
requires log2 jGj clean qubits for the control register. This
simplification is shown in Fig. 2. The acceptance proba-
bility of the simplification described above is given by

Pacc ¼
1

djGj
X
g∈G

Tr½U†ðgÞeiHtUðgÞe−iHt�; ð8Þ

where d is the dimension of the system being tested.
Appendix C of [26] gives a proof that the expression in (8)
is equal to the acceptance probability of the circuit in Fig. 1.
The proposed circuit is limited in complexity only by the

implementation of the Hamiltonian and unitary represen-
tation. Thus, our first quantum algorithm is efficiently
realizable. Furthermore, we have shown that entanglement
resources, usually necessary for characterizing the Choi
operator of a quantum channel, are not necessary here. We
also note that the statistics accumulated for the maximally
mixed state can be equivalently found in a sampling manner
using computational basis state inputs.
We note that the acceptance probability given in (8) bears

some resemblance to a group-averaged out-of-time-order
correlator (OTOC) [39–41], a measure of near-time quan-
tum chaos. Previous work gave an efficient quantum
algorithm for estimating an OTOC [42]; however, their
work did not consider symmetry transformations of
Hamiltonian evolutions nor have the group-symmetric
structure considered here. Additionally, a continuous
group-averaged OTOC was shown to relate to the spectral
form factor [39], a measure of late-time chaos in a system.
However, it is unclear how this quantity would be

FIG. 1. Quantum circuit to test for the covariance of a unitary
Hamiltonian evolution. The unitary VΦ generates the state jΦiRA,
the maximally entangled state on RA. The evolution of the system
is given by e−iHt ¼ W1W

†
2, and the UðgÞ gates are controlled on a

superposition over all of the elements g ∈ G, as in (4).

FIG. 2. Quantum circuit to test for the covariance of a unitary
Hamiltonian evolution. Here, π denotes the maximally mixed
state I=d.
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interpreted for a discrete group rather than a continuous
group such as previously investigated.
To provide evidence that our algorithm cannot generally

be simulated efficiently by classical computers, we turn to
established notions of computational complexity. In
Appendix D of [26], we prove that estimating the accep-
tance probability in (8) to within additive error is a DQC1-
complete problem. This means that (8) can be estimated
within this restricted model of quantum computing (via our
algorithm and by an observation of [ [43], Section 1]).
Furthermore, this demonstrates that estimating (8) is just as
computationally hard as any problem in this complexity
class. Strong evidence exists that classical computers can-
not solve DQC1-complete problems efficiently [44,45],
thus, ruling out any possibility of estimating the acceptance
probability in (8) by a classical sampling approach. See
Appendix D of [26] for further details and discussions.
A derivation of symmetry in the acceptance proba-

bility.—From the acceptance probability given in (8), we
can derive a relationship with the familiar expression of
Hamiltonian symmetry in quantum mechanics, further esta-
blishing this as an authentic test of symmetry. Consider
expanding eiHt, under the assumption that τ ≔ kHk∞t < 1,
where kXk∞ ≔ supjψi≠0ðkXjψik2=kjψik2Þ

eiHt ¼ I þ iHt −
H2t2

2
−
iH3t3

6
þOðτ4Þ: ð9Þ

Substituting this relation into the trace argument of (8), we
find that

Tr½U†eiHtUe−iHt� ¼ dþ t2ðTr½HU†HU� − Tr½H2�Þ

þ it3

2
ðTr½U†H2UH� − Tr½U†HUH2�Þ

þOðτ4Þ; ð10Þ

where the equality is obtained using the linearity and
cyclicity properties of the trace. After summing over
all group elements, as in (8), and using the group property
(that g ∈ G implies g−1 ∈ G), we find that ð1=jGjÞ×P

g∈GfTr½U†ðgÞH2UðgÞH� − Tr½U†ðgÞHUðgÞH2�g ¼ 0,
so that the third order term of (8) vanishes. We can simplify
the second order term of (8) by using

1

2
Tr½j½U;H�j2� ¼ −Tr½HU†HU� þ Tr½H2�; ð11Þ

where jXj2 ≔ X†X implies that

j½U;H�j2 ¼ H2 −HU†HU −U†HUH þU†H2U: ð12Þ

Putting these equations together, we can rewrite the
acceptance probability of our first quantum algorithm
elegantly as

Pacc ¼ 1 −
t2

2djGj
X
g∈G

k½UðgÞ; H�k22 þOðτ4Þ; ð13Þ

where kAk2 ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr½jAj2�

p
is the Hilbert-Schmidt norm.

Thus, to the first nonvanishing order of time t, the
acceptance probability is equal to one if and only if

½UðgÞ; H� ¼ 0; ∀ g ∈ G: ð14Þ

This is exactly the familiar expression for symmetry.
Furthermore, the expression in (13) clarifies that the norma-
lized commutator norm ð1=djGjÞPg∈G k½UðgÞ; H�k22 can
be estimated efficiently by employing our algorithm. From
(13), we can see that the normalized commutator norm is
small—equivalently, the Hamiltonian H is approximately
symmetric—if and only if the acceptance probability is
close to one. (See [ [46], Sections III and V] or [6] for
further discussions on asymmetry fluctuations.) Finally, as
we show in Appendix E of [26], the acceptance probability
has an exact expansion as follows, such that all odd powers
in t vanish, and the even powers are scaled by normalized
nested commutator norms, quantifying higher orders of
symmetry

Pacc ¼
X∞

n¼0

ð−1Þnt2n
ð2n!Þ

�
1

djGj
X
g∈G

k½ðHÞn; UðgÞ�k22
�
; ð15Þ

where the nested commutator is defined as

½ðXÞn;Y�≔ ½X; � � � ½X; ½X|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
n times

;Y�� � � ��; ½ðXÞ0;Y�≔ Y: ð16Þ

Note that the expansion in (15) is valid for all t ∈ R. We
also provide an alternative formula for Pacc in Appendix E
of [26].
Variational quantum algorithm for symmetry testing.—

Rather than feeding in the maximally mixed state to the
input of the circuit in Fig. 2, we can feed in an arbitrary
input state jψi, instead. As shown in Appendix F of [26],
the acceptance probability when doing so is equal to

kT Gðe−iHtÞjψik22¼1− t2hT GðH2Þ− ½T GðHÞ�2iψ þOðτ3Þ;
ð17Þ

where T GðXÞ ≔ ð1=jGjÞPg∈G UðgÞXU†ðgÞ. Note that the
bracketed term is non-negative as a consequence of the
Kadison-Schwarz inequality [ [47], Theorem 2.3.2]. If we
had the ability to prepare arbitrary quantum states (modeled
in [48]), we could optimize this acceptance probability over
all states, resulting in the following value:

kT Gðe−iHtÞk2∞ ≥ 1 −
2

jGj
X
g∈G

k½UðgÞ; e−iHt�k∞ ð18Þ
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≥ 1 −
2t
jGj

X
g∈G

k½UðgÞ; H�k∞ − 4τ2: ð19Þ

These inequalities are proven in Appendix F of [26],
and the second holds under the assumption that τ < 1.
This demonstrates that the acceptance probability
kT Gðe−iHtÞk2∞ can be bounded from below in terms of a
familiar expression of Hamiltonian symmetry. Thus, if the
commutator norm ð1=jGjÞPg∈G k½UðgÞ; H�k∞ is small, as
is the case when the Hamiltonian is approximately sym-
metric, then the acceptance probability of this algorithm is
close to one. In Appendix F of [26], we also prove that the
acceptance probability satisfies

kT Gðe−iHtÞk2∞≥
�
1−

X∞

n¼1

tn

n!
1

jGj
X

g∈Gk½ðHÞn;UðgÞ�k∞
�

2

:

ð20Þ

Since it is physically impossible to optimize over all
input states, instead, we can employ a variational ansatz to
do so, in order to arrive at a lower bound estimate of the
acceptance probability on the left-hand side of (18). These
methods have been vigorously pursued in recent years in
the quantum computing literature [19,20], and they can be
combined with our approach here. In short, the acceptance
probability in (17) is a reward function that can be
estimated by means of the circuit in Fig. 2 and a para-
metrized circuit that prepares the state jψi. Then, one can
employ gradient ascent on a classical computer to modify
the parameters used to prepare the state jψi. After many
iterations, these algorithms typically converge to a value,
which, in our case, provides a lower bound estimate of the
acceptance probability on the left-hand side of (18). In
practice, it might be difficult in experiments to optimize
over all pure states, and instead, one could consider a
variational product state ansatz, as in [49].
Examples.—To exhibit our algorithm, we consider

the dynamics given by the transverse Ising model (TIM)
with a cyclic boundary condition. This Hamiltonian is
given as HTIM ≔ σZN ⊗ σZ1 þP

N−1
i¼1 σZi ⊗ σZiþ1 þ

P
N
i¼1 σ

X
i .

This Hamiltonian is permutationally invariant, so that
½HTIM;Wπ� ¼ 0 for all π ∈ SN , where Wπ is a unitary
representation of the permutation π ∈ SN , with SN denoting
the symmetric group of N elements. It also obeys the
symmetry ½HTIM; σX1 ⊗ � � � ⊗ σXN � ¼ 0. Thus, we can use
our algorithm to test these symmetries, and we do so in
Fig. 3 for N ¼ 3 and N ¼ 4. (Rather than test all permu-
tations, here, we indicate that we test for invariance under a
cyclic shift.) We find that each respective symmetry test
passes with reasonable probability, with deviation from one
due to noise added to the simulation. In Appendix G of
[26], we implement symmetry tests for two other
examples—the weakly J-coupled NMR Hamiltonian and
the Heisenberg XY model. Here, we note that all computer

codes used to generate the examples in the main text and
the Supplemental Material are available online [50].
Conclusion.—In this Letter, we have specified algo-

rithms to test a Hamiltonian for symmetry with respect
to a group. Our first test is efficiently realizable given
similarly efficient Hamiltonian simulations, and our second
test employs a variational approach. These algorithms are
useful tools that we suspect should be of interest throughout
many realms of physics.
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