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Non-Abelian gauge theories underlie our understanding of fundamental forces in nature, and developing
tailored quantum hardware and algorithms to simulate them is an outstanding challenge in the rapidly
evolving field of quantum simulation. Here we take an approach where gauge fields, discretized in
spacetime, are represented by qudits and are time evolved in Trotter steps with multiqudit quantum gates.
This maps naturally and hardware efficiently to an architecture based on Rydberg tweezer arrays, where
long-lived internal atomic states represent qudits, and the required quantum gates are performed as
holonomic operations supported by a Rydberg blockade mechanism. We illustrate our proposal for a
minimal digitization of SU(2) gauge fields, demonstrating a significant reduction in circuit depth and gate
errors in comparison to a traditional qubit-based approach, which puts simulations of non-Abelian gauge
theories within reach of NISQ devices.
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Introduction.—Quantum field theories form the back-
bone of the standard model of particle physics, where
quantized gauge fields mediate the interactions between
fundamental particles [1]. Lattice gauge theories (LGTs),
where fields are discretized on a space-time lattice [2],
provide a convenient framework to study nonperturbative
high-energy phenomena, and have been extensively used to
extract numerous experimentally relevant predictions [3].
Despite this success, standard approaches based on
Monte Carlo methods are severely limited by the sign
problem [4], preventing the study of real-time gauge theory
dynamics, among other drawbacks. The latter are essential
to analyze experimental results in heavy-ion colliders,
where open problems in particle physics are currently
being addressed [5,6], including the search of new physics
beyond the standard model.
In the recent years, quantum simulators (QS) [7] have

emerged as a promising pathway to circumvent these
problems [8–13], leading to several experimental demon-
strations where simple LGTs were investigated using
digital, analog, and variational methods [14–20]. For digital
QS [21], in particular, different schemes have been pro-
posed to address high-dimensional non-Abelian gauge
theories using different platforms, including trapped ions
[22–24], ultracold atoms [25–29], superconducting circuits
[30–32], and cavities [33]. Despite their higher flexibility to
simulate complex many-body Hamiltonians compared to
the analog approach, crucial in particular for non-Abelian
theories, a full digital quantum simulation requires access
to gate-based quantum computers, which are currently
restricted to noisy intermediate scale quantum (NISQ)
devices [34], limited in qubit number and circuit depths.

Although an impressive effort is currently taking place to
reduce the computational complexity using improved
quantum software [35–49], simulating relevant LGTs in
the NISQ era must be complemented by the development of
efficient quantum hardware tailored to the specific algo-
rithmic demands.
In this Letter, we introduce a qudit architecture based on

atoms trapped in optical tweezer arrays and laser excited to
Rydberg states [50–56] (Fig. 1). We co-design the platform
to match the requirements to digitally simulate real-time
dynamics of non-Abelian gauge theories in a hardware-
efficient manner. In particular, we show a considerable
reduction of experimental resources compared to qubit-
based approaches due to a more natural match between the
simulating and the simulated degrees of freedom, preserv-
ing the local structure of gauge-invariant interactions.
Although qudit-based quantum simulators can also be

implemented with other platforms such as ultracold mix-
tures [57], trapped ions [58] and photonic circuits [59],
multidimensional tweezer arrays, both dynamically recon-
figurable and locally addressable [53,56,60–63], satisfy the
scalability requirements necessary to address the con-
tinuum limit of LGTs. Specifically, here we consider
multilevel atoms to encode large gauge-field Hilbert spaces
using long-lived qudits [64–66]. Employing a Rydberg
blockade mechanism [51,52,67], we develop a native set of
holonomic gates [68–72], robust against decoherence, that
allows to efficiently simulate the time evolution under a
general LGT Hamiltonian. In particular, we show how for
the simplest nontrivial digitization of SU(2) gauge fields,
and including relevant error sources, our qudit approach
achieves higher fidelities than a traditional qubit protocol
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[73], enabling the quantum simulation of non-Abelian
gauge theories using NISQ devices [53]. Finally, we note
that although larger qudit sizes are required to properly
approximate the physics of SU(2) as relevant for high-
energy physics [37], this minimal protocol can readily be
employed to study condensed matter systems with non-
Abelian topological order [75,76].
Qudit quantum computing with Rydberg atoms.—

Atomic systems offer the possibility to encode quantum
information in internal states. Here, we go beyond the
paradigmatic model of a two-level atomic qubit and
consider a collection of N multilevel atoms in state-
independent optical traps. For every single atom, we
propose to encode a qudit with corresponding Hilbert
space spanned by jji, j ¼ 0;…; d − 1 in d long-lived
hyperfine ground states jF;mFi, where large hyperfine
manifolds can be accessed, e.g., using erbium [77] or

holmium [78,79]. In a qubit-based approach, an equivalent
Hilbert space of dimension dN requires control over
N log2ðdÞ instead of only N atoms as in our case
[Fig. 1(c)]. This saving of physical resources is crucial
for efficient near-future applications in the NISQ era, since
the number of atoms that can be trapped and controlled
is limited. For instance, a 4 × 4 2D lattice containing 32
d ¼ 8 qudits (which will become relevant later) could be
encoded using 32 atoms, a number that is already avail-
able [53], while almost 100 of them should be used instead
in a qubit-based protocol.
The quantum information stored in each atomic qudit

can be efficiently manipulated, e.g., using holonomic
operations [68,80], where arbitrary single-qudit gates U ∈
SUðdÞ can be synthesized via an appropriate sequence of
laser pulses, with time-dependent Rabi frequencies ΩðtÞ.
To see this, we first decompose U into a product of at most
dðd − 1Þ=2 unitaries acting nontrivially only on two atomic
levels ði; jÞ [81], and subsequently realize the two-level
unitaries via at most three rotations around the x or y axis,

denoted by Rði;jÞ
xðyÞðφÞ, respectively, utilizing an auxiliary

state jei (see the Supplemental Material [82] for details).
The total time required to implement a general single-qudit
gate is upper bounded by 3dðd − 1ÞT=2, where T is the
duration of a laser pulse, estimated below for realistic
experimental parameters. We note that the explicit imple-
mentation of this scheme should be guided by the con-
straints imposed by atomic selection rules, see Fig. 2(a) for
an example with d ¼ 8.
The main error sources affecting the fidelity of single-

qudit gates are the spontaneous decay from the excited state
jei [Fig. 2(a)] as well as nonadiabatic state transfer. As we
show in Ref. [82], both can be made negligible by imposing
Ω ≫ 1=T, γe, which can be achieved in current experi-
ments. The fast and high fidelity single-qudit gates
obtained with our protocol [82] contrast with those achiev-
able in a qubit-based approach, where Oðd2Þ entangling
CNOT gates between log d qubits are required, leading to
larger errors and longer implementation times.
We now come to the main challenge of qudit quantum

computing and introduce a new protocol for a general class
of controlled-unitary operation, CUðj0Þ ¼ U ⊗ jj0ihj0j þ
1 ⊗ ð1 − jj0ihj0jÞ with j0 ∈ f0;…d − 1g. Our proposal is
based on the Rydberg blockade mechanism [51,52,67],
which prohibits the simultaneous excitation of two atoms to
the Rydberg state jri when their distance R is below the
blockade radius, Rb, set by the large Rydberg interaction
V ∼ 1=R6 ≫ Ω. This idea gives rise to the following
protocol. First, bring the control and target atoms within
range R < Rb and apply the unitaryU on target (as outlined
above). Now excite the control qudit from jj0i to the

Rydberg state jri using Sðj0;rÞ ≡ Rðj0;rÞ
y ðπÞ, and subsequ-

ently realize U† on the target by decomposing every two-

level rotation as Rði;jÞ
x=y ðφÞ ¼ S†ði;rÞR

ðj;rÞ
x=y ðφÞSði;rÞ [Fig. 2(b)].

(a)

(b)

(c)

FIG. 1. Gauge field dynamics on qudit vs qubit quantum
simulator: (a) Our proposal employs Rydberg atoms trapped in
optical tweezers, arranged on the links l of a hypercubic lattice.
Each atom encodes a qudit using d internal levels, where
single-qudit gates are realized holonomically. To implement the
entangling two-qudit gate Θljl0 we first bring pairs of atoms
within the Rydberg blockade radius Rb. (b) First order de-
composition of a Trotter step, including the four-qudit plaquette

interaction, into the native atomic gates UðE=BÞ
l and Θljl0 .

(c) For comparison, we show a qubit-based circuit decom-
position of Θljl0 for the Q8 group, where the number of
required atoms is increased by a factor log2 8 ¼ 3, leading to
much lower gate fidelities, while our qudit approach enables a
faithful simulation [see Figs. 2(c) and 2(d)].
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To emphasize the involvement of the Rydberg state we
denote this gate by U†

r. Finally, applying S
†
j0;r

to the control
qudit maps the state jri back to jj0i. Because of the
Rydberg blockade, which projects onto the subspace
orthogonal to the state jrri (both atoms in the Rydberg
state), this protocol realizes the operator

ð1 ⊗ S†ðj0;rÞÞ½PðU
†
r ⊗ 1ÞP�ð1 ⊗ Sðj0;rÞÞðU ⊗ 1Þ; ð1Þ

with P ¼ 1 − jrrihrrj. If this operator acts on states where
the Rydberg states are not populated, it coincides with
CUðj0Þ. That is,U is applied to the target qudit if and only if
the control qudit was in state jj0i. The execution time of
this gate is upper bounded by ½6dðd − 1Þ þ 2�T. Apart from
the error sources mentioned above, imperfect Rydberg
blockade and decay from the Rydberg state can lower
the fidelity of controlled-unitary gates. Below we discuss
how the latter affect the simulation of non-Abelian LGTs
for a minimal example with d ¼ 8.
In summary, we have established a gate set G ¼

fU;CUðj0Þg consisting of arbitrary single-qudit gates U ∈
SUðdÞ and controlled two-qudit gates CUðj0Þ ∈ SUðd2Þ.
These are naturally available in a qudit register consisting

of multilevel Rydberg atoms in a programmable tweezer
array. The universal properties of G for general qudit-based
algorithms will be discussed elsewhere [83]; here we are
specifically interested in the simulation of LGTs as dis-
cussed in the following section.
Gauge field dynamics on a qudit quantum computer.—In

this section, we turn our attention to the digital simulation of
real-time gauge theory dynamics with qudits. Most impor-
tantly, we will show that the architecture outlined above
provides exactly those resources which are required to
simulate LGTs on a quantum device. To see this, we take
the Hamiltonian lattice approach [84]. Given a gauge group
G and a hypercubic lattice withNl links l, we represent the
state jψðtÞi at time t on a so-calledG register [36], jψðtÞi ¼P

g ψ tðgÞjgi, with jgi ¼ jg1i1 ⊗ jg2i2 ⊗ … ¼⊗l jglil.
Here, every jgi denotes a state labeled by a group element
g ∈ G, and the set fjgig forms an orthonormal basis of the
local (link) Hilbert spaceHG. For the relevant cases of G ¼
Uð1Þ or SUðNÞ, where HG is infinite dimensional, we
replace G with a large, but finite subgroup of itself, which
leads toHG ≃ CjGj, with dimension given by the order of the
group jGj, and thus effectively digitizes the many-body
wave function ψ tðgÞ [37]. The state jψðtÞi can then be
encoded naturally in a set of Nl qudits by identifying the
computational basis fjjig (j ¼ 0;…; d − 1) with the group
state basis fjgig (g ∈ G), with jGj ¼ d [Fig. 1(a)].
The main target of this Letter is the time-evolution

operator UGðtÞ ¼ e−iHGt acting on a given initial state
jψð0Þi, i.e., we aim to realize the evolution jψðtÞi ¼
UðtÞjψð0Þi in a hardware-efficient way. For a general
Kogut-Susskind-type LGT, this evolution is generated by
a HamiltonianHG ¼ λEHE þ λBHB with “electric” (E) and
“magnetic” contributions (B) [84],

HE ¼ 1

2

X

l

E2
l; HB ¼

X

□

ðU□ þ U†
□
Þ: ð2Þ

While the operator E2
l acts nontrivially only on a single link

l, the plaquette operator

U□ ¼ tr½Ul1Ul2U
†
l3
U†

l4
� ð3Þ

involves the four links li with i ¼ 1;…; 4 of an elementary
plaquette □ [Fig. 1(b)]. To simplify notation we omit here
and in the following the links on which U□ is acting on. For
SUðNÞ, the Ul are N × N matrices of operators [N ¼ 1 for
U(1)], and tr½::� denotes the corresponding trace in N
dimensions [84].
We now identify the common challenges in rea-

lizing UðGÞðtÞ for an arbitrary (finite) group G. In our
digital approach, we employ a Trotter decompo-
sition with step size δt [85] and error of desired order
OðδtkÞ [86]. This reduces the task to realizing the
elementary Trotter steps UðE=BÞðδtÞ ¼ e−iλE=BHE=Bδt, as,
e.g., UðGÞðtÞ ¼ ðUðEÞðδtÞUðBÞðδtÞÞt=δt þOðδtÞ for a first

(a) (b)

(c) (d)

FIG. 2. Qudit encoding and native gates: (a) Atomic level
structure serving as a Q8 register, where the d ¼ 8 group basis
elements are encoded into different hyperfine manifolds. Single
and two-qudit gates are performed holonomically using the
auxiliary ground-state level jpi and excited states jei and jri,
with corresponding decay rates γe=r. (b) Controlled-permutation
gate Cl0→l

θðgÞ ðgÞ as a sequence of four single qudit gates in the

blockade regime. Quantified by the maximally entangled state
obtained after applying Θljl0 to jΨ0i, implemented through the
(c) qudit and (d) qubit protocols [see the circuit in Fig. 1(c)] using
the same experimental parameters (see main text), we obtain a
state fidelity of 99.6% and 21.4%, respectively, demonstrating the
clear advantage of a qudit-based decomposition.
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order decomposition. Note that due to the locality of
the interactions these steps can be applied in parallel

using the local gates UðEÞ
l ðδtÞ ¼ e−iλEE

2
lδt and UðBÞ

□
ðδtÞ ¼

e−iλBðU□þU†
□
Þδt. For any group G, the local gates are

given by

UðEÞ
l ðδtÞ ¼

X

hl;gl∈G
fðEÞðhl; gl; δtÞ × jglilhhlj; ð4Þ

UðBÞ
□

ðδtÞ ¼
X

gl1;2;3;4∈G
fðBÞðgl1gl2g−1l3 g−1l4 ; δtÞ

× jgl1 ; gl2
; gl3 ; gl4ihgl1 ; gl2 ; gl3 ; gl4 j; ð5Þ

acting trivially on all other links. The group dependence
is encoded in the functions fðE=BÞ (see Supplemental
Material [82] for explicit expressions). Hence, for

jGj ¼ d, UðEÞ
l corresponds to a single-qudit gate acting

on link l while UðBÞ
□

represents a diagonal four-qudit gate
(acting on links l1;…;l4).
Let us now decompose the four-qudit diagonal gate, UðBÞ

□

into more elementary gates [28]. We define the two-qudit
gate Θljl0 , which realizes a controlled group multiplication,
by Θljl0 jglijgl0 i ¼ jglgl0 ijgl0 i. As fðBÞ depends only on

the product gl1gl2g
−1
l3
g−1l4

∈ G, UðBÞ
□

can be implemented by

applying Θð†Þ
ljl0 between link l1 and the other three links

followed by the diagonal single-qudit gate UðBÞ
l ðδtÞjgli ¼

fðBÞðgl; δtÞjgli, and finally undoing the first operations
[Fig. 1(b)]. More explicitly,

UðBÞ
□

¼ Θ†
l1jl2Θl1jl3

Θl1jl4U
ðBÞ
l1

Θ†
l1jl4Θ

†
l1jl3Θl1jl2 : ð6Þ

In summary, it is sufficient to realize the single-qudit gates

UðE=BÞ
l and the two-qudit gate Θljl0 for quantum simulating

the real-time dynamics of an arbitrary gauge theory. The
latter can be further decomposed into a product of con-
trolled-permutation gates [Fig. 1(a)],

Θljl0 ¼
X

g∈G
θlðgÞ ⊗ jgil0 hgj ¼

Y

g∈G
Cl0→l
θðgÞ ðgÞ: ð7Þ

Here, lðl0Þ denotes the control (target) qudit and θlðgÞ is a
single-qudit gate implementing the right group multiplica-
tion, i.e., θlðgÞjgli ¼ jglgi, which is just a permutation.
This shows that the required gate set reduces to

fUðE=BÞ
l ; Cl0→l

θðgÞ ðgÞg, which are precisely the types of gates

that are naturally available with the architecture introduced
in the previous section. In the spirit of codesign, we have
thus identified purpose-made hardware for the digital
quantum simulation of LGTs, which is the central result
of this Letter. Moreover, the possibility of moving the
qudits with a programmable tweezer array allows us to

perform the required entangling gates in parallel (for
example, at all even or odd plaquettes in two dimensions)
while avoiding crosstalk from the Rydberg interaction
[Fig. 1(a)], making our protocol scalable in system size.
Real-time dynamics of Q8 ⊂ SUð2Þ.—To be explicit, we

now illustrate our approach for the example of the qua-
ternion group Q8, which is the smallest non-Abelian
subgroup of SU(2) and requires qudits of size d ¼ 8
[82]. Figure 3(c) shows Trotter quench dynamics in
comparison to the exact result on a single plaquette,
demonstrating that the expected interchange between
magnetic and electric energies can be observed with a
few Trotter steps. We now turn to a discussion of the most
relevant errors included in this simulation, highlighting the
advantage of our proposal in comparison to a traditional
qubit-based approach.
Experimental gate errors can be drastically reduced by

using qudits instead of qubits, due a substantial reduction of
the required entangling operations. We illustrate this fact in
Figs. 2(c) and 2(d) for the elementary group-multiplication
gate Θljl0 , where we compare the state fidelity of a
maximally entangled state, jψ1i ¼ 1=

ffiffiffi
d

p P
g jgijgi, pre-

pared from a product state jψ0i ¼ 1=
ffiffiffi
d

p P
g j0ijgi with

jψ1i ¼ Θjψ0i. Choosing ΩT ¼ 3 × 102, V=Ω ¼ 5, and

(c)

(a) (b)

FIG. 3. Fidelity of the simulation: (a) Infidelity 1 − F of the
digital simulation at final evolution time tλB ¼ 1 as a function of
the Trotter step δtλB, where an exact second-order Trotter
decomposition (crosses) results in the scaling 1 − F ∼ ðδtÞ4
(dashed-dotted lines). Including gate errors, the infidelity in-
creases again at small δtλB. Correcting for atomic losses due to
decoherence, we find that optimal step size δtλB ¼ 1=3 at the
minimum of 1 − F ≈ 6.7% (red circle). (b) We measure the
losses included in the simulated gates by a decay of the norm
hψ jψi of the time evolved state. As illustrated for the optimal and
a very small Trotter step (symbols), the decay is consistent with a
constant loss of ≈0.75% per Trotter step (solid lines). (c) Trot-
terized quench dynamics of a non-Abelian Q8 LGT on a single
plaquette for λE=λB ¼ 2.88. The Trotter step corresponds to the
“sweet spot” indicated in (a). Here, the observables are corrected
by a multiplicative time-dependent factor due to the decay shown
in (b).
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γe=Ω ¼ γr=Ω ¼ 10−6, we find a state fidelity of 99.6% for
the qudit approach [87], in comparison to 21.4% for a
qubit-based decomposition [see Fig. 1(c) and [82] for
details of the employed decompositions [89] ], demonstrat-
ing a clear advantage of the qudits. Similarly, the physical
time required to implement one Trotter step [Fig. 1(a)] is
drastically reduced by the qudit approach. We estimate a
Trotter step time of ∼103T, taking into account a moving
velocity below certain threshold to avoid decoherence [53],
and using the structure of the group permutation matrices to
reduce the number of pulses required to implement Θljl0 to
2ð2d − 1Þðd − 1Þ [82]. For Ω ¼ 2π × 100 MHz, this leads
to a Trotter step time of ∼1 ms in contrast to ∼100 ms [82]
for a qubit-based approach. In summary, qudits enable the
simulation of several Trotter steps within the experimental
coherence times of NISQ devices with reasonable fidelity,
while an analogous qubit simulation is experimentally
unfeasible in the foreseeable future.
In the long run, a faithful quantum simulation of gauge

theories in the field theory limit will also require a treatment
of systematic errors, such as a finite Trotter step, finite
lattice spacing, finite volume and finite subgroup. For
brevity, we focus on the finite Trotter step here and briefly
comment on other discretization errors in the conclusion.
At fixed simulation time t, the Trotter error can be
systematically reduced by decreasing δt at the cost of
accumulating experimental gate errors. We quantify this
competition for the simulated quantum computation in
Fig. 3(a), where we plot the infidelity 1 − F of the
evolution as a function of the Trotter step δt for tλB ¼ 1.
Comparing exact simulations of a second order Trotter
decomposition to a simulation including the faulty group-
multiplication gate described above, we quantify the
overall accuracy by the overlap of the simulated state
(Trotter evolved) jψ simi with the exact result jψ exacti, i.e.,
F ¼ jhψ simjψ exactij2. While the power-law behavior
observed for the exact circuit clearly shows the proper
convergence of the Trotter expansion, the realistic simu-
lation is limited by a finite decay rate per Trotter step
[Fig. 3(b)]. As a consequence, there is an optimal Trotter
step as indicated in Fig. 3(a), leading to the best overall
performance while minimizing the execution time of the
simulation.
Conclusions and outlook.—A prerequisite to quantum

simulation of non-Abelian LGTs with NISQ devices is
hardware efficient encoding and processing with tailored,
and scalable quantum hardware. The present work pro-
poses a qudit-based architecture based on atoms stored in
tweezer arrays, where single-qudit and entangling gates
arising natively in qudit Rydberg-platforms are precisely
those required for the simulation of LGTs. We show how
our protocol leads to a significantly higher fidelity than a
traditional qubit-based approach, which puts non-Abelian
LGTs within reach of near-term quantum devices.
Moreover, the present work can be extended to include

dynamical matter [90], a necessary step towards addressing
open questions in and beyond the standard model with
quantum simulators. Finally, the qudit architecture outlined
in this work provides a natural setting for systems with
higher spin, for instance, for condensed-matter models or
quantum chemistry applications [91].
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