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The Unruh effect can not only arise out of the entanglement between modes of left and right Rindler
wedges, but also between modes of future and past light cones. We explore the geometric phase resulting
from this timelike entanglement between the future and past, showing that it can be captured in a simple Λ
system. This provides an alternative paradigm to the Unruh-deWitt detector. The Unruh effect has not been
experimentally verified because the accelerations needed to excite a response from Unruh-deWitt detectors
are prohibitively large. We demonstrate that a stationary but time-dependent Λ-system detects the timelike
Unruh effect with current technology.
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The Unruh effect is the intriguing idea that an accel-
erating observer will view the quantum vacuum as a
thermal state [1]. It arises as a consequence of the theory
of relativity applied to quantum mechanics: quantum states
are dependent on the spacetime path of the observer. The
temperature measured by an accelerating observer how-
ever is exceedingly small, requiring a proper acceleration
on the order of 1020 ms−2 for a temperature of 1 K [2].
Detection of the Unruh effect typically relies on the
response of photon detectors. In its most basic form, this
is represented by the Unruh-DeWitt detector, which is
simply a two-level point monopole [3]. The Unruh-Dewitt
detector has served as the foundational probe detector
of relativistic quantum [4–15] and gravitational fields
[16–21]. As such a detector requires energy transfer to
excite its response function, it is insensitive to ultraweak
fields where excitation events are rare. It is also insensitive
to fields in noisy environments, as its response function is
indifferent to noise and signal. This has restricted progress
in the detection of the Unruh effect. To make progress
in the detection of ultraweak fields or fields in noisy
environments, requires a conceptual shift in the funda-
mental detector paradigm. Here we introduce a probe
detector model that does not require energy exchange with
the field in which it is measuring. Our detector is a simple
Λ system with degenerate ground states. The measured
field is not probed by an excitation response, but through a
geometric or Berry phase response.
Previous works have proposed interferometry setups to

detect the geometric phase (GP) that result from

accelerating atoms [22,23]. In these proposals, the atom
in one of the arms of the interferometer is accelerated, while
in the other arm the atom travels inertially. In this setup one
must slow down the accelerating atom to precisely match
the speed of the inertial atom, in order to eliminate which-
path information. This is particularly challenging given that
the required acceleration to detect the Unruh effect is on the
order of 1017 m=s2. That in itself is problematic, as such
large acceleration is likely to change the structure of the
atom or ionize it. We also note a proposal to use muonium
atoms in Trojan wave packet states as an Unruh-DeWitt
detector [24]. Here we propose an alternative and more
practical stationary Λ system to measure the Unruh effect
by making use of the entanglement between modes in the
future and past lightcones.
A uniformly accelerating observer is most conveniently

described as a stationary observer in Rindler coordinates
[25]. Here the Unruh effect arises as the result of spacelike
entanglement between particles in the left and right Rindler
wedges [1] (Fig. 1). Specifically, the vacuum state can be
written as an entangled state between two sets of modes
spanning the left and right Rindler wedges. As an accel-
erating observer is confined to just one of these wedges,
tracing out the unobserved modes leads to the prediction that
such an observer will see a thermalized vacuum. Recently, it
has been shown that in theory one could write down the
vacuum state similarly as entangled states between modes
spanning the future and past light cones [26–28]. If an
observer or detector is confined to a spacetime trajectory in
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one of these cones, tracing out the unobserved modes again
will lead to a thermal vacuum state. Here we determine
the GP for an observer on one of these trajectories. We
demonstrate that the GP can be used to measure the timelike
Unruh effect with current technology.
Λ detector.—The Λ detector is a three-level Λ system

with two ground states as illustrated in Fig. 2. The ground
states (jg1i, jg2i) only couple to the excited state (jei), with
transition frequency ω=2π. For simplicity we take the
ground states to be degenerate. The Hamiltonian of the
Λ detector interacting with an electromagnetic field in
the detector’s proper time τ is HðτÞ ¼ H0 þHIðτÞ, where
H0 ¼ ℏωjeihej gives the λ system’s free energy. The
interaction Hamiltonian is given by HIðτÞ ¼ −qr ·
E½xðτÞ�jeiðhg1j þ hg2jÞ þ H:c:, where H.c. represents the
Hermitian conjugate, qr is the electric dipole moment, and
E½xðτÞ� ¼ −∂A½xðτÞ�=∂τ is the electric field with A the
photon field. Defining the states j�i≡ ðjg1i � jg2iÞ=

ffiffiffi
2

p
,

with corresponding annihilation operators σ� ≡ jeih�j, the
interaction Hamiltonian can be rewritten as

HIðτÞ ¼ −qr ·E½xðτÞ�ðσþ þ σ†þÞ: ð1Þ

From this equation, it is clear that j−i is not only an
eigenstate, but also a dark state which does not interact
with the electric field. Representing the bright eigenstates
subspace as jp1i and jp2i, we write down the bright
component as

jψbðτÞi ¼
ffiffiffiffiffiffiffiffiffiffiffi
p1ðτÞ

p jp1ðτÞi þ
ffiffiffiffiffiffiffiffiffiffiffi
p2ðτÞ

p jp2ðτÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijp1ðτÞj þ jp2ðτÞj
p ; ð2Þ

where

jpiðτÞi ¼ eiαeðτÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
pi;eðτÞ

q
jei þ eiαgðτÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pi;þðτÞ

q
jþi; ð3Þ

with dynamical phases (DPs) αðτÞ. The total system then
evolves as

jψðτÞi ¼ ei½βðτÞþαbðτÞþϕ� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1ðτÞ þ p2ðτÞ

p
jψbðτÞi

þ eiαgðτÞ
ffiffiffiffiffiffi
p−

p j−i; ð4Þ

where jp1ðτÞj þ jp2ðτÞj þ jp−j ¼ 1. In Eq. (4), we make
the important observation that only the bright component
can pick up a GP βðτÞ, due to its cyclic interaction with the
electric field [22]. Both components also pick up DPs. We
make a further observation that the GP is path independent
in the associated parameter space, and therefore is insensi-
tive to noise [29,30]. In contrast, the DP is path dependent,
and sensitive to noise. Phase ϕ ¼ ΔEΔt is an initial phase
shift that can be tuned by lifting the energy degeneracy of
jþi and j−i (ΔE) for a short period of time (Δt). This can
be achieved via a Stark shift of one of the transition
frequencies, for example.
The GP βðτÞ, can be experimentally determined by

monitoring the ground state population jg1i (or jg2i),

P1ðτÞ¼ jhg1jψðτÞij2

¼jp−j
2

þjpþðτÞj
2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p−pþðτÞ

p
jcos½βðτÞþαbðτÞþϕ�;

ð5Þ

where
ffiffiffiffiffiffiffiffiffiffiffiffi
pþðτÞ

p ¼ P
2
i;j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
piðτÞpi;þðτÞ

p
. See the implemen-

tation and feasibility section for further experimental
details.
Response function in future-past coordinates.—We have

explained how the GP can be experimentally measured in a
Λ system. Now we explain the theoretical predictions for
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FIG. 1. A spacetime diagram separated into four quadrants: the
left and right Rindler wedges, and the future and past light cones.
The vacuum state can be written as an entangled state between the
Rindler wedges, or between the light cones. For an observer in one
of these quadrants (e.g., the future), tracing out the unobserved
modes (e.g., in the past) leads to the (timelike) Unruh effect. The
arrow represents the spacetime trajectory of the detector.

(a) (b)

FIG. 2. (a) A three-level Λ system with two degenerate ground
states (jg1i, jg2i) which couple to the excited state (jei), with
time-dependent transition angular frequency ωðtÞ. (b) The Λ
configuration can be represented in an L configuration in the
j�i≡ ðjg1i � jg2iÞ=

ffiffiffi
2

p
basis. Here j−i is a dark state that does

not couple to the other states of the system fjþi; jeig or the
environment. As the jþi does couple to the environment, a
relative GP can arise in the system. This GP is used to detect the
thermal state of the environment.
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the GP resulting from the timelike Unruh effect. The future-
past (FP) coordinates in the future ðτ; ζÞFP and past light
cones ðτ̄; ζ̄ÞFP, transform the usual Minkowski coordinate
ðt; zÞM as [26]

t ¼ a−1eaτ coshðaζÞ; z ¼ ca−1eaτ sinhðaζÞ;
t ¼ −a−1eaτ̄ coshðaζ̄Þ; z ¼ −ca−1eaτ̄ sinhðaζ̄Þ; ð6Þ

where a is a real number in units of s−1, while c is the speed
of light.
The thermal response of the timelike Unruh effect does

not require direct observation of the correlation of the
modes of the future and past light cones. As such, we will
restrict ourselves to a detector in the future light cone with
world line ðτ; 0ÞFP. For an observer on this world line the
Schrodinger equation in FP coordinates is iℏ∂ψ=∂τ ¼ Hψ .
In Minkowski coordinates, this corresponds to

iℏ
∂ψ

∂t
¼ H

at
ψ : ð7Þ

The 1=at factor is due to the change of variables to
Minkowski time. This tells us that a Λ detector with energy
gap scaled with 1=at corresponds to a Λ detector on the
ðτ; 0ÞFP world line [26].
The two-point function of the electric field with respect

to Minkowski time [EðtÞ ¼ −∂AðtÞ=∂t] on the detector
world line ðτ; 0ÞFP is

hEðt½τ�ÞEðt0½τ0�Þi ¼ −
ℏ

4π2c3ϵ0
∂t∂t0

1

ðt − t0 − iϵÞ2

¼ 3ℏ
32π2c3ϵ0

a4e−2aðτþτ0Þ

sinh4½a
2
ðτ − τ0 − iϵÞ� : ð8Þ

In comparison, the corresponding two-point function of
the electric field with respect to conformal time
[EðτÞ ¼ −∂AðτÞ=∂τ] is

hEðτÞEðτ0Þi ¼ eaðτþτ0ÞhE½tðτÞ�ÞE½t0ðτ0Þ�Þi: ð9Þ

As dark states do not couple to the environment, only the
bright states will contribute to the response function. The
bright state jψbi is a two level system in the fjei; jþig
basis. Using Eqs. (8) and (9) the detector response function
is (Δτ≡ τ − τ0)

GðωÞ ¼ q2

ℏ2
jhejrjþij2

Z
∞

−∞
dðΔτÞe−iωΔτeaðτþτ0ÞhEðτÞEðτ0Þi

¼ ΓðωÞ
�
1þ a2

ω2

��
1þ coth

πω

a

�
; ð10Þ

where ΓðωÞ ¼ ðω3q2jhejrjþij2Þ=ð4πϵ0ℏc3Þ is the sponta-
neous emission rate. Note the extra exponential factor
arises out of a change of variables to conformal time [26].

This response function is similar to the uniformly accel-
erating (a0) case [23], except a replaces a0=c. As such,
the thermal response corresponds to temperature T ¼
ℏjaj=2πkB, where kB is the Boltzmann constant. One notes
that this Unruh temperature assumes the thermality pre-
dicted from theory (as is usual) [20], and that a more
sophisticated experiment would be needed to confirm this
thermality, which is beyond the scope of this Letter.
Interaction with the vacuum leads to a correction in the

transition frequency known as a Lamb shift: Ω ¼ ωþ ωL.
The renormalized correction term is given by [31]

ωL ¼ i
2
½Kð−ωÞ −KðωÞ�; ð11Þ

with

KðλÞ ¼ P
1

iπ

Z
∞

−∞
eiλt

GðωÞ
ω − λ

; ð12Þ

where P denotes principle value. Using Eq. (10) one finds
the Lamb shift is of second order in ΓðωÞ=ω. As we work in
the ΓðωÞ=ω ≪ 1 regime, we can assume the Lamb shift to
be negligible.
Geometric phase.—Now that we have the response

function for a particle on the ðτ; 0ÞFP world line, we can
use it to find the eigenstates required to calculate the
resulting GP. The evolution of ρb ¼ jψbihψbj is given by
the Lindblad master equation

_ρbðτÞ¼−iω½σ3;ρbðτÞ�þGðωÞL½σþ�−Gð−ωÞL½σ†þ�; ð13Þ
where L½O�¼OρO†− 1

2
fO†O;ρg. For initial state ρbð0Þ ¼

jψbð0Þihψbð0Þj with jψbð0Þi¼ cosðθ=2Þjeiþsinðθ=2Þjþi,
the solution to Eq. (13) is

ρbðτÞ ¼ e−δþτ
�

fðτÞ 1
2
e−iωτ sin θ

1
2
eiωτ sin θ eδþτ − fðτÞ

�
; ð14Þ

where fðτÞ¼e−δþτcos2ðθ=2Þ− ½ðδ−=δþÞ−1�sinhδþτ, with
δ� ¼ 1

2
½GðωÞ � Gð−ωÞ�.

The GP for a mixed state under a nonunitary quasicyclic
path τc ¼ 2π=ω is [32]

β ¼ arg
XN
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pið0ÞpiðτPÞ

p
hpið0ÞjpiðτPÞie−

R
τc
0

hpiðτÞj _piðτÞidτ:

ð15Þ
Hence, by diagonalizing Eq. (14) we can get the GP. The
eigenvalues of ρbðτÞ are

p1ðτÞ ¼
1

2
½1þ ηðτÞ�; ð16Þ

p2ðτÞ ¼
1

2
½1 − ηðτÞ�; ð17Þ
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where ηðτÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 þ e−2δþτ sin2 θ

p
with δ ¼ e−2δþτ cos θþ

ðδ−=δþÞðe2δþτ − 1Þ. The corresponding eigenstates are

jp1ðτÞi ¼ sin
λðτÞ
2

jei þ eiωτ cos
λðτÞ
2

jþi; ð18Þ

jp2ðτÞi ¼ cos
λðτÞ
2

jei − eiωτ sin
λðτÞ
2

jþi; ð19Þ

where

tan
λðτÞ
2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηðτÞ þ δðτÞ
ηðτÞ − δðτÞ

s
: ð20Þ

As p2ð0Þ ¼ 0, only the eigenstate corresponding to p1ðτÞ
will contribute to β: applying Eqs. (16) and (19) to (15),
the GP is

βðaÞ ¼ ω

Z
τc

0

cos2
λðτÞ
2

dτ: ð21Þ

To first order in ΓðωÞ=ω,

βðaÞ ¼ πðcos θ − 1Þ − π2Γsin2θ
2ω2

�
a2

ω2
þ 1

�

×

�
cos θ þ 2 coth

πω

a

�
coth

πω

a
: ð22Þ

For a stationary detector energy gap, the detector’s
interactions with the zero point fluctuation of the
Minkowski vacuum gives rise to the GP [33]

β0 ≡ lim
a→0

βðaÞ ¼ πðcos θ − 1Þ − π2
Γ
2ω

ð2þ cos θÞ sin2 θ:
ð23Þ

When θ ¼ 0 and π, which corresponds to jψbð0Þi ¼ jei
and jþi, respectively, ΔβðaÞ≡ βðaÞ − β0 ¼ 0. The GP is
maximized near θ ¼ π=2. Figure 3 plots ΔβðaÞ for an
initial detector state corresponding to θ ¼ π=2.
Sensitivity.—We compare the sensitivity of the Λ detec-

tor to that of a corresponding Unruh-Dewitt detector.
The GP of the Λ detector is determined by measuring
the ground state population P1 (or P2). As we are only
interested in the component of the population attributed to
the Unruh effect, we define δP1ðτÞ≡ P1ða; τÞ − P1ð0; τÞ.
We choose initial populations to maximize jδP1ðτcÞj: we
find that this occurs when the dark state population is
p− ≈ 0.2. In Fig. 4 we plot the shift in ground state
population due to the Unruh effect, ΔP1

ðτÞ ¼ δP1ðτÞ−
δP1ð0Þ. We see that over ten quasicycle O½ΔP1

� ¼ 0.1. In
comparison, the sensitivity of the Unruh-Dewitt detector is
measured by its probability of excitation. As the Unruh-
Dewitt detector is a two-level system, and noting that the Λ

system reduces to a two-level system if we do not
populate the uncoupled dark state, this probability can
be calculated as

PeðτÞ ¼ jhejψðτÞij2 ¼ jpeðτÞj; ð24Þ

where
ffiffiffiffiffiffiffiffiffiffiffi
peðτÞ

p ¼ P
2
i;j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
piðτÞpi;eðτÞ

p
, with initial condi-

tion p− ¼ 0 with θ ¼ π. Under the same conditions as that
of the Λ detector, O½Pe� never exceeds 10−4, meaning that
the Λ detector is 3 orders of magnitude more sensitive than
the Unruh-Dewitt detector. Moreover, such small signals
in the Unruh-DeWitt detector may not be discernable from
noise; whereas in the Λ detector, the GP is insensitive
to noise.
Implementation and feasibility.—Λ systems are ubiqui-

tous in the selection rules of atoms and molecules, and can
be manufactured in artificial atoms [34]. Recent work
with nitrogen-vacancy (NV) centers has been used to
characterize the GP in a Λ system [35]. However, the
range over which the energy gap can be tuned in atoms
may be too restrictive. Instead, we propose a capacitively
shunted fluxonium as a possible implementation, which has
already been successfully demonstrated as a Λ system [36].

FIG. 3. Δβ (normalized to Γ=ω) as a function of a=ω, after one
quasicycle (τc ¼ 2π=ω).

FIG. 4. Shift in the ground state population probability due to
the Unruh effect, over ten quasicycles. Parameters: a=ω ¼ 1,
Γ=ω ¼ 10−4.
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Implementing such a system with gap tunable flux qubits,
one may vary the energy gap from 1 to 10 GHz [37–40].
As a feasibility case study we consider a fluxonium

implementation with ωi
M=2π ¼ 5 GHz. For n quasicyclic

evolution in FP time, the corresponding Minkowski
time is

tc ¼
ω

aωi
M
ðena=ω − 1Þ; ð25Þ

where ωM is a frequency in Minkowski time t. For a ¼ ω,
over ten quasicycles, O½tc� ¼ 1 μs. Over this time, the
final frequency is ωf

M=2π ¼ e−a=ωωi
M=2π ≈ 0.2 MHz. This

requires a four-order magnitude change in the energy gap,
which is impractical. However, when θ ¼ π=2, one
observes that βðτÞ and pþðτÞ are independent of the sign
of parameter a, to first-order in ΓðωÞ=ω. This provides a
means to conduct the experiment over many cycles without
requiring a large change in the energy gap, by alternating
between positive and negative a. For example, if one
switches the sign of a every quasicycle, the frequency
oscillates between 5.0 and 1.8 GHz. Under these operating
time scales and frequencies, which are well within current
technology ranges [41–43], the detector would be detecting
an Unruh temperature of 0.6 K.
Although the GP is independent of the sign of a, the DP

is not. The DP is given by αbðtÞ ¼
R
tþΔt
t Hðt0Þdt0, where

HðtÞ ¼ H=at from Eq. (7). Therefore, by periodically
switching the sign of a, the DP can be eliminated while
the GP accumulates.
Finally, we note that the large energy gap at small

Minkowski time is not physically realizable. In practice, the
energy gap may be adiabatically switched on at small time.
This would be represented by a switching function,
χðτÞ ¼ e−τ

2

, for example, [44].
We summarize the described experimental procedure to

determine the GP as follows: 1. Adiabatically turn on the
energy gap (ℏω=at). 2. Periodically (Δt) flip the sign of a.
3. Measure the ground population at P1ðtÞ, for some phase
shift ϕ. 4. Initialize the system, but with a different ϕ. 5.
Repeat steps 1 to 4 until maximum P1 is identified. At this
point β ¼ ϕ.
Conclusion.—We have shown how the Λ system can be

used to detect the timelike Unruh effect that arises out of the
entanglement between future and past light cones, with
practical operating parameters. This opens the way for
experimental verification of the Unruh effect with current
technology. More generally, the Λ system described here is
also a general framework for the detection of ultralow
temperatures. Instead of scaling the energy gap to elicit a
thermal response from the vacuum, the GP of a time-
independent Λ system can detect ambient temperatures,
offering a new platform for robust and hypersensitive
thermometry.
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