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We present a thermodynamically consistent model describing the dynamics of a multicomponent
mixture where one enzyme component catalyzes a reaction between other components. We find that the
catalytic activity alone can induce phase separation for sufficiently active systems and large enzymes,
without any equilibrium interactions between components. In the limit of fast reaction rates, binodal lines
can be calculated using a mapping to an effective free energy. We also explain how this catalysis-induced
phase separation can act to autoregulate the enzymatic activity, which points at the biological relevance of
this phenomenon.
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Introduction.—Liquid-liquid phase separation has
emerged in recent years as a key principle governing
intracellular organization [1,2]. It is generally believed that
the main drivers of phase separation in such systems are the
attractive equilibrium interactions between the different
soluble components, which are needed to overcome the
entropic costs associated with phase separation [3,4]. The
emergence of condensates that are enriched or depleted in
specific molecules can be designed by tuning these inter-
actions [5–8]. On the other hand, it is clear that intracellular
environments are far from being at thermodynamic equi-
librium, and that the possible effects of nonequilibrium
activity on phase separation need to be taken into consid-
eration [9–15]. In all of these studies, however, equilibrium
interactions have remained the driving force for phase
separation; nonequilibrium effects have entered only as
additional chemical reactions that convert the phase-
separating components into each other [9–11] or, in a coarse-
grained description, as gradient [11–13] or nonreciprocal
[14,15] terms that do not derive from a free energy. These
nonequilibrium effects, albeit not driving the phase separa-
tion process, may for example affect the size distribution and
coarsening dynamics of the resulting condensates, or lead to
the formation of static and moving micropatterns.
Biomolecular condensates are often rich in enzymes that

catalyze chemical reactions, in which case they are known
as metabolons [16]. Such enzyme-rich condensates can also

be assembled in vitro [17]. The packing of enzymes in close
proximity to each other can cause changes in metabolic and
enzymatic rates when compared to a homogeneous system,
for example by substrate channeling, where an intermediate
product in a cascade reaction is passed on between enzymes
[18], or by mechanical effects that alter the catalytic rate
[19]. Moreover, it has been suggested that biological
systems can self-organize the cell cycle dynamics to lower
the overall rate of metabolic activity and the ensuing free
energy dissipation [20]. While the mechanisms underlying
both the formation of enzyme-rich condensates and meta-
bolic autoregulation are currently not well understood
[16,20], it would be interesting to investigate whether such
behaviors can generically emerge from spatial organization
that arises from catalysis-induced nonequilibrium activity.
Here, we propose a fundamentally new mechanism for

the formation of enzyme-rich condensates, which does not
rely on equilibrium attractive interactions between enzymes,
but rather on effective interactions that arise purely as a
consequence of their nonequilibrium catalytic activity (see
Fig. 1 for a schematic of the phenomenon and Fig. 2 for the
corresponding phase diagrams). While effective interactions
mediated by self-generated chemical gradients have been
previously described in the context of phoretic active
colloids or chemotactic microorganisms [21–25], these
were based on a microscopic and hydrodynamic description
of individual colloid-colloid interactions. The theoretical
framework presented here takes a complementary approach
based on nonequilibrium thermodynamics and Flory-
Huggins theory of suspensions, to manifestly connect the
phenomenology to the existing studies on intracellular
phase separation [3–10]. We find that this catalysis-induced
phase separation (CIPS) can be described by a mapping to
an effective free energy, and thus shows equilibrium features
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such as the existence of binodal and spinodal lines which
meet at a critical point. Moreover, we show that phase
separation in this model, which is itself induced by catalysis,
generically leads to a decrease in the overall catalytic
activity of the system, thus providing a mechanism for
the autoregulation of catalytic activity.
Model.—We consider an incompressible fluid with N

components described by the volume fractions ϕiðr; tÞ,
each corresponding to individual molecules of volume vi
on the microscopic scale. The Flory-Huggins theory
of suspensions gives the free energy of the system as
F ¼ R

dr fFH, with the free energy density fFHðfϕigÞ ¼P
N
i¼1ð1=viÞ½εiϕi þ kBTϕiðlogϕi − 1Þ�, where εi is the

enthalpy of component i. Importantly, we do not include
any interaction terms in the free energy; in particular, fFH
does not contain terms of the usual form χijϕiϕj. This
implies that phase separation in this system would be
impossible at equilibrium. We denote β≡ ðkBTÞ−1. Each
ϕi is governed by conserved dynamics _ϕi þ ∇ · Ji ¼ 0

driven by thermodynamic fluxes Ji ¼ −
P

N
j¼1Mij∇μj,

where μj ¼ vjðδF=δϕjÞ ¼ εj þ kBT logϕj is the chemical
potential of component j, andMij is a mobility matrix [26].
Incompressibility of the suspension requires

P
N
i¼1 ϕi ¼ 1,

which implies (via the dynamical equations) that the
mobilities must satisfy

P
i Mij ¼ 0 [27]. The Onsager

reciprocal relations further constrain the form of the
mobilities, namely vjMij ¼ viMji [26]. These constraints
mean that a system of N components has NðN − 1Þ=2 free
mobilities. In the following, we assume the common form of
Mij ¼ −βDijϕiϕj for i ≠ j, where the constraints just
described imply Mjj ¼ −

P
i≠j Mij and vjDij ¼ viDji

[6,27–29]. We note that the transport coefficients Dij

determine the rate at which the components respond to local
effective concentrationgradients and exchangepositions, and
as such are inherently related to the phenomena of diffusio-
phoresis, cross diffusion, andMaxwell-Stefan diffusion [30].

We make the model active by allowing nonequilibrium
(fueled) conversion between two components, substrate (S)
and product (P), catalyzed by an enzyme (E). This can be
described by the reaction Eþ Sþ F⇌Eþ PþW, where
F and W represent fuel and waste molecules, respectively.
We do not model the dynamics of the fuel and waste here,
but assume that the system is in contact with a reservoir
that maintains constant chemical potentials, μf and μw, and
define Δμ≡ μf − μw. Alternatively, Δμ could represent the
energy transferred by a photon in a light-activated catalytic
reaction. We further allow for spontaneous conversion
between S and P, corresponding to the reaction S⇌P.
Note that incompressibility implies vp ¼ vs. Using the
definition Δε≡ εs − εp, we can write the net rate of the
spontaneous reaction as

rspo ¼ rS→P
spo − rP→S

spo ¼ kspo½eβΔεϕs − ϕp�; ð1Þ

which entails detailed balance with rS→P
spo =rP→S

spo ¼
exp½βðμs − μpÞ�. The catalyzed reaction rate will have a
similar functional form with an additional dependence on
ϕe, namely

rcat ¼ rS→P
cat − rP→S

cat ¼ kcatϕe½ϕs − ϕpe−βðΔεþΔμÞ�; ð2Þ

which also entails detailed balance with rS→P
cat =rP→S

cat ¼
exp½βðμs − μp þ ΔμÞ�. We will typically take Δε < 0 and
Δεþ Δμ > 0, so that the spontaneous and catalyzed
reactions run preferentially in the P → S and S → P
directions, respectively; see Fig. 1. Combining the con-
served dynamics with the reaction terms and defining
R≡ rspo þ rcat results in the evolution equations for the
three-component system

_ϕe ¼ ∇ · ðMee∇μe þMes∇μs þMep∇μpÞ; ð3Þ

_ϕs ¼ ∇ · ðMse∇μe þMss∇μs þMsp∇μpÞ − R; ð4Þ

_ϕp ¼ ∇ · ðMpe∇μe þMps∇μs þMpp∇μpÞ þ R: ð5Þ

Steady state and stability.—The minimal model
[Eqs. (3)–(5)] has a homogeneous steady-state solution
when R ¼ 0, which is given by any ϕ�

e as well as

ϕ�
s ¼ ϕ�

sþp
kspo þ kcatϕ�

ee−βðΔεþΔμÞ

kspo þ kcatϕ�
ee−βðΔεþΔμÞ þ kspoeβΔε þ kcatϕ�

e
ð6Þ

with ϕ�
sþp ¼ 1 − ϕ�

e and ϕ�
p ¼ ϕ�

sþp − ϕ�
s .

We can study the linear stability of this homogeneous
steady state by considering a small perturbation ϕiðr; tÞ ¼
ϕ�
i þ δϕiðr; tÞ. We find that the steady state undergoes an

instability at the longest wavelengths provided the follow-
ing condition holds

P S

E

S P(a) (b)

FIG. 1. Processes leading to CIPS. (a) Enzymes convert sub-
strate into product by a fueled catalytic reaction, while product
turns into substrate spontaneously. (b) The catalyzed reaction
creates gradients of substrate and product around enzyme-rich
regions, which attract more enzymes when the off diagonal
transport coefficients coupling enzyme fluxes to product and
substrate thermodynamic forces satisfy Dpe > Dse.
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1

veϕ�
e
þ 1

vsð1−ϕ�
eÞ
<
kspokcatð1−e−βΔμÞðDpe−DseÞ
vsðRsþRpÞðDpeRsþDseRpÞ

; ð7Þ

where we have defined Rs ≡ kspoeβΔε þ kcatϕ�
e and Rp ≡

kspo þ kcatϕ�
ee−βðΔεþΔμÞ [30]. Since the left-hand side of

Eq. (7) is always positive, an instability is possible only if
the right-hand side is positive as well. The sign of the right-
hand side is controlled by that of ð1 − e−βΔμÞðDpe −DseÞ,
which has several implications. First, an equilibrium
system with Δμ ¼ 0 is always stable. Second, for a
catalytic reaction favoring product formation with
Δμ > 0, an instability is possible only if Dpe > Dse.
Third, if Dpe ¼ Dse the system is always stable.
Intuitively, the instability arises from opposing gradients
of substrate and product generated around an enzyme-rich
region whenΔμ > 0, coupled to an unequal response of the
enzyme to gradients of substrate and product when
Dpe > Dse, resulting in effective enzyme-enzyme attractive
interactions and further aggregation. Interestingly, the
instability is favored when ve ≫ vs, which happens to
correspond to the typical relative sizes of enzymes and
substrates in biological systems. In Figs. 2(a) and 2(b), the

unstable region delimited by Eq. (7) is shown as a function
of the catalytic rate kcat and the nonequilibrium drive Δμ.
The numerical solution of the evolution equations,

Eqs. (3)–(5), confirms the existence of this instability.
We initialize a 1D system with small number-conserving
random variations around ϕ�

i . When the system is
unstable, regions of high and low enzyme concentrations
develop spontaneously [see Fig. 2(c)] and coarsen over
time, ultimately resulting in two distinct phase-separated
domains. Moreover, varying the amount of enzyme in the
system only changes the relative size of the high and low
concentration domains, without affecting the concentration
values in the two domains, which suggests the existence
of a binodal line, as in equilibrium phase separation. We
observed this behavior for all parameters which we
simulated (kcat=kspo ≈ 1 − 100, ve=vs ≈ 2 − 100, −Δε ≈
5 − 30kBT, Δμ ≈ 5 − 50kBT, Dpe=Dse ≈ 1 − 100). The
observation of macroscopic phase separation, rather than
pattern formation or microphase separation, is further
supported by the linear stability analysis showing an
instability at the largest wavelengths (q2 → 0), rather than
at finite wavelengths. We also note that studies of two-
component mass-conserving reaction-diffusion systems,
which have significant parallels to the model studied here
[30], have shown that these systems exhibit uninterrupted
coarsening leading to macrophase separation at long
times [31,32].
Effective free energy and binodal.—In the macroscopic

limit, we expect the substrate-product equilibrium in the
bulk of each phase to be governed by the reaction terms that
act locally, rather than by spatial diffusion. This implies that
the substrate and product concentrations are enslaved to the
enzyme concentration by ϕs ≈ ϕ�

s ðϕeÞ and ϕp ≈ ϕ�
pðϕeÞ,

with the functions defined in Eq. (6). Substituting these
expressions into Eq. (3), we can recast the dynamics of the
enzyme as _ϕe ≈ ∇ · ðMee∇μeffÞ with an effective chemical
potential for the enzyme

μeffðϕeÞ
kBT

¼ logϕe −
ve
vs

log½Dseϕ
�
s ðϕeÞ þDpeϕ

�
pðϕeÞ�: ð8Þ

We can also identify an effective free energy density
feffðϕeÞ, such that μeff ¼ veðdfeff=dϕeÞ, which can be
explicitly calculated by direct integration [30]. By employ-
ing the common-tangent construction in unstable cases, we
can identify two coexisting phases and define the binodal
lines, which show good agreement with our numerical
results and meet the spinodal line at a critical point; see
Figs. 2(a) and 2(b).
The role of solvent.—While we have so far considered an

enzyme-substrate-product system for simplicity, we
observe that an instability can also occur in the presence
of an additional solvent, typically water, in which these
components will be dissolved. We can add a fourth
component of volume fraction ϕw to the dynamics and

FIG. 2. Phase behavior and onset of CIPS. (a),(b) Spinodal lines
[from Eq. (7)] and binodal lines (from the common tangent
construction of feff ) for (a) varying kcat with Δμ ¼ 8kBT and
(b) varying Δμ with kcat=kspo ¼ 1. (c) Numerical simulations
showing the evolution of a uniform steady state with ϕe ¼ 0.15
into two phase-separated regions. The circle, triangle, and square
identify the homogeneous steady state and the dense and dilute
enzyme phases, respectively, and are plotted in all other panels for
comparison. (d) Stability diagram of a mixture including a water
component, for Δμ ¼ 8kBT and kcat=kspo ¼ 1. The darker and
lighter shaded regions mark the spinodal regions for ve=vs ¼ 20
[also used in (a)–(c)] and ve=vs ¼ 85, respectively. Additional
system parameters in (a)–(d) are Δε ¼ −5kBT, Dpe ¼ 4Dse,
and Dps ¼ 10Dse; in (d) Dew ¼ Dsw ¼ Dpw ¼ 10Dse and
vw ¼ vs.
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study the stability of the homogeneous steady state [30].
We find that the uniform steady state can be unstable even
when all the solute components (enzyme, substrate, and
product) are in dilute conditions, as shown in Fig. 2(d). This
demonstrates the wide reach of this Letter and its potential
application to realistic systems. For the remainder of this
Letter, however, we focus on the simpler ϕw ¼ 0 case.
Enzymatic autoregulation.—A biologically pertinent

question is what happens to the enzymatic activity when
the system phase separates. The average rate of catalysis in
a region of size L is given by r̄cat ¼ ð1=LÞ R L

0 rcatdx in a
simple 1D case. In a homogeneous state, rcat will be
constant throughout the system and, using Eq. (2), will

go as r̄ðhÞcat ∼ ϕeð1 − ϕeÞ which is a concave function of ϕe.
In a phase-separated state, r̄cat is a weighted average of the
catalytic rates in each phase, with the weights determined

by the lever rule. From the concavity of r̄ðhÞcat , we find that
the catalytic rate in the phase-separated state is always
smaller than in the homogeneous state; see Fig. 3(a). We
observe a similar behavior when we vary a control
parameter such as Δμ, which is controlled by the concen-
tration of the fuel molecules in an experiment; see Fig. 3(b).
In the homogeneous phase, r̄cat initially rises and then
saturates with increasing Δμ. The phase separation reduces
r̄cat in the whole system and leads to saturation at a lower

activity. Through this mechanism, CIPS can act to autor-
egulate the enzymatic activity of the mixture: once the
activity reaches a threshold, the system phase separates and
gives rise to a reduced overall catalytic rate. A similar
saturation effect is seen when other system parameters,
such as kcat, are varied causing the system to phase separate.
Discussion.—Using a thermodynamically consistent

description of a multicomponent fluid based on linear
response theory constructed from a Flory-Huggins free
energy, we have identified a new, purely nonequilibrium
mechanism for phase separation as a consequence of the
catalytic, fueled conversion between two components
(substrate and product) by a third component (enzyme).
Besides the catalytic activity, a necessary ingredient for
CIPS is an asymmetry in the off diagonal response
coefficients (mobilities) that couple enzyme-substrate
and enzyme-product thermodynamic forces and fluxes in
the nonequilibrium conserved dynamics. Using a mapping
of the three-component system to a single-component
system with an effective free energy, equilibriumlike
features of CIPS such as binodal lines were obtained.
We argue that the substrate-vs-product mobility asym-

metry required for CIPS to operate can plausibly exist in
realistic systems. For a typical biological catalytic process,
we expect both the spontaneous and catalyzed reactions to
be strongly driven, and the enzyme protein to be much
larger than the small molecular substrate and product.
In this biologically realistic limit, we find [30] that
CIPS occurs at low enzyme concentrations whenever
ðDpe −DseÞ=Dse > kspo=kcat. Given that the kinetics of
catalyzed reactions are generally much faster than those
of spontaneous ones (reduced energy barrier, with
kcat ≫ kspo), this implies that the threshold mobility asym-
metry required for CIPS can become vanishingly small.
While measurements of the off diagonal Onsager mobilities
for biologically relevant enzyme-substrate-product systems
do not exist at present to the best of our knowledge,
measurements of the functionally equivalent (see the
Supplemental Material [30]) Maxwell-Stefan diffusivities
of various multicomponent mixtures suggest that even
small changes in molecular structure (e.g., shape, polarity,
etc.) of the mixture components can result in substantial
changes to the mobilities [33–37].
The mechanism behind CIPS is reminiscent of mecha-

nisms for chemotactic or phoretic aggregation previously
described in the literature in the context of interacting
microorganisms or catalytically active colloids [21–23,25].
However, these studies were based on microscopic descrip-
tions of the chemotactic or phoretic response, typically
valid only under dilute conditions. We expect that such
microscopic descriptions and the thermodynamic-phenom-
enological description presented here are two sides of the
same coin, the former being applicable arbitrarily far from
equilibrium in dilute conditions, the latter near equilibrium
at arbitrary densities. Indeed, a connection can be formally

FIG. 3. Effect of CIPS on catalytic activity. (a) Activity as a
function of the initial ϕe. In the phase-separated state, the activity
is a linear combination of the activity of the homogeneous states
on either side of the binodal, which due to convexity is always
smaller than that of the homogeneous state. (b) Evolution of
activity with increasing Δμ. As the system phase separates, the
overall catalytic rate is reduced. When ϕe ¼ 0.065, the system
passes through the critical point, and there is no metastable
homogeneous branch. System parameters are as in Fig. 2.
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established between the off diagonal Onsager mobilities
and phoretic mobilities [22,38] or, equivalently, the Fickian
cross-diffusion coefficients [37] (see the Supplemental
Material [30] for details). The existing experimental
observations [39,40] of the unequal response of enzymes
to gradients of substrate and product thus further corrobo-
rate the assertion that an asymmetry may generically
exist between the enzyme-substrate and enzyme-product
Onsager mobilities.
When the enzymatic activity in the homogeneous system

is increased beyond a critical threshold, for example via
external factors such as the availability of fuel molecules,
the system phase separates, causing the overall enzymatic
activity of the system to suddenly decrease and then
plateau. In multistep metabolic pathways, the production
of intermediate metabolites is known to regulate other
reactions in the networks and thus act as a feedback
mechanism that inhibits overall metabolic activity
[41,42]. CIPS provides a novel mechanism for this complex
control of metabolism which, somewhat uniquely, autor-
egulates a single-step catalytic reaction and provides a
simpler mechanism, potentially more amenable to fine-
tuned synthetic control. It remains to be seen how CIPS
affects catalytic activity in multistep metabolic reactions
involving several distinct enzymes. We speculate that, in a
system with several enzyme components, CIPS may allow
for colocalization of distinct enzymes within the same
aggregate, allowing for substrate channeling as in cellular
metabolons [16,18]. Indeed, we previously showed that this
behavior is possible in mixtures of phoretic active col-
loids [23].
Owing to its nonequilibrium nature, CIPS results in

phase-separated states with nonvanishing fluxes, and is
distinct from equilibrium mechanisms for phase separation.
The latter rely on the presence of interaction terms (e.g.,
χijϕiϕj and κij∇ϕi · ∇ϕj) in the free energy density fFH,
which may be of enthalpic (temperature-independent) or
entropic (temperature-dependent) origin. In particular,
despite also requiring a size difference between compo-
nents, CIPS is distinct from the entropic phase separation
induced by depletion effects that is observed in binary
hard-core mixtures [43], which results in equilibrium
phase-separated states with vanishing fluxes. Future work
may explore the competition or cooperation between
equilibrium interactions and nonequilibrium catalytic effec-
tive interactions in phase separation. In particular, we note
that we have focused here on effective interactions that are
attractive, i.e., those with ð1 − e−βΔμÞðDpe −DseÞ > 0

so that the right-hand side of Eq. (7) is positive. One
may also consider repulsive effective interactions, with
ð1 − e−βΔμÞðDpe −DseÞ < 0. In this case, we expect that an
enzyme-rich condensate held together by equilibrium
interactions may be dissolved by sufficiently strong non-
equilibrium catalytic activity. This further highlights how
the mechanism we have uncovered goes well beyond the

prototypical example presented here, and may prove an
important player in the description of phase separation in
out-of-equilibrium systems.
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