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We provide an analytical solution for the time-dependent Fokker-Planck equation for a two-dimensional
active Brownian particle trapped in an isotropic harmonic potential. Using the passive Brownian particle as
basis states we show that the Fokker-Planck operator becomes lower diagonal, implying that the
eigenvalues are unaffected by the activity. The propagator is then expressed as a combination of the
equilibrium eigenstates with weights obeying exact iterative relations. We show that for the low-order
correlation functions, such as the positional autocorrelation function, the recursion terminates at finite order
in the Péclet number, allowing us to generate exact compact expressions and derive the velocity
autocorrelation function and the time-dependent diffusion coefficient. The nonmonotonic behavior of latter
quantities serves as a fingerprint of the nonequilibrium dynamics.
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It is hard to overstate the role of the harmonic oscillator
in physics. Being a paradigmatic model for waves and
vibrational phenomena, it serves as a workhorse in both
classical and quantum physics describing diverse phenom-
ena such as springs, pendulums, molecular vibrations,
acoustic oscillations, laser traps, electromagnetic fields in
a cavity, and resonant electrical circuits, just to name a
few [1,2]. Any smooth potential can be approximated by a
harmonic potential in the vicinity of a stable equilibrium
point [1] and even advanced tools such as second quan-
tization in quantum field theory have their roots in the
mathematics of harmonic oscillations [3].
Active matter and directed motion have come under the

spotlight of several research communities, including biology
[4–7], biomedicine [8–10], robotics [11,12], and statistical
physics [13–25]. However, notwithstanding more than two
decades of scientific efforts on self-propelled particles, some
basic theoretical aspects have remained elusive since exactly
solvable models of even single active particles are rare.
Generally, in external confining potentials, the steady-state
probability distribution is not known analytically, with the
notable exceptions of active Brownian particles in channels
[26] or sedimenting in a gravitational field [27], and run-and-
tumble particles in one dimension [28–31]. The complete
characterization of the time-dependent probability distribu-
tion for a particle starting with certain initial conditions is
even more challenging. In this case, no analytical expres-
sions are known for confining potentials, and in free space
only solutions in the Fourier domain have been provided for
single active Brownian particles [32–35] and for run-and-
tumble dynamics [36].
The active Brownian particle (ABP) has become the

minimal paradigm for self-propelled particles and it is
already able to describe with a certain accuracy the
properties of motion of a large fraction of existing

microswimmers [14,19]. Such active particles can be
trapped and monitored by optical [37] or acoustic [38]
tweezers, which are well represented by harmonic poten-
tials. While simulations of ABPs in a harmonic trap can
easily be performed by integrating the Langevin equations
of motion, analytical progress is hindered because, despite
the linearity of the restoring force, the problem remains
nonlinear due to the constraint that the orientation can
merely rotate. A recent significant advance has been
achieved by Malakar et al. [39] for the stationary solution
of the associated Fokker-Planck equation. They express the
steady-state probability in the form of a power-series
expansion in the Péclet number, a parameter indicating
the relative importance of active motion compared to
diffusion. However, the full time-dependent probability
distribution of an ABP in a harmonic trap still remains
elusive.
Here, we show that, taking the eigenstates of the passive

Brownian particle as an orthonormal basis and upon proper
ordering of these states, the entire Fokker-Planck operator
becomes lower diagonal. This implies that not only the
ground state but the entire eigenvalue spectrum of the
Fokker-Planck operator remains unaltered when introduc-
ing the activity. These surprising findings allow us to
provide an exact expression for the probability propagator
of an ABP in a two-dimensional harmonic well, thus going
beyond existing theoretical approximations [40–42] and
complementing numerical simulations and experiments
[38,43]. We also show that exact expressions of any
moment or correlation function can be readily derived
from our solution.
Model.—We characterize the overdamped motion of a

two-dimensional ABP in terms of the propagator
Pðr; ϑ; tjr0; ϑ0Þ, which is the probability to find the particle
at position r and orientation ϑ at lag time t given the initial
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position r0 and orientation ϑ0 at time t ¼ 0. Its time
evolution is provided by the Fokker-Planck equation [44]

∂tP ¼ ∇ · ðμkrPÞ þD∇2PþDrot∂
2
ϑP − vu · ∇P; ð1Þ

in short ∂tP ¼ ΩP with Ω the Fokker-Planck operator
and the formal solution of the propagator is thus
Pðr; ϑ; tjr0; ϑ0Þ ¼ eΩtδðr − r0Þδðϑ − ϑ0Þ. The first term
on the right-hand side of Eq. (1) describes the drift motion
due to the harmonic potential UðrÞ ¼ kr2=2 with spring
constant k > 0, whereas μ is the mobility of the particle.
The second term encodes the translational diffusion with
diffusion coefficientD. The ratioD=μ ¼ kBT introduces an
effective temperature that for a passive particle corresponds
to the temperature of the solvent. The rotational diffusion
of the ABP is described by the third term with rotational
diffusion coefficient Drot, while the last term corresponds
to the self-propulsion of the particle with fixed velocity v
along the orientation of the particle, u ¼ ðcosϑ; sin ϑÞ. In
the case of a passive particle, v ¼ 0, the equilibrium
distribution corresponds to the Boltzmann distribution
peqðr; ϑÞ ∝ e−UðrÞ=kBT , or, with proper normalizationR
drdϑpeqðr; ϑÞ ¼ 1,

peqðr; ϑÞ ¼ expð−r2=2d2Þ
4π2d2

; ð2Þ

where d ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=k

p
is the thermal oscillator length. In

particular, the translational and orientational degrees of
freedom are decoupled.
Theory.—The Fokker-Planck operator Ω in Eq. (1)

appears to be non-Hermitian already in equilibrium,
v ¼ 0. However, in this case it can be made manifestly
Hermitian by a gauge transformation [44]. Here, we
circumvent this detour and define a new operator L by
splitting off the equilibrium density

Ω½peqðr; ϑÞψðr; ϑÞ�≕peqðr; ϑÞLψðr; ϑÞ; ð3Þ

where ψðr; ϑÞ is an arbitrary function depending on the
coordinates r and ϑ only. Then L can be naturally
decomposed,

L ¼ L0 þ PeL1; ð4Þ

into an equilibrium contribution L0 and the nonequilibrium
driving L1, where Pe ≔ vd=D denotes the Péclet number
and in the following will act as an expansion parameter.
In polar coordinates r ¼ rðcosφ; sinφÞ the equilibrium
operator is expressed as

L0ψ ¼ D
r
∂rðr∂rψÞ þ

D
r2
∂
2
φψ þDrot∂

2
ϑψ −

Dr
d2

∂rψ ; ð5Þ

while the active part reads

L1ψ ¼ D
d

�
− cosðχÞ∂rψ −

1

r
sinðχÞ∂φψ þ r

d2
cosðχÞψ

�
; ð6Þ

where χ ≔ ∠ðu; rÞ ¼ ϑ − φ abbreviates the relative angle
between orientation and position.
Then, one readily shows that the equilibrium operator

L0 is Hermitian, hϕjL0ψi ¼ hL0ϕjψi, with respect to the
Kubo scalar product

hϕjψi ≔
Z

dr
Z

2π

0

dϑpeqðr; ϑÞϕðr; ϑÞ�ψðr; ϑÞ; ð7Þ

and correspondingly its eigenvalues are real and left and
right eigenfunctions coincide. The solution of the Hermitian
eigenvalue problem of the equilibrium reference system,

L0ψ ¼ −λψ ; ð8Þ

is obtained by a separation ansatz following precisely the
steps of the 2D isotropic harmonic oscillator in the quantum
case [45,46] augmented by the uncoupled orientational
diffusion. Explicitly, the eigenfunctions read

ψn;l;jðr;ϑÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n!
ðnþjljÞ!

s �
r

d
ffiffiffi
2

p
�jlj

Ljlj
n

�
r2

2d2

�
eilφeiðj−lÞϑ;

ð9Þ

where Ljlj
n ðxÞ are the generalized Laguerre polynomials [47]

with n ∈ N0 and l; j ∈ Z. The quantum numbers ðn;l; jÞ
correspond to the 3 degrees of freedom ðr;φ; ϑÞ in polar
coordinates. The associated eigenvalue is

λn;l;j ¼
1

τ
ð2nþ jljÞ þDrotðj − lÞ2; ð10Þ

with the trap relaxation time τ ¼ d2=D ¼ 1=μk.
Since L0 is unchanged under rotations of the position

or the orientation of the particle it commutes with the
corresponding generators L ¼ −i∂φ and S ¼ −i∂ϑ, which,
borrowing quantum language, we refer to as “orbital
momentum” and “spin.” The eigenfunctions ψn;l;j are
simultaneous eigenfunctions to orbital momentum and spin
with eigenvalues l and s ≔ j − l. For the active particle
L ¼ L0 þ PeL1 remains invariant only under a simulta-
neous rotation of position and orientation, such that the
total “angular momentum” J ¼ Lþ S is conserved. Hence,
in the full problem j will be still a good quantum number.
Note that the eigenfunctions of the equilibrium reference

system are orthonormalized with respect to the Kubo scalar
product [Eq. (7)]

hψn0;l0;j0 jψn;l;ji ¼ δj;j0δl;l0δn;n0 ; ð11Þ

and fulfill the completeness relation
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peqðr; ϑÞ
X∞
n¼0

X∞
l¼−∞

X∞
j¼−∞

ψn;l;jðr; ϑÞψn;l;jðr0; ϑ0Þ�

¼ δðr − r0Þδðϑ − ϑ0Þ: ð12Þ

Moving our attention back to the full problem for an
active particle, the formal expression of the propagator
allows us to write

Pðr; ϑ; tjr0; ϑ0Þ ¼ eΩtδðr − r0Þδðϑ − ϑ0Þ
¼ peqðr; ϑÞ

X
n;l;j

feLtψn;l;jðr; ϑÞgψn;l;jðr0; ϑ0Þ�

¼ peqðr; ϑÞ
X
n;l;j

hrϑjeLtjψn;l;jihψn;l;jjr0ϑ0i; ð13Þ

where, going from the first to the second line, we used
Eqs. (12) and (3) and, in the third line, we rely on Dirac’s
bra-ket notation where the isomorphism between jψi and
ψðr; ϑÞ is made explicit by introducing generalized position
and orientation states jrϑi such that ψðr; ϑÞ ¼ hrϑjψi [48].
Then, exploiting twice the identity relation

X
n;l;j

jψn;l;jihψn;l;jj ¼ 1; ð14Þ

Eq. (13) can be finally recast to

Pðr;ϑ; tjr0; ϑ0Þ
¼ peqðr;ϑÞ

X
n;l;j

Mn;l;jðr0; ϑ0; tÞψn;l;jðr; ϑÞ; ð15Þ

with

Mn;l;jðr0; ϑ0; tÞ ≔ hψn;l;jjeLtjr0ϑ0i: ð16Þ

Note that the functions Mn;l;jðr0; ϑ0; tÞ depend only on
time t and on the initial conditions ðr0; ϑ0Þ, which greatly
simplifies the numerical implementation.
To make further progress we rely on the renowned

Dyson equation, familiar from quantum theory [2], for the
time evolution operator

eLt ¼ eL0t þ Pe
Z

t

0

ds eL0ðt−sÞ L1 eLs; ð17Þ

which can be inserted in Eq. (16), together with the identity
[Eq. (14)], to obtain a useful integral relation for the
functions M appearing in the propagator:

Mn;l;jðr0; ϑ0; tÞ

¼ e−λn;l;jthψn;l;jjr0ϑ0i þ Pe
Z

t

0

ds

�
e−λn;l;jðt−sÞ

×
X
n0;l0;j0

hψn;l;jjL1jψn0;l0;j0 iMn0;l0;j0 ðr0; ϑ0; sÞ
�
: ð18Þ

For active particles, Pe > 0, the operator L1 introduces
couplings between the eigenstates jψn;l;ji. Starting from
Eqs. (6) and (9), one readily obtains (see also Ref. [39] for a
comparison to the steady-state solution)

L1jψn;l;ji ¼
1ffiffiffi
2

p
τ

8>><
>>:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ lþ 1

p jψn;lþ1;ji −
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p jψnþ1;l−1;ji if l > 0;
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p jψn;lþ1;ji þ
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p jψn;l−1;ji if l ¼ 0;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n − lþ 1

p jψn;l−1;ji −
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p jψnþ1;lþ1;ji if l < 0.

ð19Þ

As anticipated, the action of the operator L1 does not
modify the quantum number j. Furthermore, its nature is
such that, when applied to jψn;l;ji, n never decreases and
either jlj or n increases by 1. Thus, if the eigenstates are
ordered according to the value of 2nþ jlj, L1 and its
powers ðL1Þq with q > 1 are strictly lower diagonal
matrices in the eigenbasis of L0.
A first consequence is that, surprisingly, theentire spectrum

of the full problem remains unaltered with respect to the

reference passive system. Furthermore, these two properties
allow calculating the M’s exactly in a iterative scheme that
starts fromM0;0;jðr0; ϑ0; tÞ ¼ e−λ0;0;jtψ0;0;jðr0; ϑ0Þ� and pro-
gressively builds theMn;l;j’s such that 2nþ jlj ¼ q once the
Mn;l;j’s such that 2nþ jlj ¼ q − 1 are known. Thus, for a
given n and l, the corresponding Mn;l;j’s result in a linear
combination of a finite number of eigenfunctions. For
example,

M0;1;jðr0; ϑ0; tÞ ¼ e−λ0;1;jtψ0;1;jðr0; ϑ0Þ� þ
Peffiffiffi
2

p
τ

e−λ0;0;jt − e−λ0;1;jt

λ0;1;j − λ0;0;j
ψ0;0;jðr0; ϑ0Þ�: ð20Þ
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Few more explicit expression for low values of 2nþ jlj are
reported in the Supplemental Material (SM) [49]. Intuitively,
the analytical evaluation of these functions becomes quickly
tedious with increasing 2nþ jlj. However, they are effi-
ciently computed numerically exploiting an integrated
version of Eq. (18), which is also reported in the SM [49].
Results.—To corroborate our findings, we benchmark

several observables that can be evaluated by exploiting
Eq. (15) against their analog obtained by directly solving
the Langevin equation of motion. As a first example, we
report in Fig. 1 the time evolution of the spatial probability
distribution starting from some given initial condition.
As a side note, we stress here that, in the case reported
in Fig. 1, collecting enough statistics for this observable
from Langevin simulations is about 20 times slower than
obtaining the result from the numerics.
Equation (15) also easily allows calculating some para-

digmatic moments and correlation functions. While exact
computation of moments starting from a given initial
condition has recently been discussed [50], our approach
provides an alternative and simple way for obtaining them in
terms of the functions M’s. In fact, given the orthogonality
relation [Eq. (11)], integration over positional and directional
degrees of freedom truncates the infinite series appearing in
the propagator such that moments result in a combination of
a finite number of M functions. For instance,

h½rðtÞ�2ir0;ϑ0 ¼
Z

∞

0

dr
Z

2π

0

dφ
Z

2π

0

dϑr3Pðr;ϑ;tjr0;ϑ0Þ

¼2d2½M0;0;0ðr0;ϑ0;tÞ−M1;0;0ðr0;ϑ0;tÞ�: ð21Þ

Furthermore, we present here, for the first time, exact
analytical expressions also for moments and correlation
functions averaged over the initial conditions, which are
the genuine quantities directly accessible in experiments. In
particular, the positional autocorrelation function reads

hxðtÞxð0Þi ¼ d2
�
e−t=τ −

Pe2

2

Drotτe−t=τ − e−Drott

1 − ðDrotτÞ2
�
; ð22Þ

while the mean-square displacement becomes

h½rðtÞ − rð0Þ�2i ¼ 4d2ð1 − e−t=τÞ

þ 2Pe2d2
�
1 − e−t=τ

1þDrotτ
þ e−t=τ − e−Drott

1 − ðDrotτÞ2
�
: ð23Þ

FIG. 1. Spatial probability distribution at different times t starting with initial condition r0 ¼ 4d, φ0 ¼ 0, and ϑ0 ¼ π=2. Comparison
between simulations and numerics for Pe ¼ 4 and Drotτ ¼ 0.8. For the simulations, statistics have been collected from 2 × 105

independent realizations of the process.

FIG. 2. Positional autocorrelation function (main panel) and
mean-square displacement (inset) vs lag time t. Comparison
between simulations (symbols) and analytical results (lines) for
Drotτ ¼ 0.8 at various values of Péclet number Pe.
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See SM [49] for details and Fig. 2 for a comparison with
Langevin simulations. Interestingly, the effect of the
activity on the previous quantities is characterized only
by terms of second order in the Péclet number.
The nontrivial contribution of the activity to the dynam-

ics becomes even more evident when considering the
velocity autocorrelation function (VACF), which is defined
for t > 0 as

ZðtÞ ≔ −
d2

dt2
hxðtÞxð0Þi: ð24Þ

In equilibrium, any correlation function for overdamped
dynamics is a completely monotone function, i.e., the
correlation function and all of its derivatives decay mono-
tonically [51,52]. We thus expect a negative and strictly
increasing behavior of the passive VACF. In contrast, the
VACF of ABPs displays a nonmonotonic behavior that
becomes more pronounced with the activity and with a
minimal value whose position increases with the Péclet
number; see Fig. 3. Furthermore, if the activity contribution
is strong enough, the VACF becomes positive for small
times. Similar observations hold also for the time-dependent
diffusion coefficient (inset of Fig. 3)

DðtÞ ≔ 1

4

d
dt

h½rðtÞ − rð0Þ�2i: ð25Þ

Conclusions.—We have derived and illustrated an exact
series solution for the probability propagator of an ABP
confined to a two-dimensional harmonic trap. Such a
solution is obtained by dealing with the activity of the
particle in a perturbative approach, which is feasible
because the Fokker-Planck operator becomes lower diago-
nal when the eigenstates of the passive reference system
are taken as a basis and properly sorted. This surprising
property allows us to express the propagator as a combi-
nation of the unperturbed eigenfunctions weighted by
factors that depend only on time and the initial conditions

and that can efficiently be computed in an exact iterative
scheme. This property also implies that not only the ground
state but the entire eigenvalue spectrum remains unaltered
when introducing the activity. Consequently, the propaga-
tor can also be expressed in terms of the perturbed left and
right eigenfunctions [53] multiplied by an exponentially
decaying factor with a rate given by the corresponding
unperturbed eigenvalue. The propagator also provides the
steady-state distribution in the longtime limit and, in this
regime, our expression becomes equivalent to that given
by Malakar et al. [39]. From our solution, paradigmatic
moments and correlation functions are then readily
obtained and show expressions terminating at finite order
in the Péclet number. The VACF and the time-dependent
diffusion coefficient of ABPs derived from the positional
autocorrelation function and the mean-square displacement
display a nonmonotonic behavior that truly reveals their
nonequilibrium character.
Our Letter provides a definitive and unifying framework

encompassing previous theoretical results [39–43,50] on
the behavior of a single ABP in a harmonic trap and sheds
light on the relationships among them. Beyond its funda-
mental relevance, this is particularly important in view of
the fact that the harmonic potential is an approximation of
any potential in the vicinity of a stable point. Thus, being
able to exactly describe the dynamics of an ABP in a
harmonic well is a first step toward a deeper understanding
of their behavior in more complicated potentials and, as
such, may have an impact on several applications such as
first-passage time [54–57] and target-search [57–60] prob-
lems, just to mention a few. Not only can our findings be
generalized to chiral ABP [61] by adding a drift term to the
dynamics of the orientation of the particle, but they may
also serve as a starting point to solve the dynamics of active
molecules [62–64] and active polymers [65,66] in which
the constitutive beads are bonded via springlike potentials.
For instance, the case of an active dumbbell [64,67]
composed of an ABP and a passive Brownian particle can
be mapped to our model. Furthermore, a careful inves-
tigation of the limit of vanishing potential could also shed
new light on the behavior of ABPs in free space [32–35].
Fitting to our analytical expressions moments and corre-
lation functions measured in experiments of Janus particles
[68,69] trapped by optical [37] or acoustic [38] tweezers
may provide a robust method to determine their Péclet
number and rotational diffusion coefficient. Finally, the
ABP in a harmonic well may be used as a toy model to
illustrate generic results in nonequilibrium thermodynam-
ics such as trade-off relations between between speed,
uncertainty, and dissipation [70–73].
A last remark is in order: the harmonic oscillator is

special in many ways already at the level of a passive
particle. The degeneracy of the eigenvalue spectrum in the
quantum case is connected to a higher symmetry SU(2)
beyond rotational symmetry SO(2) [74,75], which by

FIG. 3. Velocity autocorrelation function (main panel) and
time-dependent diffusion coefficient (inset) vs lag time t. Com-
parison between simulations (symbols) and analytical results
(lines) for Drotτ ¼ 0.8 at various Péclet numbers Pe.
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Noether’s theorem [76] implies the existence of a conserved
quantity known as the Fradkin tensor (the analog of the
Runge-Lenz vector in the Kepler problem). These consid-
erations transfer to the passive particle and one readily finds
the corresponding Fradkin tensor. Generally, any perturba-
tion reduces the symmetry and the levels are anticipated to
split, compare, e.g., to the Stark effect [2]. However, our
analysis reveals that the spectrum is unaffected by the
activity, in particular, the degeneracy of the spectrum is
not lifted. One is tempted to argue that the activity also
reflects at least a variant of the SU(2) symmetry. However,
simple guesses to generalize the Fradkin tensor to the case of
an active particle fail, and Noether’s theorem does not
directly apply since the Fokker-Planck equation, Eq. (1),
does not derive from a variational principle in the non-
equilibrium case. Therefore, pinpointing the origin of the
degeneracy in the active case remains a challenge for the
future.
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