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We propose a framework that unifies the description of light transmission through three-dimensional
amorphous dielectric materials that exhibit both localization and a photonic bandgap. We argue that direct,
coherent reflection near and in the bandgap attenuates the generation of diffuse or localized photons. Using
the self-consistent theory of localization and considering the density of states of photons, we can
quantitatively describe the total transmission of light for all transport regimes: transparency, light diffusion,
localization, and bandgap. Comparison with numerical simulations of light transport through hyperuniform
networks supports our theoretical approach.
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Photonic bandgaps (PBGs) and light localization funda-
mentally alter a dielectric material’s wave transport proper-
ties [1,2]. In 1987, Yablonovitch proposed that crystal
lattices composed of high and low index dielectric materials
can lead to forbidden propagation in certain electromag-
netic frequency bands [3]. More recently, researchers also
demonstrated the existence of bandgaps in two- and three-
dimensional disordered, amorphous dielectrics based on
numerical simulations and experiments [4–10]. In particu-
lar, disordered “hyperuniform” photonic materials raised a
lot of attention [11]. Several groups showed that these
materials could exhibit isotropic complete photonic bandg-
aps nearly as wide as the corresponding crystal structure
[4–6]. Bandgaps in amorphous dielectrics have renewed
interest in strong Anderson localization (SAL) of light and
other transport regimes in those materials. We, with others,
proposed a transport phase diagram to organize numerical
and experimental data [12–14]. However, recent three-
dimensional finite-difference time-domain (FDTD) simu-
lations have also shown that existing theoretical models
cannot describe the transition between the localization and
bandgap regimes [15], calling for a new and improved
theoretical approach. In this Letter, we introduce a theo-
retical model based on the self-consistent theory of locali-
zation (SC theory) of a semi-infinite medium [16–18],
together with an exponential direct reflection coefficient.
We show that our model is capable of describing the
transmission of light through amorphous photonic materi-
als over the entire range of frequencies, encompassing all
transport regimes.
Ballistic and diffuse transport of light.—The transmis-

sion of light through nonabsorbing disordered dielectrics is

usually described by single scattering and multiple scatter-
ing, which turns into photon diffusion for many scattering
events. For a wide slab, thickness L, the total transmission
coefficient TðLÞ is given by a ballistic contribution,
TbðLÞ ¼ e−L=l with a scattering mean free path l, a
diffusive part TdðLÞ set by the transport mean free path
l� and a crossover term considering the conversion of
incident photons to diffusive photons via multiple scatter-
ing [19,20]. For optically dense samples (L ≫ l�), neglect-
ing surface reflectivity, the diffusive total transmission
coefficient is

TdðLÞ ≃
1þ z0

2z0 þ L=l� !L≫l�ð1þ z0Þ
l�

L
; ð1Þ

where z0 is the extrapolation length ratio, a constant of
order unity [19–22]. The scattering length l and the
transport mean free path l� are linked by the scattering
anisotropy parameter g ¼ < cosΘ >dσ=dΩ with l�=l ¼
1=ð1 − gÞ. For very small scatterers, or for the case of
stealthy hyperuniformity, the differential scattering cross
section becomes zero, dσ=dΩ;l−1 ≡ 0, resulting in trans-
parency with T ¼ 1 independent of L [13,23,24].
Anderson localization of light.—Strong Anderson locali-

zation is an interference effect in multiple scattering of
waves leading to exponentially attenuated diffuse trans-
mission. SC theory describes SAL by introducing a
position-dependent light diffusion coefficient DðzÞ, where
z denotes the distance from the surface of a wide slab
[16,17,25]. One needs to solve an implicit equation that
contains the average return probability which is increased
in the presence of SAL and, in turn, reduces DðzÞ from
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Dð0Þ at the interface to zero deep inside the medium
[17,18]. To this end, we replace L=l� in Eq. (1) and write

L
l� →

L̃
l� ¼

1

l�

Z
L

0

DB

DðzÞ dz; ð2Þ

where DB ¼ vEl�=3 denotes the (Boltzmann) light diffu-
sion coefficient for a speed of light vE. Far from the
localization regime DðzÞ≡DB and L̃≡ L [19,20,26].
For localization in a semi-infinite medium the SC theory
solution is D∞ðzÞ ≃Dð0Þe−2z=ξ, where ξ denotes the
localization length. By interpolation, for a slab of finite
thickness van Tiggelen et al. proposed DðzÞ ≃
D∞ðL=2 − jL=2 − zjÞ [17,18]. Because of the mirror sym-
metry relative to the center of the slab at z ¼ L=2, we can
take the integral in Eq. (2) from z ∈ ½0; L=2�, L̃ ¼
2
R L=2
0 ðDB=Dð0ÞÞe2z=ξdz and find

TdðLÞ
ð1þ z0Þ

¼ 1

2z0 þ ξDB
l�Dð0Þ ðeL=ξ − 1Þ !L≫ξl�Dð0Þ

ξDB
e−L=ξ: ð3Þ

At the localization transition (“mobility edge”), the full SC
theory, for a finite thickness L, predicts a critical power-law
decay Td ∼ 1=L2, instead of an exponential [18]. The onset
of this power law is captured by Eq. (3), which can be seen
by expanding eL=ξ − 1 ¼ L=ξþ ðL=ξÞ2=2þ ðL=ξÞ3=6…,
but for thick slabs, L=ξ≳ 3, it deviates. In numerical
simulations of real world materials, the system sizes are
limited, and a study of the critical regime is beyond the
scope of the present Letter.
Direct coherent reflection.—Previous studies argued that

the transmission probability T (L ≫ l�) is independent of
the single scattering angular distribution and only depends
on the transport mean free path l�, as expressed by Eq. (1)
[19–21]. More recent work, driven mainly by the renewed
interest in structural coloration, showed the importance of
explicitly adding a single scattering reflection term in the
presence of correlated disorder, for example, for photonic
glasses [27–29]. Short range order in photonic glasses leads
to coherent collective scattering that, for a matching
wavelength, results in enhanced single scattering reflection.
Compared to structural coloration, the opening of a gap in
amorphous photonic materials provides an even stronger,
coherent mechanism for direct reflection, fundamentally
altering the way scattered photons convert into diffuse
photons, Fig. 1. We follow the reasoning of Magkiriadou
et al., that the intensity of light directly reflected scales with
ðσdr=σÞe−z=l, where σdr denotes the direct reflection cross
section and σ the total scattering cross section. The direct
reflection from layers close to the surface is higher and the
reflected intensity from inside the sample decreases
exponentially as the coherent beam attenuates [27].
Simultaneously, direct reflection reduces the probability
density for the creation of diffuse photons within a distance

z into the slab which now scales as ð1 − ðσdr=σÞÞe−z=l
[15,19]. For σdr ¼ σ, the reflection coefficient R0 ¼
ðσdr=σÞ;¼ 1, and all light is coherently reflected in the
limit L ≫ l. For σdr < σ a proportional amount T0 ¼
1 − R0 ¼ 1 − ðσdr=σÞ < 1 can couple to the diffuse up- and
downstream of photons. Consequently, the total trans-
mission coefficient is lowered to

TðL ≫ l�Þ ¼ T0 × TdðLÞ: ð4Þ

We include an approximate expression for TðLÞ covering
the entire range of L in the Supplemental Material [30],
Eq. (S1).
Numerical transport simulations.—To check the model

predictions, Eq. (4), we performed FDTD simulations
using the open source MIT Electromagnetic Equation
Propagation (MEEP) package on a computer cluster
[15,31]. We generate hyperuniform network structures,
Fig. 2(a), using a custom-made code based on a 10 000-
particle jammed seed pattern taken from Ref. [32], volume
filling fraction ∼0.64. Jammed, random close sphere
packings display nearly hyperuniform behavior at large
length scales [10,33]. All units are given relative to the
diameter a of the spheres of the seed pattern. Next, we
perform a Delaunay tessellation of the seed pattern. The
tessellation divides the pattern into tetrahedra. We connect
the centers of mass of the tetrahedra with dielectric rods,
creating the desired tetravalent network structure [6,7]. We
apply a silicon refractive index n ¼ 3.6 and a volume filling
fraction of ϕ ¼ 0.28. We cut the digital box into slices to
obtain slabs of different thicknesses L ≤ 18a, footprint
18a × 18a. In the MEEP simulation, we apply periodic

FIG. 1. Transport of light through amorphous hyperuniform
silicon networks with localization and bandgap regimes. Lines
indicate scattering paths. l denotes the scattering mean free path.
(a) Random multiple scattering and photon diffusion. (b) Loops
of counter propagating paths signaling SAL with a localization
length ξ are shown in red and blue color. (c) PBG regime with a
small but finite density of states (DOS). The diffusive or SAL part
TdðLÞ is attenuated by a factor T0 ¼ ð1 − R0Þ proportional to the
normalized photonic DOS in the bulk ρðν0Þ. R0 denotes the direct
reflection factor. The background shows a cross section of the
hyperuniform silicon network displayed in Fig. 2(a) with a slab
thickness L.
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boundary conditions perpendicular to the propagation axis,
and we add perfectly matched layers at both ends of the
simulation box acting as absorbers. We send a pulse of
linearly polarized light and record the Poynting vector on a
monitor located behind the structure. The transmission

coefficient TðL; ν0Þ is defined as the ratio of the transmitted
power to the incoming power. In total, we study twenty
three sample thicknesses ranging from L ¼ 0.3–18a, aver-
aged over 6 (thick slabs) to 15 (thin slabs) samples [15,34].
In Fig. 3, we show the FDTD data for the total trans-

mission TðLÞ at different frequencies in the localization
and bandgap regime. We fit the initial decay for L≲ a with
TbðLÞ ¼ e−L=l and extract the mean free path lðν0Þ. Using
this ballistic lðν0Þ, we fit the data for thick slabs, 7a <
L < 18a (L ≫ l) using Eq. (4) with z0 ¼ 3.25 from
Ref. [15]. For simplicity, we assume l� ∼ l and
DB=Dð0Þ ≃ ð1þ 2z0=ξÞ in the localized regime [18]. As
shown in Fig. 3, we find excellent agreement between the
fit and FDTD data. The attenuation of the incident beam by
coherent reflection can become very strong, with T0 → 0,
close to and in the PBG. From the fit to TdðLÞ, we extract
ξðν0Þ and T0ðν0Þ.
In Fig. 4, we plot the frequency dependence of all

parameters obtained by the model fit. The mean free path,
l, and thus also kl, decay toward the bandgap is
approached and reach a minimal value kl ¼ ð2πl=λÞ ∼
2 (l=a ∼ 0.65) in the bandgap center [15], Fig. 4(a).
Approaching the gap, ξ=a drops, and the smallest value
we observe is ξ=a≳ 3; see, also, Fig. 3(c). van Tiggelen
et al. proposed for the kl dependence of the localization
length ξ ∝ ðklÞ2=f1 − ½kl=ðklÞc�4g [18,35,36]. Adjusting
ðklÞc values, we find a lower (l) and higher (h) frequency
mobility edge ν0c;l ≃ 0.37 at kl ¼ ðklÞc;l ¼ 4.1 and at
νc; h0 ≃ 0.53 for kl ¼ ðklÞc;h ¼ 2.85, Fig. 4(b). We only
consider values ξ=a < 18 (smaller than the system size).
The agreement between theory and data is remarkable.
However, we find better agreement with the dimensionless
ξ=a compared to the originally suggested ξ=l. Moreover,
the expression for ξ does not consider the DOS. In a recent
dissertation [37], Monsarrat derives a slightly different
formula for the localization length from SC theory that
explicitly accounts for the DOS and does not scale with kl�

FIG. 2. (a) Rendering of a three-dimensional hyperuniform
silicon network structure in air with a volume filling fraction of
ϕ ¼ 0.28 derived from the center positions of randomly close-
packed spheres, diameter a [15,38], which also sets the character-
istic length scale of short-range spatial correlations [6,15]. The
refractive index is n ¼ 3.6 and the host medium is air, nair ¼ 1.
(b) Transport phase diagram for electromagnetic waves in dis-
ordered photonic materials as a function of the dimensionless
frequency ν0 ¼ a=λ ¼ ν × a=vE, adapted from [12]. λ denotes the
vacuumwavelength and vE the speed of light. For low frequencies,
stealthy hyperuniform materials show transparency. For weak or
moderate scattering, light transport is “diffusive” followed by
strong Anderson “localization” (SAL) with transitions at ν0c and a
bandgap regime (“PBG”) around ν0G. Closer to the gap the reduced
density of states influences localization, shaded areas. Themidgap
frequency is ν0G ∼ 0.50, in agreement with the Bragg condition in a
corresponding crystal λ ¼ a=ν0 ∼ 2a [15].
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FIG. 3. Total transmission TðLÞ as a function of the reduced slab thickness L=a in log-log representation for three different
frequencies ν0 in the localized and bandgap regime. Filled blue circles show the results from FDTD simulations averaged over 6 (thick
slabs) to 15 (thin slabs) samples. The dashed orange line shows the fit with TbðLÞ ¼ e−L=l over L≲ a which yields lðν0Þ. The dash-
dotted green line shows the fit with T0 × TdðLÞ over 7a < L < 18a which yields ξðν0Þ and T0ðν0Þ. (a) Localization: ν0 ¼ 0.418,
l=a ¼ 1.12; ξ=a ¼ 8, and T0 ¼ 0.72 ∼ 1. (b) Localization near the PBG: ν0 ¼ 0.462, l=a ¼ 0.76; ξ=a ¼ 3.6, and T0 ¼ 0.22,
(c) Nearly complete PBG: ν0 ¼ 0.471, l=a ¼ 0.72; ξ=a ¼ 5.1, and T0 ¼ 0.055. z0 ¼ 3.25, taken from [15]. Horizontal dashed line:
Tdð0Þ ¼ ð1þ z0Þ=2z0 ¼ 0.65, Eq. (1). Additional plots are shown in the Supplemental Material [30], Fig. S3.
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in the nominator: ξ=l� ∝ ð1=ð3=π − ρðkl�Þ2ÞÞ. This
expression agrees well with our data for ξ=l if we, again,
use l� ¼ l and replace kl by kl=ðklÞc [36], as shown in
the Supplemental Material [30], Fig. S2. Note that the
influence of the density of states on ξ is small since ρ < 1
only in a regime where kl=ðklÞc ≪ 1.
Density of states and coherent reflection.—It seems

plausible that the normalized DOS is responsible for the
observed direct reflection since, for a full bandgap, we
know that the DOS is zero and R0 ≡ 1. Here, we consider

the DOS normalized by the density of states of the
“homogeneous” medium [6,15]. In and near the bandgap,
the coherent beam’s intensity and the z dependent local
DOS (LDOS) decay exponentially to their bulk values over
a distance of a mean free path l ≪ ξ. In the bulk, the mean
LDOS is equal to bulk DOS ρðν0Þ, and thus, for L ≫ l, we
expect T0ðν0Þ ≃ ρðν0Þ. Hasan et al., as well as Skipetrov,
argued similarly when discussing finite-sized effects in
photonic crystals where the incident beam’s coherent
intensity TðzÞ ¼ 1 − RðzÞ and the LDOS decay exponen-
tially. For a crystal, the decay length is the Bragg length LB
[39–41]. Koenderink et al. discussed the attenuation of the
coherent beam for the case of disorder in photonic
crystals [42].
In Fig. 4(c), we compare T0ðν0Þ values from the fit with

direct calculations of the DOS. The DOS data were
previously published by Hui Cao and coworkers [6] and
by us [15,34] for the same or very similar structures.
Origins of the bandgap.—Some remarks concerning the

origins of the bandgap are in order. This Letter shows that
resonant scattering in the presence of correlated disorder
leads to destructive interference in the forward direction
and enhanced single scattering reflection. Backscattering
can also be induced by single scattering resonances [43].
This microscopic picture of preferential backscattering is
supported, at least up to the lowest order, by recent
diagrammatic calculations [44]. Zhang-Stillinger and
Torquato argued that another structural property is essential
for forming a bandgap. Uniformity and resulting bounded
hole sizes (empty regions) prevent deep penetration of
unscattered photons into the bulk of the material [45,46].
They say that such structural “rigidity” confers novel
physical properties to disordered systems, including the
desired bandgap. Qualitatively, stealthy hyperuniformity
can provide both mechanisms. Stealthiness implies
bounded hole sizes [45] and suppresses scattering at
scattering angles ϑ < ϑc [qϑ ¼ 2k sin ðϑ=2Þ < qc] through
collective scattering and destructive interference [11,23].
For a quantitative microscopic assessment, however,
higher-order scattering loops, beyond the collective scatter-
ing approximation, must be taken into account [44].
Summary and conclusion—In this Letter, we study the

transmission of light through hyperuniform, high refractive
index networks using numerical simulations and theory. We
propose adding a direct reflection term to the theoretical
model describing light transmission through optically
dense amorphous photonic materials. Combined with the
results of the self-consistent theory of localization for a
semi-infinite medium, we derive a simple, closed-form
analytical expression for the total transmission coefficient
of optically dense slabs TdðLÞ [16–18]. Our model captures
the optical transmission behavior between localization and
the bandgap. Moreover, we rationalize that near and inside
the gap, the reduced density of states is responsible for the
coherent reflection and the attenuation of the coupling of
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FIG. 4. Frequency dependence of the transport parameters
determined from the fit to the FDTD data TðLÞ, as described
in Fig. 3. (a) Reduced mean free path kl ¼ 2πl=λ ¼ 2πν0l=a.
(b) Localization length ξ=a. Lines show the scaling prediction
from SC theory, ξ=a ∝ ðklÞ2=f1 − ½kl=ðklÞc�4g, with ðklÞc;l ≃
4.1 (black line) and ðklÞc;h ≃ 2.85 (orange line) and a prefactor of
order 1. The different transport regimes are indicated at the
bottom. (c) Red solid squares: T0 ¼ 1 − R0, compared to
numerical calculations of the DOS ρ (open symbols). The
DOS data has been reproduced from Ref. [6] (circles) and
Ref. [15] (triangles). The arrows indicate the frequencies for
the data shown in Fig. 3.
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the incident light beam to diffuse and localized transport.
The quantitative agreement of our theory with numerical
simulations suggests that it could be of considerable value
for experimental studies. Moreover, this study shows that,
for an amorphous PBG material in the gap, the scattering
mean free path l is equivalent to the Bragg length in a
photonic crystal [1,47]. This observation is essential, and
the behavior is different from disordered photonic crystals,
where the Bragg length is given by the periodically
repeating environment and the scattering length by the
degree of disorder [41,42,48,49].
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Scheffold, and F. Mortessagne, Phys. Rev. Lett. 125,
127402 (2020).

[14] F. Sgrignuoli, S. Torquato, and L. Dal Negro, Phys. Rev. B
105, 064204 (2022).

[15] J. Haberko, L. S. Froufe-Pérez, and F. Scheffold, Nat.
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