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Willis coupling generically stems from bianisotropy or chirality in wave systems. Nevertheless, those
schemes are naturally unavailable in diffusion systems described by a single constitutive relation governed
by the Fourier law. Here, we report spatiotemporal diffusive metamaterials by modulating thermal
conductivity and mass density in heat transfer. The Fourier law should be modified after homogenizing
spatiotemporal parameters, featuring thermal Willis coupling between heat flux and temperature change
rate. Thermal Willis coupling drives asymmetric heat diffusion, and the diffusion direction is reversible at a
critical point determined by the degree of spatiotemporal modulation. Moreover, thermal Willis coupling
stands robustly even when only thermal conductivity is modulated. These results may have potential
applications for directional diffusion and offer insights into asymmetric manipulation of nonequilibrium
mass and energy transfer.
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Since the theory of transformation thermotics [1,2] was
proposed, various thermal metamaterials [3–5] have been
designed to realize cloaking and camouflaging functions
[6–8] based on artificial structures with spatially distributed
parameters. However, those schemes are insufficient to
break the inherent space-inversion symmetry of thermal
conduction. Asymmetric diffusion is crucial for heat
collection and storage. For example, the ambient temper-
ature during the day is relatively high, and the device allows
heat to diffuse inward. In contrast, the device hinders heat
from diffusing outward at night with relatively low ambient
temperature. With temporal modulation developing in
electromagnetic [9–12] and acoustic [13,14] systems, it
has also been introduced to diffusion systems [15–18],
providing an insightful paradigm to achieve asymmetric
diffusion by spatiotemporal modulation. Nevertheless,
unlike the electric counterpart [18], the spatiotemporal
modulation of mass density generates local advection heat
flux because mass conservation should be carefully con-
sidered. Consequently, heat transfer becomes symmetric
again with the requirement of mass conservation [19],
making it elusive to uncover asymmetric heat transfer in
spatiotemporal diffusion systems.
On the other hand, Willis coupling in acoustic and elastic

systems features two nonzero off-diagonal components in
the two-dimensional matrix [20–25], also corresponding
to magnetoelectric coupling in electromagnetic systems
[26,27]. Since Willis coupling results from high-order

perturbations that are insufficient for apparent phenomena,
many efforts have been made to maximize Willis coupling
[28–30] and reveal nonreciprocal properties [31–34].
However, those schemes for Willis coupling [20–34] are
naturally unavailable in diffusion systems, making it
extremely difficult to achieve asymmetric heat diffusion
by the modified Fourier law.
Here, we propose the concept of Willis thermal meta-

materials by spatiotemporal modulation, featuring thermal
Willis coupling between heat flux and temperature change
rate. Restricted by the intrinsic space-inversion symmetry
of thermal conduction, the temperature field velocity of
v is zero in conventional thermal materials [Fig. 1(a)].
Temperature field propagation means the movement of a
wavelike temperature profile [35–39]. In contrast, Willis
thermal metamaterials drive directional temperature field
propagation [Fig. 1(a)], exhibiting asymmetric diffusion
feature [40–44]. Intriguingly, the propagating direction is
reversible at a critical point of the modulation velocity of u,
and v > 0, v ¼ 0, and v < 0 are realized at will [Figs. 1(a)
and 1(b)]. The direction reversal implies that the present
asymmetry results from high-order perturbations, in con-
trast to the reported asymmetry induced by the first-order
advectionlike effect, whose direction is generally the same
as the modulation direction [15]. We first discuss a
generalized model with spatiotemporal modulation of mass
density and thermal conductivity [Fig. 1(c)]. The model is
further simplified by modulating only thermal conductivity
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[Fig. 1(d)], again distinguishing our work from the
existing research where a two-parameter modulation is
mandatory [15–18].
One-dimensional thermal conduction in a homogeneous

medium is governed by ρ0C0∂tT þ ∂xð−κ0∂xTÞ ¼ 0, where
ρ0, C0, and κ0 are the mass density, heat capacity, and
thermal conductivity of the homogeneous medium. We
consider spatiotemporal modulation of mass density and
thermal conductivity,

ρðnÞ ¼ ρ0½1þ Δρ cosðGnþ αÞ�; ð1aÞ

κðnÞ ¼ κ0½1þ Δκ cosðGnÞ�; ð1bÞ

whereΔρ andΔκ denote the modulation amplitudes, α is the
modulation phase difference, G ¼ 2πN=L represents the
modulation wave number, L is the length, N is the period
number, and n ¼ x − ut is the generalized coordinate. The
diffusion equation describes classical and macroscopic heat
transfer. Hence, for the validity of the diffusion equation, the
spatial modulation scale should be much larger than the
mean free path of heat carriers, and the temporal modulation
scale should also be much longer than the relaxation time of
colliding events. Then, one-dimensional heat transfer with
spatiotemporal modulation is governed by

ρðnÞC0

∂T
∂t

þu½ρðnÞ−ρ0�C0

∂T
∂x

þ ∂

∂x

�
−κðnÞ∂T

∂x

�
¼ 0: ð2Þ

A local advection term of u½ρðnÞ − ρ0�C0∂xT appears due to
mass conservation [19]. Nevertheless, its integration over
one period is still zero, and thus there is no macroscopically

directional advection in the system (see Part I of
Supplemental Material [45]).
We then homogenize Eq. (2) by considering a wavelike

temperature solution with the Floquet-Bloch theorem,

T¼ ϵðnÞeiðβx−ωtÞ þT0¼
�X

s

ϵseisGn
�
eiðβx−ωtÞ þT0; ð3Þ

where β and ω are the wave number and frequency of the
wavelike temperature field. ω is a complex number whose
imaginary part indicates the temporal decay of the variation
amplitude of the wavelike temperature field. Hence, the
system finally goes to a constant temperature, i.e., T ¼ T0.
Without loss of generality, the balanced temperature of T0

is set at zero degrees kelvin, and the real part of Eq. (3)
makes sense. ϵðnÞ is the Floquet-Bloch modulation func-
tion with s ¼ 0;�1;�2;…;�∞ and ϵ0 ¼ 1. We ensure
the accuracy of numerical results by considering the order
of s as high as possible. Nevertheless, it is not intuitive to
uncover the physical mechanism, and thus we only take
s ¼ 0;�1 for analytical discussion. We also assume β ≪ G
to ensure a subwavelength structure, i.e., the structural unit
size is far smaller than the temperature field wavelength.
Hence, our structure belongs to metamaterials, and homog-
enization makes sense. The homogenized heat transfer
equation is

ρ0C0

∂T0

∂t
− K

∂
2T0

∂x2
− R

∂
2T0

∂t2
−W

∂
2T0

∂t∂x
¼ 0; ð4Þ

where T0 ¼ eiðβx−ωtÞ is the homogenized temperature (see
Part II of Supplemental Material [45]). The homogenized
parameters are

K ¼ κ0

�
1þ −Δ2

κ þ Δ2
ρΦ2 þ 2ΔκΔρΦ2 cos α

2ð1þΦ2Þ
�
; ð5aÞ

R ¼ κ0
u2

Δ2
ρΦ2

2ð1þΦ2Þ ; ð5bÞ

W ¼ κ0
u

Δ2
ρΦ2 þ ΔκΔρΦ2 cos α

1þΦ2
; ð5cÞ

with definitions of the dimensionless parameter of
Φ ¼ u=ðGD0Þ ¼ uL=ð2πND0Þ and thermal diffusivity of
D0 ¼ κ0=ðρ0C0Þ. The status ofΔρ andΔκ is, to some extent,
different in Eq. (5c) because mass conservation should
be seriously considered. Heat transfer in spatiotemporal
diffusive metamaterials can no longer be homogenized
within the framework of thermal conduction due to the
two unexpected terms of ∂2t and ∂t∂x in Eq. (4). As energy
conservation indicates, the universal heat conduction equa-
tion in one dimension is ρ0C0∂tT0 þ ∂xJ ¼ 0, where J is the
heat flux. Comparing the energy conservation equation and
Eq. (4), we should modify the Fourier law as

FIG. 1. Schematic of asymmetric heat diffusion. (a) In contrast
to the conventional case with a zero velocity of temperature field
propagation, i.e., v ¼ 0, Willis thermal metamaterials drive
directional temperature field propagation. The propagating di-
rection is determined by a critical point of the modulation velocity
of u, i.e., uc. (b) For generality, we make uc dimensionless by
defining the dimensionless parameter of Φc ¼ uc=ðGD0Þ. The
critical point ofΦc only depends on the modulation amplitudes of
Δρ and Δκ and the modulation phase difference of α. (c) Gen-
eralized model by modulating mass density of ρðnÞ and thermal
conductivity of κðnÞ with n ¼ x − ut. The modulation of mass
density produces local advection heat flux. (d) Simplified model
by modulating only thermal conductivity.
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− R
ρ0C0

∂J
∂t

þ J ¼ −K ∂T0

∂x
−W

∂T0

∂t
: ð6Þ

The term of ∂tJ is mathematically related to thermal
relaxation [37], the term of ∂xT0 reflects the conventional
contribution of thermal conduction, and the term of ∂tT0 is
referred to as the thermal Willis term (see Part III of
Supplemental Material [45]). Therefore, thermal Willis
coupling originates from the coupling between heat flux
and temperature change rate. This effect is similar to
acoustic Willis coupling, i.e., acoustic propagation in
inhomogeneous media cannot be described by the classical
elastic wave equation [20]. Although Eq. (6) directly
indicates thermal Willis coupling, it is obtained from two
approximations of s ¼ 0;�1 and β ≪ G. Therefore, Eq. (6)
is not strictly accurate, but this problem is solved by
exploring numerical results.
A remarkable feature that distinguishes Willis thermal

metamaterials from conventional thermal materials is the
ability to drive asymmetric heat diffusion [Fig. 1(a)]. The
frequency of ω is purely imaginary in homogeneous media,
making the propagation velocity of v ¼ Re½ω�=β zero (see
Part IV of Supplemental Material [45]). In contrast, Willis
thermal metamaterials realize directional temperature field
propagation because the real part of ω appears. To avoid the
probable inaccuracy of Eq. (4), we study numerical results
by considering s ¼ 0;�1;�2;…;�8 (see Part IV of
Supplemental Material [45]). We further explore the six
crucial parameters of u,D0, N, Δρ, Δκ, and α in Eq. (1) that
affect the velocity of v ¼ Re½ω�=β and temporal decay
rate of μ ¼ −Im½ω�. These six parameters are divided
into two groups. One group contains u, D0, and N, linked
by the dimensionless parameter of Φ ¼ u=ðGD0Þ or
2πΦ ¼ uL=ðND0Þ. Specifically, Φ has a critical point of
Φc, crossing which the temperature field direction is
reversed. The other group includesΔρ,Δκ, and α, determin-
ing the value of Φc [Fig. 1(b)].
We first discuss the former group related to

2πΦ ¼ uL=ðND0Þ. When we set 2πΦ as the abscissa,
the actual variable is u which is flexibly controllable
[Figs. 2(a) and 2(b)]. All v − 2πΦ curves experience a
process to be first positive and then negative, but the
modulation velocity of u is always positive, exhibiting
unexpected direction-reversible heat diffusion. These
v − 2πΦ curves also share the same critical point of
2πΦc ¼ 6.4 [stars in Figs. 2(a) and 2(b)]. Accordingly,
the maximum (or minimum) values appear at the same
value of 2πΦ [vertical dashed lines in Figs. 2(a) and 2(b)].
The amplitude of a v − 2πΦ curve is determined by the
thermal diffusivity of D0 and period number of N.
Specifically, a larger D0 (reflected in the dimensionless
thermal diffusivity of M ¼ D0=Dr where Dr is the refer-
ence thermal diffusivity) or a smaller N contributes to a
larger amplitude. Since the temporal decay rate of μmainly
depends on the effective thermal diffusivity, the μ − 2πΦ

curves in Fig. 2(a) have different amplitudes because of the
different thermal diffusivity of D0. However, the μ − 2πΦ
curves in Fig. 2(b) are almost overlapped because the
period number of N essentially does not affect the effective
thermal diffusivity. Then we focus on the properties when
2πΦ ¼ 2.4, corresponding to the maximum values of the
v − 2πΦ curves in Figs. 2(a) and 2(b). v and μ demonstrate
linear responses to the thermal diffusivity of D0 [Fig. 2(c)].
Therefore, the temperature field propagation is faster
with the larger thermal diffusivity, but the temporal decay
rate also becomes larger. The v − N curves decrease in
Fig. 2(d), indicating that thermal Willis coupling is weak-
ened with the decrement of inhomogeneity (i.e., the incre-
ment of N). The μ − N curves have almost no variation
because the period number of N does not affect the
effective thermal diffusivity. In terms of the importance
of inhomogeneity, the larger the modulation wavelength
(i.e., the smaller N), the more obvious thermal Willis
coupling in principle. But we should also ensure that the
modulation wavelength is much smaller than the temper-
ature field wavelength so that homogenization makes
sense. Therefore, on the premise of guaranteeing good
homogenization, the larger the modulation wavelength, the
better. More details are provided in Part Vof Supplemental
Material [45].
We further discuss the latter group related to Δρ, Δκ, and

α, determining the critical point of 2πΦc. As shown in
Figs. 2(a) and 2(b), the critical point for v ¼ 0 is fixed at
2πΦc ¼ 6.4, which is irrelevant to thermal diffusivity and
period number. Then we discuss the critical point when

FIG. 2. Numerical results of asymmetric heat diffusion. Velocity
of v ¼ Re½ω�=β and temporal decay rate of μ ¼ −Im½ω� as a
function of (a) and (b) dimensionless parameter of 2πΦ ¼
uL=ðNMDrÞ, (c) dimensionless thermal diffusivity of M ¼
D0=Dr, and (d) period number of N, where Dr is the reference
thermal diffusivity. Except for the parameters shown in each inset,
the others are Δρ ¼ 0.5, Δκ ¼ 0.5, α ¼ 0, Dr ¼ 10−4 m2=s, and
L ¼ 0.2 m.
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α ¼ 0, π=4, π=2, and −π=2 in Fig. 3. When Δρ ¼ 0 or
Δκ ¼ 0, α does not matter, and hence the 2πΦc − Δρ curves
with Δκ ¼ 0 (or the 2πΦc − Δκ curves with Δρ ¼ 0) are
identical in Fig. 3. Moreover, α ¼ �π=2 leads to the same
patterns of 2πΦc, and hence thermal Willis coupling is an
even function of α. The results in Fig. 3 provide direct
guidance for designing direction-reversible heat diffusion
(see Part V of Supplemental Material [45]).
Another feature of thermal Willis coupling is the free-

dom from modulating mass density and thermal conduc-
tivity simultaneously. It is mandatory to modulate two
parameters simultaneously for the reported diffusive asym-
metry induced by the advectionlike effect [15–18].
However, the homogenized case described by Eq. (4) does

not contain any advectionlike term. Thermal Willis cou-
pling between heat flux and temperature change rate
realizes asymmetry, which works in transient heat transfer
rather than quasisteady heat transfer (see Part VI of
Supplemental Material [45]). Transient (or quasisteady)
heat transfer means that the temperature field envelope is
dependent on (or independent of) time. Because of the
essential difference, a single-parameter modulation is
enough to realize asymmetric diffusion. Since the thermal
conductivity of many practical materials is sensitive to
external fields [46–48], we may design a moving periodic
external field to achieve the spatiotemporal modulation of
thermal conductivity [Fig. 1(d)]. Nevertheless, the inaccur-
acy of Eq. (4) also appears when Δρ ¼ 0. The R in Eq. (5b)
and W in Eq. (5c) become zero, yielding v ¼ 0. However,
the numerical results and following simulations indicate
v ≠ 0. This deviation is understandable because Eq. (4) is
obtained using the first-order approximation, i.e.,
s ¼ 0;�1. Therefore, Eq. (4) can prove the absence of
the advectionlike term (the first-order effect) but cannot
accurately calculate the high-order effects.
Then we discuss the single-parameter modulation of

thermal conductivity. We plot the v − 2πΦ curves in
Fig. 4(a). As 2πΦ (i.e., u) increases, v first increases from
zero, decreases to negative values, and finally tends to zero.
A larger Δκ leads to the larger amplitude of a v − 2πΦ
curve. Moreover, μ monotonically increases and finally
goes to a constant value [Fig. 4(b)]. The upper limit is
D0β

2, i.e., the temporal decay rate in a homogeneous
medium (see Part V of Supplemental Material [45]). In
other words, when 2πΦ → ∞, spatiotemporal modulation
does not contribute to any inhomogeneity, indicating no
thermal Willis coupling and v ¼ 0.
We further perform finite-element simulations with

COMSOL Multiphysics and discuss the parameters marked

FIG. 3. Critical point of 2πΦc ¼ ucL=ðND0Þ as a function of
the modulation amplitudes of Δρ and Δκ. (a)–(d) The modulation
phase difference of α takes 0, π=4, π=2, and −π=2. The critical
point of 2πΦc is irrelevant to specific L, N, and D0.

FIG. 4. Simulations of asymmetric heat diffusion by modulating only thermal conductivity. (a) Velocity of v ¼ Re½ω�=β and
(b) temporal decay rate of μ ¼ −Im½ω� as a function of the dimensionless parameter of 2πΦ ¼ uL=ðND0Þ. Dimensionless temperature
distributions of T� at 200 s with (c) 2πΦ ¼ 1.2, (d) 2πΦ ¼ 3.8, (e) 2πΦ ¼ 12.0, and (f) 2πΦ ¼ 60.0. The initial dimensionless
temperature is T� ¼ 100 cosð2πx=LÞ. The left and right boundaries are set with periodic conditions, i.e., continuous temperatures.
Parameters: D0 ¼ 10−4 m2=s, L ¼ 0.2 m, and N ¼ 5. Sim.: Simulation; Num.: Numerical; and Ref.: Reference.
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by stars in Figs. 4(a) and 4(b). The thermal conductivity is
set according to Eq. (2b) for quantitative comparison with
the theory and numerical results. For brevity, we define a
dimensionless temperature as T� ¼ ðT − T0Þ=ð1 KÞ. The
wavelike temperature profile for reference is stationary
and only decays. In contrast, the spatiotemporal modulation
of thermal conductivity drives forward temperature field
propagation [Fig. 4(c)]. At the critical point of 2πΦ ¼ 3.8,
despite a nonzero modulation velocity of u, the temperature
field velocity is still zero [Fig. 4(d)]. The further increment
of 2πΦ leads to backward temperature field propagation
[Figs. 4(e) and 4(f)]. Moreover, the numerical results also
agree well with the simulations, convincing the results in
Figs. 2 and 3.
For experimental demonstration, we suggest a practical

model with square-wave modulation (see Part VII of
Supplemental Material [45]). Meanwhile, we discuss the
modulation efficiency by defining η ¼ v=u to reflect the
strength of temperature field response to spatiotemporal
modulation, guiding the parameter design in experiments
(see Part VII of Supplemental Material [45]).
In summary, the constitutive relation determined by the

Fourier law should be modified after homogenizing spa-
tiotemporal inhomogeneity, manifesting as thermal Willis
coupling between heat flux and temperature change rate.
Then we design Willis thermal metamaterials to uncover
asymmetric heat diffusion, with a critical point determining
the diffusion direction reversal. Thermal Willis coupling is
particularly robust even with the single-parameter modu-
lation of thermal conductivity. The relaxed requirement
makes it possible to extend our mechanism for heat
diffusion to other energy and mass diffusion systems, such
as particle diffusion [49,50] and light diffusion [51,52],
where only diffusivity is controllable. Since Willis thermal
metamaterials are almost irrelevant to specific scales and
temperatures, they could be widely applied for realizing
asymmetric diffusion of energy and mass.
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