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Disclinations—topological defects ubiquitously existing in various materials—can reveal the intrinsic
band topology of the hosting material through the bulk-disclination correspondence. In low-dimensional
materials and nanostructure such as graphene and fullerenes, disclinations yield curved surfaces and
emergent non-Euclidean geometries that are crucial in understanding the properties of these materials.
However, the bulk-disclination correspondence has never been studied in non-Euclidean geometry, nor in
systems with p-orbital physics. Here, by creating p-orbital topological acoustic metamaterials with
disclination-induced conic and hyperbolic surfaces, we demonstrate the rich emergent bound states arising
from the interplay among the real-space geometry, the bulk band topology, and the p-orbital physics. This
phenomenon is confirmed by clear experimental evidence that is consistent with theory and simulations.
Our experiment paves the way toward topological phenomena in non-Euclidean geometries and will
stimulate interesting research on, e.g., topological phenomena for electrons in nanomaterials with curved
surfaces.
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Despite their abundance in various materials, topological
defects [1–5] (such as disclinations and dislocations) have
been studied limitedly in topological physics [6–18]. Only
recently, topological defects were used as unique exper-
imental probes of topological phases [19–31]. For instance,
in topological crystalline insulators, bulk-disclination cor-
respondence was found to connect the bulk band topology
to the fractional charges and local modes bound to
disclinations, providing more information on bulk topology
than the conventional bulk-edge correspondence [22,23]. In
weak topological insulators [21,24,25] and topological
crystalline insulators [26], helical 1D modes induced by
screw dislocations were observed. These studies unveil a
regime where the interplay between the band topology in
momentum space and the real-space topology of defects
plays a central role—a field where both theory and experi-
ments are underdeveloped.
In particular, to date, the few experimental studies on

disclinations focus only on planar (Euclidean) geometries
[22,23,28–30], whereas nonplanar (non-Euclidean) geom-
etries remain unexplored, although disclinations in low-
dimensional materials and nanostructures often lead to
deformed surfaces and hence non-Euclidean geometries
[32] (see the case of graphene in Refs. [2–5,33–35]). The
abundant geometries induced by topological defects in low-
dimensional materials and nanostructures offer a versatile
platform to study topological phenomena for electrons and

phonons which is a realm yet to be investigated. Moreover,
the existing studies on topological defects are based mainly
on s-orbital-like models, while higher-orbital physics,
which has been revealed to yield rich emergent phenomena
[36–40] and to be relevant for phonons and elastic waves
[31,41] in various materials, is rarely explored.
Here,we fill these gaps by studying the topologicalmodes

bound to disclinations with conic and hyperbolic surfaces in
a p-orbital valley Hall acoustic metamaterial. Neither conic
or hyperbolic structure nor p-orbital topological valley Hall
insulators have been studied in acoustic metamaterials.
Here, by creating the p-orbital valley Hall acoustic meta-
material, we study the acoustic analog of topological
phenomena induced by disclinations on curved (non-
Euclidean) surfaces. We find that the coexisting non-
Euclidean geometries in real space and the topological
acoustic bands in reciprocal space yield emergent topologi-
calmodes bound to disclinations. The topologicalmodes are
observed via acoustic pump-probe measurements, revealing
rich p-orbital wave patterns depending on the disclination
geometries. The consistent theory, simulations, and experi-
ments confirm the underlying bulk-defect physics which
would inspire future studies on topological phenomena of
electrons and phonons on curved surfaces.
We start from a 2D honeycomb lattice with A- and B-

type sites [Fig. 1(a)]. Non-Euclidean disclinations can be
constructed through the cut-and-glue procedures: By
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removing or inserting a 2π=3 sector of the lattice, a conic or
saddle surface can be constructed through the Kamada-
Kawai layout algorithm [42]. This algorithm provides the
minimal deformation of the local lattice geometry even
when the Frank angle is large. The resultant structure
exhibits either a positive (G > 0, conic lattice) or negative
(G < 0, hyperbolic lattice) Gaussian curvature [Figs. 1(b)
and 1(c)] [43]. Such curved surfaces, which are common in
low-dimensional and nanomaterials [33], are natural con-
sequences of disclinations due to minimization of the
deformation energy. Here, we show that they play an
important role in the emergence of the disclination states.
We consider spherical acoustic cavities that each support

three degenerate acoustic modes, the px, py, and pz
orbitals. Placing such cavities on the honeycomb lattice
as in Fig. 2(a), a p-orbital acoustic metamaterial is realized.
The rich orbital overlapping geometries between the A- and

B-type cavities yield two types of couplings [44,45]: the
dominant σ-type couplings tσ and the negligible π-type
couplings (see Supplemental Material [46]). Neglecting the
latter, the tight-binding Hamiltonian is thus
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where εAα and εBα (α ¼ x, y, z) denote the onsite energy of
the pα orbital on the A and B sites, respectively. In the off-
diagonal terms, e⃗1;2 ¼ ½�ð ffiffiffi

3
p

=2Þ; 1
2
� and e⃗3 ¼ ð0;−1Þ are

the nearest-neighbor hopping vectors, and the prefactors

are determined by the p-orbital geometries [45]. The tight-
binding Hamiltonian captures the main features of the
acoustic bands, as shown in Figs. 2(b) and 2(c). In the
acoustic metamaterial, the on-site energy can be controlled

FIG. 1. (a) A 2D honeycomb lattice consists of the A-type
(yellow) and B-type (blue) sublattice sites. The shaded region
denotes a 2π=3 sector (enclosed by the magenta dashed lines).
(b) and (c) Schematics of the conic (hyperbolic) lattice con-
structed by removing (adding) a 2π=3 sector from (into) the
honeycomb lattice, leading to a disclination with the Frank angle
Ω ¼ −ð2π=3Þ (2π=3). G represents the Gaussian curvature of the
structure.

FIG. 2. (a) Honeycomb lattice with acoustic p orbitals (top
panel; also depicted in the main panel). e⃗1, e⃗2, and e⃗3 denote
three hopping vectors. Upper right: the Brillouin zone. Lower
right: a unit cell of the acoustic metamaterial (gray denotes air
regions) with geometric details. (b) and (c) Simulated band
structures of acoustic metamaterials with different parameters:
(b) rA ¼ rB ¼ 12 mm, (c) rA ¼ 13.5 mm and rB ¼ 10.5 mm.
Cyan curves represent the px and py bands, while red curves
denote the pz bands. Insets: band structures from the
tight-binding model: (b) εAx;y ¼ εBx;y ¼ 0, εAz ¼ εBz ¼ 0.3,
(c) εAx;y ¼ −1.8, εAz ¼ −2.1 and εBx;y ¼ 2, εBz ¼ 2.8. In panel
(c), acoustic phase profile (arrows indicate the phase winding) at
the K point (black dot) is also depicted. (d) Dispersions for a
supercell with zigzag edge boundaries between two acoustic
metamaterials I and II. The radii are rA ¼ 12.3 mm and rB ¼
11.7 mm for I (rA and rB are interchanged for II), respectively.
Right: acoustic pressure profile for the edge state at the red
triangle in the brown curve. Green curve is for the edge states at
the opposite edge. l ¼ 31.0 mm and d ¼ 5.6 mm.
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by the radii rA and rB for the cavities at the A and B sites,
respectively. When rA ¼ rB ¼ 12 mm, the acoustic Dirac
cones emerge at the K and K0 points as derived from the px

and py orbitals [Fig. 2(b)], while the two pz flat bands are
degenerate. By setting rA ¼ 13.5 mm and rB ¼ 10.5 mm,
both the Dirac cones and the flat bands are gapped, leading
to a topological valley Hall band gap due to inversion
symmetry breaking [see Fig. 2(c)]. The phase profile of the
acoustic wave [inset of Fig. 2(c)] shows the valley vortex
state—a signature of valley Hall insulators [47,48]. To
demonstrate the valley Hall effect straightforwardly, we
construct a supercell with zigzag edge boundaries in
simulation. The obtained acoustic band structure and wave
functions [Fig. 2(d)] give notable valley Hall edge states
with in-plane p-orbital wave patterns.
We use the symmetry representations of the acoustic

bands to describe the band topology [49]. Here, the
acoustic metamaterial has the threefold (C3) rotation
symmetry. At a high symmetry point denoted as Π, the
C3 eigenvalue Πp ¼ e2πiðp−1Þ=3 (p ¼ 1; 2; 3) can be
obtained from simulations (see Supplemental Material

[46]). The topological invariants are given by χ ¼
ð½K1�; ½K2�Þ with ½Kp� ¼ #Kp − #Γp, where #Kp (#Γp)
stands for the number of bands below the band gap at
the K (Γ) point with the C3 eigenvalues Kp (Γp). The
topological invariants for the acoustic band gap in
Fig. 2(c) are χ ¼ ð1; 0Þ, which is distinct from previous
C3-symmetric higher-order topological insulators derived
from s orbitals [49,50]. This band gap is an acoustic analog
of both p-orbital valley Hall insulator and higher-order
topological insulator as revealed by the emergence of the
valley Hall edge states [Fig. 2(d)] and the corner states
(Supplemental Material [46]).
The interplay between the band topology in momentum

space and the real-space topology of a disclination gives
rise to topological bound modes (denoted as disclination
modes) and a fractional mode charge Qdis ¼ −ðΩ=2πÞ½K1�
mod 1 where Ω is the Frank angle [15]. For the curved
surface withG > 0 (G < 0), the Frank angle isΩ ¼ −2π=3
(2π=3), yielding a fractional mode chargeQdis ¼ 1=3 (2=3)
which is distinct from previous findings [22,23]. For
acoustic systems, Qdis should be interpreted as the inte-
gration of the local density of states of phonons up to the

FIG. 3. (a) Simulated acoustic eigenfrequencies around the topological band gap in the conic lattice with rA ¼ 13.5 mm,
rB ¼ 10.5 mm, and d ¼ 5.6 mm. Topological disclination states in groups I and II are labeled by the purple dots. Inset shows the
acoustic pressure profile of a disclination state. (b)–(e) Top views of the simulated acoustic pressure profiles for the disclination states.
(f) Photograph of the fabricated acoustic structure for the conic lattice and the experimental setup. In the lower panels, the pump-probe
configurations I and II are shown where the stars (dots) denote the positions of the acoustic source (detector). Purple dashed lines
indicate the mirror symmetry lines. (g) Measured acoustic pressure p for the pump-probe configurations I and II at different frequencies.
(h) Measured acoustic pressure profiles jpj (absolute value) around the disclination core (cavities are depicted as circles) for two
disclination states, ΨI;O and ΨII;E, under resonant excitation conditions.
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band gap [24]. A simple interpretation of the above
phenomena is based on the Wannier orbitals. There are
three p-type Wannier orbitals at the A-type sites [46]. As
the disclination boundary runs through theWannier centers,
it induces boundary modes as well as charge separation and
fractionalization at the disclination core, similar to the
mechanism revealed in Ref. [24] (see Supplemental
Material [46] for more details).
We fabricate a conic acoustic metamaterial with 144

cavities. We find from simulations that four disclination
states emerge in the band gap [divided into groups I and II
in Fig. 3(a)]. The conic lattice has an emergent C2 rotation
symmetry. Hence the disclination states have either even or
odd parity and show rich patterns of in-plane p orbitals
[Figs. 3(b)–3(e)]. Additionally, for the disclination states in
group I (II), the waves are mainly localized in B-type
(A-type) cavities and exhibit π-like (σ-like) bonding.
To observe these properties in experiments, we fabricate

the acoustic metamaterial via 3D printing technology based
on epoxy and use pump-probe techniques to detect the
disclination states. As shown in Fig. 3(f), to measure the
acoustic signals inside the cavity, holes with a diameter of
8 mm are left on each excitation and detection cavity, and

we keep the holes in all other cavities (except for the source
and detection position) closed by plastic plugs when
measuring the acoustic fields in experiments. An acoustic
source (a tiny speaker) is placed into the excitation cavity,
which is connected to a waveform generator to launch the
broadband acoustic signals, meanwhile, a probe micro-
phone is put into another cavity to detect the acoustic signal
there. The detected signal, which reflects the acoustic
pressure, is recorded by a DAQ card (NI USB-6361).
Through the Fourier transformation of the detected time-
dependent acoustic signal, we can obtain the pump-probe
responses in the frequency domain (see Supplemental
Material [46] for details) which are used to analyze the
disclination states here.
According to the wave patterns of the disclination states,

a pump-probe configuration with the source and detectors
in the B-type (A-type) cavities [denoted as I (II) in the inset
of Fig. 3(f)] is used to detect the disclination modes in
groups I (II). For pump-probe I, we observe a dip (peak) at
8.53 (8.74) kHz [Fig. 3(g)]. This dip (peak) is associated
with the disclination state ΨI;O (ΨI;E), which appears
because ΨI;O (ΨI;E) overlaps with the source and detector
with the opposite (same) wave amplitude. Thus, the

FIG. 4. (a) Simulated acoustic eigenfrequencies around the topological band gap in the hyperbolic lattice with rA ¼ 13.5 mm,
rB ¼ 10.5 mm, and d ¼ 5.6 mm. Topological disclination states are labeled by the golden dots. Inset shows the acoustic pressure profile
of a disclination state. (b)–(e) Top views of the acoustic pressure profiles of the disclination states. (f) Photograph of the fabricated
acoustic structure for the hyperbolic lattice. Lower panels show the disclination and bulk pump-probe setups (labeled as DS and BS,
respectively) where the stars (dots) denote the positions of the acoustic source (detector). (g) Measured acoustic pressure jpj (absolute
value) for the disclination and bulk pump-probe setups versus the excitation frequency. Inset gives the measured acoustic pressure
profile for the cavities (depicted as circles) around the disclination core at the excitation frequency of 9.20 kHz. (h) Measured responses
for the D1S and D2S pump-probe setups.
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measured results faithfully uncover the parity properties of
the disclination states, beside revealing their existence.
Similarly, in pump-probe II, a peak (dip) is observed at
10.12 (10.26) kHz associated with the disclination state
ΨII;E (ΨII;O) of even (odd) parity. We further measure the
acoustic wave functions of the disclination states at
resonant excitation conditions. Figure 3(h) presents the
measured acoustic pressure in the cavities around the
disclination core for ΨI;O and ΨII;E. The experimental data
confirm the following features.: the group I (II) eigenstate
ΨI;O (ΨII;E) is localized mainly in the B-type (A-type)
cavities around the disclination core. These observations
are consistent with the simulation results in Figs. 3(b)–3(e).
More data showing the in-plane p-orbital wave patterns and
the simulations of the local curvature effect are presented in
Supplemental Material [46].
For the hyperbolic lattice, we consider a structure with

200 acoustic cavities [Fig. 4(a)]. The hyperbolic lattice has
an emergent S4 rotation symmetry which is a feature of the
non-Euclidean geometry. From simulation, four disclina-
tion states emerge in the band gap: ΨE1 at 8.98 kHz, ΨE2 at
9.28 kHz, and ΨO1 and ΨO2 at 9.12 kHz. Compared with
the case of conic lattice, the four disclination states here are
nearly degenerate and their wave functions all concentrate
on the B-type cavities [Figs. 4(b)–4(e)]. Nevertheless, the
wave functions show clear in-plane p-orbital wave patterns
as well.
The 3D-printed acoustic hyperbolic lattice and two

pump-probe configurations are shown in Fig. 4(f). For
the bulk pump-probe configuration, both the source and the
detector are away from the disclination core. For the
disclination pump-probe configuration, the source and
the detector are at the opposite sides of the disclination
core. The measured acoustic responses for the two con-
figurations are shown in Fig. 4(g). The bulk response has a
suppressed region from 8.8 to 10.4 kHz due to the
topological band gap. In contrast, the disclination response
has a strong peak at 9.20 kHz due to the nearly degenerate
disclination states. The detected acoustic wave pattern
shows that the acoustic waves are indeed concentrated in
the B-type cavities—a feature consistent with the simu-
lation results in Figs. 4(b)–4(e). Moreover, the detected
signals at D1 and D2 have nearly opposite amplitude in a
broad frequency range [Fig. 4(h)]. This reveals that the
acoustic wave switches sign in a cavity—an important
feature of the in-plane p-orbital waves for the disclination
states in Figs. 4(b)–4(e) (see Supplemental Material [46]
for more results).
This study unveils the intriguing interplay between the

band topology and the non-Euclidean geometries due to
topological defects. Such interplay is further enriched by
the p-orbital physics, leading to rich emergent p-wave
behaviors for the bound modes as revealed by consistent
experiments and simulations. Topological defects with
finite Gaussian curvatures are common in nanostructures

such as nanocones and nanorings [32,33] as well as in 2D
materials [2–5,33–35,51,52], interfaces, and grain bounda-
ries in crystals [43], which are yet to be explored for
nontrivial topological phenomena of electrons and pho-
nons. Using acoustic analogs, our study serves as a
pioneering study into such a realm with nonplanar geo-
metries and may inspire future studies on topolo-
gical phenomena in nanomaterials and boundaries with
curved surfaces as well as topological non-Euclidean
metamaterials.
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