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The conservation of an axial current modified by the gravitational chiral anomaly implies the universal
transport phenomenon (kinematical vortical effect) dependent solely on medium vorticity and acceleration,
but not dependent explicitly on its temperature and density. This general analysis is verified for the case of
massless fermions with spin-1

2
.
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Introduction.—Discovery of the quark-gluon plasma,
with its unusual properties, changed the landscape of
theoretical disciplines, focusing attention on theory of
fluids, quantum fluids in particular (see, e.g., Ref. [1,2]).
While the low value ratio of viscosity to entropy density
η=s of the plasma and fast set of equilibrium are still
awaiting their explanation, theory of quantum chiral effects,
in particular, chiral magnetic effect j ∼ B, where j is the
vector current and B is the magnetic field, has been
developed to the point that allowed for a massive exper-
imental effort to establish (or reject) it [3]. Experimentation
with the quark-gluon plasma is all the more suited for study
of chiral effects since the observability of these effects is
closely related to the approximation of fluid being ideal [4].
Study of heavy-ion collisions could also provide

researchers with a window to observe imitation of gravi-
tational effects [6,7]. Indeed, the STAR Collaboration
concluded that the properties of the quark-gluon plasma
favor the models that assume the plasma being produced in
a rotated and accelerated state [8]. A dual description of
kinematics of acceleration and rotation in terms of gravi-
tational potentials goes back to Einstein’s lectures of
general relativity [9]. In the context of transport phenom-
ena, the similarity between the gravitational and entropic
forces has been emphasized by Luttinger [10]. The most
advanced suggestion in this direction is the hypothesis that
the fundamental gravitational interaction can be replaced
by its thermodynamic counterpart [11]. A regular way
to test the duality between the thermodynamic and

gravitational approaches is provided by evaluating the
same observables in the state of equilibrium and in an
external gravitational field [12,13].
While the chiral magnetic effect is related [3] to the

gauge chiral anomaly, it was suggested [14–16] that the
gravitational chiral anomaly [17]

∇μj
μ
A ¼ N ϵμναβRμνλρR

λρ
αβ ð1Þ

can be invoked to predict the thermal chiral vortical effect
(CVE) jA ∼NT2Ω, where jμA is the axial current, Ω is the
angular velocity of the fluid, and T is the temperature [18].
In (1) Rμνλρ is the Riemann curvature tensor, ϵμναβ ¼
ð1= ffiffiffiffiffiffi−gp Þεμναβ is the Levi-Civita symbol in curved
space-time, ∇μ is the covariant derivative, and N is a
numerical factor.
In this Letter, we construct a hydrodynamic gradient

expansion valid up to the third order in the presence of an
external gravitational field (see also Refs. [22,23]). If we
neglect, for the moment, the terms explicitly containing the
gravitational field, then the axial current takes on the form

jAμ ¼ λ1ðωνω
νÞωμ þ λ2ðaνaνÞwμ; ð2Þ

where λ1 and λ2 are dimensionless constants, ωμ ¼
1
2
ϵμναβuν∂αuβ is the vorticity, and aμ ¼ uν∂νuμ is the

acceleration of the fluid flow.
We show that there is a relation between (λ1 − λ2) and the

factor N in front of the gravitational chiral anomaly (1),

λ1 − λ2
32

¼ N ; ð3Þ

so the current (2) is induced by the gravitational chiral
anomaly.
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The third-order current (2) does not depend explicitly on
the medium parameters T and μ being a purely kinematical
vortical effect (KVE). Despite its relationship with the
gravitational anomaly, the KVE survives in the usual four-
dimensional flat space-time. This situation is analogous to
the case with the CVE and the gauge axial anomaly
[5,24,25].
Equation (3) is verified by direct comparison of the

transport coefficients with the anomaly factor for the Dirac
field. We also show that using the relationship between the
acceleration and the thermal radiation temperature from
the Unruh effect [12,26], one can obtain an analog of the
thermal current proportional to the anomaly (cf. [14–16]).
We use the system of units e ¼ ℏ ¼ c ¼ kB ¼ 1 and the

signature ημν ¼ ð1;−1;−1;−1Þ.
Cubic terms in gradients from the gravitational chiral

anomaly.—Let us consider an uncharged nondissipative
fluid of massless fermions with an arbitrary spin in an
external gravitational field with the metric gμνðxÞ. This fluid
moves with a four-velocity uμðxÞ and has a proper temper-
ature TðxÞ.
Hydrodynamic effects associated with quantum anoma-

lies can be derived by considering the second law of
thermodynamics for the entropy flow [5]. It was recently
shown in [27] (see also Ref. [28]) that, for the non-
dissipative fluid in the global equilibrium [29,30], it
suffices to take into account only the current conservation
equation. In this way, in [5,27] the relationship of the CVE
current jA ∼ kμ2Ω and the chiral gauge anomaly ∂jA ∼
kE ·B was substantiated. Below, we generalize [5,27] to
the case of gravitational fields and the gravitational chiral
anomaly.
At the quantum level, the axial current conservation is

violated due to the gravitational chiral anomaly (1). Since
the anomaly has the fourth order in gradients, the terms of
the third order in the hydrodynamic expansion for the
current should generate it.
We will consider the system in the state of global

thermodynamic equilibrium [29,30], for which the inverse
temperature vector βμ ¼ uμ=T satisfies the Killing equation

∇μβν þ∇νβμ ¼ 0; ð4Þ

which means we are working with the beta frame [31].
Because of (4), we obtain for the second-order covariant

derivative

∇μ∇νβα ¼ Rρ
μνα βρ: ð5Þ

An antisymmetric combination of covariant derivatives
forms the thermal vorticity tensor [32]

ϖμν ¼ −
1

2
ð∇μβν −∇νβμÞ; ð6Þ

which has one vector and one pseudovector component,
corresponding to the (“thermal”) acceleration αμ and
vorticity wμ,

αμ ¼ ϖμνuν; wμ ¼ −
1

2
ϵμναβuνϖαβ;

ϖμν ¼ ϵμναβwαuβ þ αμuν − ανuμ: ð7Þ

In the state of global equilibrium (4), wμ and αμ are
proportional to kinematic vorticity ωμ and acceleration aμ,

αμ ¼
aμ
T
; wμ ¼

ωμ

T
: ð8Þ

Similarly, the Riemann tensor can be decomposed into
two symmetric tensors and one nonsymmetric traceless
pseudotensor

Aμν ¼ uαuβRαμβν; Bμν ¼
1

2
ϵαμηρuαuβR

ηρ
βν ;

Cμν ¼
1

4
ϵαμηρϵβνλγuαuβRηρλγ; ð9Þ

which are covariant generalizations of three-dimensional
tensors from [33]. These tensors have properties similar to
the three-dimensional ones

Aμν ¼ Aνμ; Cμν ¼ Cνμ; Bμ
μ ¼ 0;

Aμνuν ¼ Cμνuν ¼ Bμνuν ¼ Bνμuν ¼ 0: ð10Þ

The inverse formula has the form

Rμναβ¼uμuαAνβþuνuβAμα−uνuαAμβ−uμuβAνα

þϵμνλρuρðuαBλ
β−uβBλ

αÞþϵαβλρuρðuμBλ
ν−uνBλ

μÞ
þϵμνλρϵαβησuρuσCλη: ð11Þ

The expansion (11) is similar to the expansion of the
thermal vorticity tensor (7) or the electromagnetic field
tensor.
Using (11), one can rewrite formulas with curvature in

terms of tensors Aμν, Bμν, and Cμν; in particular, for some
scalars and pseudoscalars, we obtain

ϵμναβRμνλρR
λρ

αβ ¼ 16ðAμν − CμνÞBμν;

R ¼ 2ðAμ
μ − Cμ

μÞ; uμuνRμν ¼ Aμ
μ: ð12Þ

We will neglect the backreaction of matter to the
gravitational field, considered as external, which allows
us to impose an additional condition on the field

Rμν ¼ 0: ð13Þ
Although this condition is not mandatory, it eliminates
10 degrees of freedom that do not contribute to the
gravitational chiral anomaly (1), which can be expressed
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through the Weyl tensor. Also it can be considered as an
analog of the condition of the constancy of the electro-
magnetic field Fμν in [27].
Taking into account (13), we will have additional

properties (compare with [33])

Aμν ¼ −Cμν; Aμ
μ ¼ 0; Bμν ¼ Bνμ; ð14Þ

and thus the gravitational field has ten independent
components.

The contribution to the axial current is expressed in terms
of all possible pseudovectors arising in the third order in
gradients (compare with [22,23]),

jAð3Þμ ¼ ξ1ðTÞw2wμ þ ξ2ðTÞα2wμ þ ξ3ðTÞðαwÞwμ

þ ξ4ðTÞAμνwν þ ξ5ðTÞBμνaν: ð15Þ

The unknown coefficients ξnðTÞ depend on the proper
temperature T. The absence of other terms in the expansion
(15) follows from (14) and the Bianchi identity.
Substituting (15) into (1), we thus obtain

∇μj
μ
Að3Þ ¼ ðαwÞw2ð−3Tξ1 þ T2ξ01 þ 2Tξ3Þ þ ðαwÞα2ð−3Tξ2 þ T2ξ02 − Tξ3 þ T2ξ03Þ

þ Aμνα
μwνðT2ξ04 þ 3Tξ5 þ 2T−1ξ2 þ T−1ξ3Þ þ Bμνwμwνð−2T−1ξ1 − 3Tξ4 − Tξ5Þ

þ Bμνα
μανðT2ξ05 − Tξ5 − T−1ξ3Þ þ AμνBμνð−T−1ξ4 þ T−1ξ5Þ

¼ 32NAμνBμν: ð16Þ

When differentiating, we used the equations, following
from (4) and (5):

∇μT ¼ T2αμ;

∇μuν ¼ Tðϵμναβuαwβ þ uμανÞ;
∇μwν ¼ T½−gμνðwαÞ þ αμwν� − T−1Bνμ;

∇μαν ¼ T½w2ðgμν − uμuνÞ − α2uμuν − wμwν

− uμην − uνημ� þ T−1Aμν;

∇μðAμνwνÞ ¼ −3TBμνwμwν − T−1AμνBμν;

∇μðBμνα
νÞ ¼ 3TAμνwμαν þ T−1AμνBμν

− TBμνwμwν − TBμνα
μαν; ð17Þ

where ημ ¼ ϵμνρσuνwρασ. The first of the equations corre-
sponds to the well-known Luttinger relation [10]. Since
(16) contains independent pseudoscalars, we arrive at a
system of equations for the unknown coefficients

−3Tξ1 þ T2ξ01 þ 2Tξ3 ¼ 0;

−3Tξ2 þ T2ξ02 − Tξ3 þ T2ξ03 ¼ 0;

T2ξ04 þ 3Tξ5 þ 2T−1ξ2 þ T−1ξ3 ¼ 0;

−2T−1ξ1 − 3Tξ4 − Tξ5 ¼ 0;

T2ξ05 − Tξ5 − T−1ξ3 ¼ 0;

−T−1ξ4 þ T−1ξ5 − 32N ¼ 0: ð18Þ

If the theory does not contain other dimensional parameters
than temperature, then

ξ1 ¼ T3λ1; ξ2 ¼ T3λ2; ξ3 ¼ T3λ3;

ξ4 ¼ Tλ4; ξ5 ¼ Tλ5; ð19Þ

where λn are dimensionless constants. Since the number of
unknowns in (18) exceeds the number of equations, the
solution relates the unknown coefficients

λ3 ¼ 0; λ4 ¼ −8N −
λ1
2
;

λ5 ¼ 24N −
λ1
2
;

λ1 − λ2
32

¼ N : ð20Þ

First, it turns out that the current jAμ ¼ ξ3ðαwÞwμ is
absent. This condition was obvious in advance, since this
term in the absence of gravitational field would violate the
conservation of the current, as discussed in [34].
Also, from (20) follows the relationship between the

kinematic and the gravitational terms in the current (15):

λ1 − λ2 ¼ λ5 − λ4: ð21Þ

Finally, system (20) contains Eq. (3). It fixes the
relationship between the gravitational chiral anomaly (1)
and the transport coefficients in w2wμ and α2wμ. Passing to
the flat space-time Rμναβ ¼ 0 and kinematic quantities (8),
we find that the axial current (15) has the form (2) and the
transport coefficients are related to the anomaly (1)
by Eq. (3).
Although the KVE (2) looks like just a kinematic effect,

it still depends on the properties of the medium, since
velocity, acceleration, and vorticity characterize the fluid
flow. This is illustrated, for example, by the Luttinger
relation between the acceleration and the temperature
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gradient (17). Moreover, at a finite mass, an explicit
dependence on the properties of the medium appears in
λ1 and λ2 as it is shown in [34].
Verification: Dirac field.—Formulas (3) and (20) can be

verified directly by comparing the transport coefficients
with the factor in the gravitational chiral anomaly. Let us
consider a simple but important case of massless fermions
with spin-1

2
.

In [34] (see also Ref. [35]), the following formula was
obtained for the axial current in flat space-time for the Dirac
field:

jAμ ¼
�
T2

6
þ μ2

2π2
−

ω2

24π2
−

a2

8π2

�
ωμ; ð22Þ

expressed in terms of the kinematic quantities (8).
Equation (22) was obtained on the basis of the Zubarev

density operator using quantum field theory at a finite
temperature. Also, it was obtained by calculating the exact
trace over Fock space in [36,37]. The term ω3 was derived
in the original papers [38–40].
Comparing (22) and the well-known result for the

gravitational anomaly of the Dirac field N ¼ 1=384π2

[17], we see that (3) is fulfilled,

�
−

1

24π2
þ 1

8π2

�
=32 ¼ 1

384π2
: ð23Þ

Keeping also the terms with the gravitational field, using
(20) we will have

jAð3Þμ ¼
�
−

ω2

24π2
−

a2

8π2

�
ωμ þ

1

12π2
Bμνaν: ð24Þ

KVE and Unruh effect.—It is possible to establish a
nontrivial relationship between KVE and CVE, if we take
into account the effects of thermal radiation in space-time
with the event horizon.
Current in (15), taking into account (20), can be

decomposed into anomalous and conserved parts

jAμ ¼ jAμðconsÞ þ jAμðanomÞ;

jAμðconsÞ ¼
λ1 þ λ2

2

�
ðω2 þ a2Þωμ −

1

2
Aμνω

ν −
1

2
Bμνaν

�
;

jAμðanomÞ ¼ 16N fðω2 − a2Þωμ − Aμνω
ν þ Bμνaνg: ð25Þ

Note that the first term in jAμðanomÞ is determined
by the square of the thermal vorticity tensor,
since ω2 − a2 ¼ −ðT2=2Þϖμνϖ

μν.
On the other hand, in an accelerated frame, an analog of

the horizon of a black hole and the thermal radiation
associated with it, called the Unruh radiation, arise [12,26].
In the limit of a slowly rotating medium jωj ≪ jaj, the
temperature of a system both with rotation and acceleration

should be approximately equal to the temperature
of a uniformly accelerated frame (the famous Unruh
temperature) TU ≃ jaj=2π þOðωÞ, with aνaν ¼ −jaj2.
Substituting jaj ¼ 2πTU into jAμðanomÞ for the case jωj ≪
jaj and a flat space-time, we obtain

jAμðanomÞ ≃ 64π2NT2
Uωμ: ð26Þ

Anomalous current (26) for the Dirac field, up to the
replacement TU → T, corresponds to the well-known CVE
current

jAμðanomÞ ≃
T2

6
ωμ T ↔ TU ð27Þ

and turns out to be proportional to the factor N from the
gravitational chiral anomaly.
In an accelerated medium with a finite temperature, the

mean values of physical quantities depend on the proper
temperature and the proper acceleration, which are inde-
pendent parameters. However, since at the Unruh temper-
ature the system is in a Minkowski vacuum state, physical
quantities vanish at T ¼ TU [12,13]. In the case with both
vorticity and acceleration, the situation is more complicated
and a simple vacuum cancellation condition is not evident.
Instead of this, we obtain a CVE-like thermal vortical
current. The anomalous current of the form (26) was also
obtained in another approach [16], using the condition of
the cancellation at the event horizon for a metric similar to
the Kerr black hole.
Conclusion.—In this Letter, we have demonstrated that

the gravitational chiral anomaly is imprinted in properties
of vortical and accelerated matter even in the absence of
gravitational fields. There is a relation, see Eq. (3), between
the transport coefficients in the third order in gradients and
the overall factor in front of the anomaly. Thus, one can talk
about a new anomalous transport phenomenon—the kin-
ematical vortical effect, which is a kind of extension of the
equivalence principle to higher powers of acceleration.
Although the derivation given is valid only in the limit of
dissipation-free fluid and massless constituents with arbi-
trary spin, the universality of the gravity suggests a
possibility of generalizing the results obtained to other
systems. This point deserves further consideration.
The magnitude of the effect reflects the strength of the

coupling of spin of the constituents to gravitational field. In
case of the Dirac field, the relation obtained agrees with the
known transport coefficients as evaluated in the limit of
noninteracting gas, see discussion around Eq. (23). Also,
using the decomposition into anomalous and conserved
parts, we obtain a thermal vortical current related to the
Unruh temperature and induced by the gravitational
anomaly.
On the academic side, the results obtained provide

further explicit examples of equivalence between statistical
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and gravitational approaches, see the Introduction. From
the point of view of the experiment, the KVE could provide
a unique opportunity to search for the manifestations of the
gravitational anomaly outside the physics of a curved
space-time.
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