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We show that self-interacting vector field theories exhibit unphysical behavior even when they are not
coupled to any external field. This means any theory featuring such vectors is in danger of being
unphysical, an alarming prospect for many proposals in cosmology, gravity, high energy physics, and
beyond. The problem arises when vector fields with healthy configurations naturally reach a point where
time evolution is mathematically ill defined. We develop tools to easily identify this issue, and provide a
simple and unifying framework to investigate it.
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Introduction.—Classical electromagnetic waves simply
pass through each other when they meet since they obey a
linear equation. The picture changes in quantum electrody-
namics where two photons can scatter off of each other in
principle, they are self-interacting in this picture [1]. The use
of self-interacting vector fields goes beyond this example.
They are prevalent in fundamental theories of gravity and
cosmology [2–12], and in effective field theories encoun-
tered in awide range of research from astrophysics to plasma
physics [13–16], including the photon-photon scattering we
mentioned [17]. These theories have interesting mathemati-
cal structure in their own right [12,18–20], and there are
systematic efforts to classify all possible self-interacting
generalizations of the photon, building on themassivevector
theory of Proca [21–25]. In short, self-interacting vector
fields can be encountered in all corners of physics. We will,
however, show that some of the simplest and most widely
encountered forms of vector self-interaction cannot be
included in physical theories, hence, many of the ideas
we counted above are in need of reevaluation.
The unphysical aspects of self-interacting vector fields

arise because their time evolution is not possible beyond a
finite duration. Specifically, we show that the field equations
that provide the dynamics become unusable, as they no
longer define a time evolution. We demonstrate this for
vectors that are not coupled to any external fields, which
means our results are independent of the context inwhich the
vector is considered, hence they apply to all conceivable
cases. These results build on, and widely generalize, a series
of studies which first showed that specific self-interacting
theories break down near certain astrophysical objects
[2,26–29], and more recently generalized this breakdown
to simpler couplings and dynamical cases [29,30].
A central idea to understand the problem is that the

dynamics of the vector field can sometimes be formulated
as if governed by a so-called effective metric that depends
on the field itself, even when the gravitational coupling is
turned off [2,27–29]. That is, the vector can behave as if in

curved spacetime, even when it is not, and this metric can
become singular in finite time, at finite vector field values
for regular spacetime metrics.
We show for the first time that the effective metric can be

constructed exactly if spacetime is 1þ 1 dimensional, and
most likely not in any other case, but surprisingly it still
controls the breakdown of time evolution in any dimension.
Our approach improves upon earlier approximate methods
[27–29], and we also dispel some of the confusion in the
literature. We demonstrate that without proper analysis,
unphysical coordinate effects can be misidentified as
problems in time evolution, or a true breakdown can be
overlooked in numerical computations, hence the frame-
work we provide is an essential tool for any future work on
the topic.
These results are highly surprising since they demon-

strate that the vector field theories that can exist in nature
are tightly constrained, providing a novel appreciation of
the Maxwell and Proca theories. We show that heuristic
reasoning in field theories, which is commonly based on
scalars, can mislead us and mask problems in general, even
in the next simplest example of vectors. Furthermore, we
show that the analysis of the dynamics of self-interacting
vector fields can reveal anomalies that are not apparent in
static solutions or a basic counting of the propagating
degrees of freedom, hence, it can be a powerful tool to test a
wide variety of theoretical ideas.
Our metric signature is ð−;þ; � � � ;þÞ.
Explicitly hyperbolic formulation of the nonlinear Proca

theory.—A simple generalization of the Proca theory,
which we dub the “nonlinear Proca theory” (NPT), is
given by the Lagrangian

L ¼ −
1

4
FμνFμν −

�
μ2

2
X2 þ λμ2

4
ðX2Þ2

�zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{VðX2Þ

; ð1Þ
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where Fμν ¼ ∇μXν −∇νXμ and X2 ¼ XμXμ for the real
vector field Xμ. The corresponding field equation is

∇μFμν ¼ 2V 0Xν ¼ μ2ð1þ λX2ÞXν; ð2Þ

with V 0 ¼ dV=dðX2Þ. We can scale the coordinates and the
fields, and without loss of generality set μ2 ¼ �1, λ ¼ �1
henceforth.
Note that the potential is unbounded from below in some

cases. A major point of this study is that the notion of
boundedness from below that is central to scalar field
theories is insufficient for vectors, as we shall explain.
Nevertheless, we still consider VðX2Þ to be supplemented
by the term ϵðX2Þ4 for the sake of argument, for some
sufficiently small ϵ. One can also physically motivate
different parameter signs. For example, μ2 ¼ 1, λ ¼ 1
has a convex self-interaction potential without any intrinsic
instabilities, and hence is an analog of the nonlinear
Klein-Gordon equation. μ2 ¼ 1, λ ¼ −1 is an effective
field theory for the Abelian Higgs mechanism (e.g.,
[14,15,31]). The expansion breaks down at z ¼ 0 but the
problems we discuss occur before this point. μ2 ¼ −1, λ ¼
−1 is an analog of the famous Mexican hat potential.
It is not trivial to judge the well posedness of NPT from

Eq. (2) since it is not manifestly hyperbolic, i.e., not in the
form of a generalized wave equation. To obtain this form,
we first observe that Xμ obeys the (generalized) Lorenz
condition [27,29]

∇ν∇μFμν ¼ 0 ⇒ ∇μðzXμÞ ¼ 0 ð3Þ

due to the antisymmetry of Fμν, where z ¼ 2V 0=μ2 ¼
1þ λX2.
Using a calculation detailed in Supplemental Material,

Sec. A [32], we show that in 1þ 1 dimensions the principal
part of Eq. (2) can be rewritten as

ḡαβ∇α∇βXμ þ… ¼ Mμ
αXα; ð4Þ

where the ellipses represent single derivative terms,
and the effective metric and the mass square tensor are,
respectively,

ḡμν ¼ zgμν þ 2z0XμXν ð5Þ

Mμ
ν ¼ z2μ2δμν þ curvature terms: ð6Þ

The overall factor z is optional in the definition of ḡμν, i.e.,
our results also hold for ḡμν ¼ gμν þ 2z−1z0XμXν. We
demonstrate in Supplemental Material, Sec. A [32] that,
despite some recent approximate computations in 3þ 1
dimensions, the above result most likely cannot be gener-
alized beyond 1þ 1 dimensions, and we also discuss the
exact form of M. However, the effective metric still
determines when the loss of hyperbolicity occurs in any

spacetime dimension as detailed in Supplemental Material,
Sec. B [32].
The breakdown of time evolution in NPT.—Once it is

established that the effective metric governs the dynamics,
we immediately see that the time evolution cannot continue
to the future of a point where ḡμν becomes singular. Hence,
our main task is identifying if and when this occurs.
Our main result is that, starting from problem-free initial

data, NPT can naturally evolve to a configuration where
the effective metric becomes singular in finite time.
Mathematically, this happens when the determinant
vanishes

ḡ ¼ gð1þ λX2Þdð1þ 3λX2Þ ¼ gzdz3 ¼ 0; ð7Þ

where g ¼ detðgμνÞ, and we used the determinant lemma
det ðAþ uvTÞ ¼ ð1þ vTA−1uÞ det A in dþ 1 dimensions
[33]. Hence, ḡ vanishes when z3 ¼ 0, which is encountered
earlier than z ¼ 0 starting from small field amplitudes.
Note that the problem is encountered even when gμν is
regular everywhere, and X2 can have either sign, hence, the
breakdown is possible for any λ ≠ 0. We emphasize that a
point with z3 ¼ 0 signifies a physical effect, not a coor-
dinate one. Even though the determinant might vanish due
to divergent coordinate transformations in some cases, the
physical importance of z3 ¼ 0 can also be seen in the Ricci
scalar of ḡμν which can only diverge at a physical
singularity. R̄ ¼ Fðgμν; Xμ;∇μXν;∇μ∇νXρÞ=ðz z3Þ indeed
diverges, since F, whose exact form is given in
Supplemental Material, Sec. A [32], is generically non-
vanishing at points with z3 ¼ 0, demonstrating our point.
Since Xμ behaves as if it lives in the spacetime with metric
ḡμν, its time evolution cannot be continued beyond z3 ¼ 0,
the same way any time evolution cannot be continued
beyond a spacetime singularity. Last, our analysis in
Supplemental Material, Sec. B [32] also identifies z3 ¼ 0
as the point where hyperbolicity is lost in any dimension,
even when the field equations cannot be posed in a
manifestly hyperbolic form as in Eq. (4), this is based
on the methods described in Refs. [34,35].
We should highlight that the above results only employ

the covariant field equation (2) and its necessary implica-
tion Eq. (3), hence the loss of well posedness is not a
coordinate effect. The appearance of a curvature singularity
additionally signals that there is no formulation of NPT
which can evolve beyond this point, see Supplemental
Material, Sec. B [32].
z3 ¼ 0 requires the growth of λX2, which can have

various causes, e.g., energy transfer to the vector field from
an outside source [29]. Since we investigate intrinsic
pathologies, we do not consider such factors. Rather, we
will see that tachyonic instabilities for μ2 < 0, or simply the
initial “momentum” of the fields in terms of nonzero time
derivatives suffice. Last, note that the growth of the
components of Xμ is not sufficient by itself, since λX2
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can stay small or strictly positive, both of which imply
z3 ¼ 0 is not achieved.
ḡ ¼ 0 is the only form of breakdown in NPT to the best

of our knowledge, however, there has been another cri-
terion discussed in the recent literature [29,30], which is
based on the dþ 1 decomposition [36,37]. In this approach
we first represent the spacetime as a collection of spatial
hypersurfaces in a process called foliation, and decompose
all tensors into space and time components

ds2¼−α2dt2þγijðdxiþβidtÞðdxjþβjdtÞ;
Xμ¼nμϕþAμ; ϕ¼−nμXμ; Ai¼ðδμi þnμniÞXμ: ð8Þ

The details of this process, some of which can be found in
Supplemental Material, Sec. C [32] following the logic of
Ref. [38], is not central to our discussion, aside from the
fact that nμ ¼ α−1ð1;−βiÞ is a normalized vector field that
is orthogonal to the set of spatial hypersurfaces forming our
foliation, and defines the slicing of spacetime. nμϕ is
orthogonal to the spatial surfaces, and Aμ lies on them.
Introducing the “electric field” Ei ¼ ðδμi þ nμniÞnνFμν,
Eqs. (2) and (3) imply [29]

∂tϕ ¼ βiDiϕ − AiDiα −
α

ḡnn
zðKϕ −DiAiÞ

þ 2λα

ḡnn
½AiAjDiAj − ϕðEiAi − KijAiAj þ 2AiDiϕÞ�;

0 ¼ DiEi þ μ2zϕ ¼ C; ð9Þ

where

ḡnn ¼ nμnνḡμν ¼ −zþ 2λϕ2 ¼ −z3 þ 2λAiAi: ð10Þ

Di is the covariant derivative compatible with the induced
metric on spatial slices (γij), and Kij and K are the extrinsic
curvature and its trace, respectively. C ¼ 0, called the
“constraint equation,” is a result of the ν ¼ t component
of Eq. (2), and does not provide time evolution. However, it
has to be satisfied at all times, i.e., on all spatial
hypersurfaces.
Recent studies noted that Eq. (9) cannot be solved

beyond a point where ḡnn ¼ 0, which was interpreted as
a breakdown of time evolution [29,30,39]. The significance
of ḡnn ¼ 0 is that the constraint, C ¼ 0, is a polynomial
equation in ϕ and the number of roots changes at ḡnn ¼ 0,
as ḡnn ¼ ∂C=∂ϕ. This means that ϕ will generically be
discontinuous at ḡnn ¼ 0, and leads to the more apparent
issue that ∂tϕ diverges.
Before detailing our argument, note that ḡnn ¼ −z3 þ

2λAiAi implies that for λ > 0, ḡnn ¼ 0 is generically
encountered before ḡ ¼ 0, and the order is reversed for
λ < 0. Thus, for λ < 0 we never encounter ḡnn ¼ 0 during
hyperbolic evolution. Thus, we will consider the λ > 0 case
in the following discussion.

We believe the issue at ḡnn ¼ 0 to be a “coordinate
singularity”which does not imply a physical problem in the
time evolution. Namely, ḡnn ¼ 0 arises when one uses a
foliation which is not suitable for ḡμν, possibly because it is
adapted to gμν. ḡμν controls the dynamics of Xμ, hence the
time evolution appears to be problematic for an ill-
constructed foliation, similar to coordinate singularities
in general relativity [37,40]. That ḡnn ¼ 0 implies the
inability of the solution to satisfy the constraint does not
change this fact, since the form of the constraint equation,
hence its root structure, is also foliation dependent.
Our point can be seen directly in the dependence of ḡnn

on ϕ ¼ nμXμ, which changes with foliation, unlike X2.
Consider a point where ḡnn ¼ 0, Xμ ¼ nμϕþ Aμ, and X2 ¼
AiAi − ϕ2 for a foliation defined by the normal vector nμ.
We are free to change our foliation, i.e., choose a new
normal vector ñμ, without changing the physics. This
provides a new decomposition Xμ ¼ ñμϕ̃þ Ãμ. Then, if
X2 > 0, we can choose ñμ to be orthogonal to Xμ so that
ϕ̃ ¼ ñμXμ ¼ 0 ⇒ X2 ¼ ÃiÃ

i. Whereas if X2 < 0 we
can choose ñμ to be parallel to Xμ so that ϕ̃ ¼
signðϕÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ2 − AiAi

p
⇒ X2 ¼ −ϕ̃2. In 1þ 1 dimensions

this can be done globally with some modifications around
XμXμ ¼ 0, but more generally it can at least be performed
at the point where ḡnn ¼ 0. In other words, we can always
find a new foliation where ÃiÃ

i ≤ AiAi (equivalently
ϕ̃2 ≤ ϕ2), hence ḡñ ñ ≤ ḡnn, the equality only being possible
if Ai vanishes. Thus, in the generic case, the time evolution
can be continued in the tilde foliation without issue, thanks
to ḡñ ñ < 0, proving our point that ḡnn ¼ 0 is a result of an
ill-suited foliation. This is not relevant for earlier studies
with diagonal effective metrics [26–28], for which ḡnn ¼ 0

FIG. 1. Snapshots of Xμ and ḡμν for μ2 ¼ −1, λ ¼ −1. The
initial growth of the vector is due to a tachyonic instability, which
eventually carries the solution to breakdown at ḡ ¼ 0. The
physical meaning of the solution is lost in the region ḡ > 0,
where numerical computation artificially continues due to limited
resolution.
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implies ḡ ¼ 0. The exception, Ai ¼ 0, leads to
ḡnn ¼ ḡñ ñ ¼ −z3 ¼ 0. However, this also implies ḡ ¼ 0,
hence, the time evolution indeed breaks down in this case,
not due to ḡnn ¼ 0, but rather due to ḡμν becoming singular.
Numerical results.—We evolved the vector fields of the

Lagrangian (1) on a 1þ 1 dimensional flat spacetime
background, gμν ¼ ημν, using a first order formulation as
in Eq. (9). Overall, we confirm that there exist initial data
configurations for any value of ðμ2; λÞ for which hyper-
bolicity is lost. Technical details are in Supplemental
Material, Sec. C [32].
Sample evolutions for λ ¼ −1 can be seen in Fig. 1

(μ2 ¼ −1) and Fig. 2 (μ2 ¼ 1), where we encounter ḡ ¼ 0
without any foliation issues, as expected. The main differ-
ence between the cases is that μ2 ¼ −1 breaks down even
for arbitrarily low-amplitude initial data due to its tachyonic
instability, whereas μ2 ¼ 1 requires relatively high initial
amplitudes and/or nonzero momentum in the form of Ex.
Note that the evolution continues beyond ḡ ¼ 0 as an
artifact of the numerics which cannot resolve the problem-
atic fast-growing modes. Hence, these parts of the solutions
are not physical (see Supplemental Material, Sec. C [32]).
From a physical perspective, μ2 ¼ −1, λ ¼ −1 is a vector

analog of the Higgs potential, where the classical “false
vacuum,” Xμ ¼ 0, is unstable, but is not dynamically
connected to any true vacuum. The effective metric
becomes singular well before Xμ reaches the minimum
of VðX2Þ at X2 ¼ 1, at which ḡ ¼ 0.
The λ ¼ 1 cases require special numerical care since

ḡnn ¼ 0 has to be encountered before ḡ ¼ 0. Even though
physical time evolution is not affected by ḡnn ¼ 0, numeri-
cal computation fails to continue beyond such a point,
hence we cannot investigate the physical breakdown using
generic foliations. However, we also saw that, ḡnn ¼ 0 and
ḡ ¼ 0 can be coincident if Ai ¼ 0 at this point. Therefore,

to get as close as possible to ḡ ¼ 0, we used initial data that
satisfies jAij ≪ 1, and ϕ ¼ 1=

ffiffiffiffiffi
3λ

p þ δϕ chosen so that we
are already somewhat close to the loss of hyperbolicity. The
question is whether the time evolution proceeds toward
breakdown starting from this configuration, or away
from it.
Analytically, the leading behavior of Eq. (9),

∂tδϕ ¼ −ðαK=9λÞðδϕÞ−1 þ � � �, already implies that δϕ
evolves toward 0 if K > 0, which is the case for an
appropriate choice of foliation. Thus, we expect the time
evolution to break down for μ2 ¼ �, λ ¼ 1. See a sample
numerical evolution in Fig. 3 which uses the coordinates
of Ref. [41].
Last, our results can be generalized to any dimensions,

e.g., by using our specific initial configurations along one
spatial direction and translation symmetry along the rest.
Whether more generic initial data can still lead to loss of
hyperbolicity in higher dimensions remains to be seen.
Discussion.—The key part of our Letter was a careful

construction of the effective metric, and identifying its
singularity as the appropriate criterion for the loss of
hyperbolicity. We also revealed the foliation-dependent
nature of the commonly used breakdown criterion ḡnn ¼ 0,
which can be easily misidentified as a physical breakdown
in numerical studies. In essence, the effective metric is
generically curved even when the spacetime metric is not.
Thus, even in Minkowski spacetime, the usual setting of
high energy theories, tools from general relativity are likely
required. We explained some of the basic principals for
choosing a well-suited foliation for NPT, but future studies
will likely require novel approaches.
The problems we revealed can be traced back to the

constrained nature of the time evolution and the Lorenz
condition, and these do not rely on the specific form of

FIG. 3. Snapshots of Xμ and ḡμν for μ2 ¼ 1, λ ¼ 1. We start
with initial data close to breakdown and Ai ¼ 0. This way, we
encounter the coordinate singularity ḡnn ¼ 0 shortly before the
true singularity ḡ ¼ 0, and infer that the solution is indeed
evolving toward breakdown.

FIG. 2. Snapshots of Xμ and ḡμν for μ2 ¼ 1, λ ¼ −1. The
initial value of Ex drives Ax, and in turn X2, so that hyper-
bolicity is lost, ḡ > 0.
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VðX2Þ, only that it is not linear in X2. Derivative self-
interactions also generally lead to generalized Lorenz
conditions and constrained evolutions, hence, we expect
most, if not all, self-interacting vector field theories to
suffer from the same issues.
We demonstrate that the intuition gained by studying

scalar fields cannot be directly applied to vectors. For
example, the ϕ4 scalar field theory can be evolved
indefinitely for all ðμ2; λÞ, even if the field amplitude grows
without bound. Contrast this with our results, showing that
for all ðμ2; λÞ the evolution breaks down at finite field
values. This is despite the fact that NPT is a member
(perhaps the simplest) of the generalized Proca theories,
which are explicitly constructed to be ghost free [22].
Therefore we suggest that simply counting the degrees of
freedom is not sufficient, and our results are essential in
investigating the viability of such theories.
All our conclusions about the pathology of NPT con-

sidered the theory at face value, i.e., not as an effec-
tive approximation to a yet more fundamental theory.
Nevertheless, self-interacting vectors, for λ ≤ 0 [42,43],
can appear as such effective fields in some contexts, hence
the problems may be resolved in a complete theory. Thus,
NPT can still be useful as long as such limitations are taken
into account. Exploration of these topics is a lengthy
endeavor by itself and an important part of ongoing [44]
and future research.
This study identified the problematic nature of one of the

simplest classical field theories, that of a self-interacting
vector. We hope our results lead to further research on
mathematical constraints on field theories, and the physical
implications of such results.
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