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Interacting massive spin-1 fields have been widely used in cosmology and particle physics. We obtain a
new condition on the validity of the classical limit of these theories related to the nontrivial constraints that
exist for vector field components. A violation of this consistency condition causes a singularity in the time
derivative of the auxiliary component and could impact, for example, the field’s cosmic history and
superradiance around black holes. We show that gauge-invariant interactions are generally safe from this
problem, even though the mass term explicitly breaks the gauge symmetry. Such restrictions for
interactions are expected to exist generically in many other nontrivially constrained systems.
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Introduction.—The lack of direct evidence for weakly
interacting massive particles has driven people to explore
different dark matter candidates, among which light
massive spin-1 (Proca) fields, the so-called “dark photons”
or vector dark matter, have been drawing more attention in
recent years [1–4]. In general Proca fields could have a
variety of nongravitational interactions and thus very rich
dynamics. For example, the coupling to an axion field may
allow for a significant energy transfer from axions to dark
photons, and make the latter the dominant component of
dark matter in the present-day Universe [5,6]. If the Proca
field possesses a nonlinear self-interacting potential or a
nonminimal coupling to gravity, it may drive the cosmic
inflation in the early Universe [7,8], and support coher-
ently oscillating localized solitonic field configurations
called vector oscillons [9]. The existence of strong self-
interactions would also weaken the superradiance bounds
on ultralight vectors [10–14]. Moreover, the theory of vector
Galileons, whose effective action contains self-interactions
with higher-order derivatives, has been constructed by
requiring that the equation of motion has second-order
time derivatives and yields three healthy propagating
degrees of freedom [15,16]. As an IR modification of
gravity, it has been shown that these self-interacting
Proca fields can lead to a viable cosmic expansion history
and even alleviate the Hubble tension without sabotaging
the success of general relativity on scales of the Solar
System [17–19].
Given these manifold applications, it is necessary to

examine the consistency of the interacting Proca theory

carefully. One guiding principle that often comes into play
is the validity of an effective description of the interaction,
which may arise from a low-energy approximation of
coupling to other fields or nonminimal coupling to gravity.
Another standard lore is that theories with ghosts or
energies unbounded from below are usually unstable and
problematic [20–22] and the initial conditions must be
restricted in “islands of stability” if possible [23,24],
although there may be some exceptions [25]. Regarding
massive vectors, it is pointed out that if they are non-
minimally coupled to gravity, the longitudinal mode may
exhibit ghost instabilities and one cannot discuss the vector
field dynamics in a healthy way [26,27]. In practice, one
performs as many sanity checks as possible to determine
the scope of application for the theory in hand.
In this Letter, we will discuss another type of bound that

can arise in the classical limit of the theory by demanding
the absence of a singularity problem for _A0, due to the fact
that the interacting Proca theory is a nontrivially “con-
strained” system, where the auxiliary component A0 cannot
always be uniquely solved in terms of the canonical fields.
A similar type of constraint is also expected for interacting
massive spin-2 fields.
In what follows, we will first clarify three consistency

conditions and introduce the singularity problem by taking
real-valued self-interacting vectors as an example; then, a
specific model is carried out in detail both analytically and
numerically. Finally, we discuss the implication of our
results and illustrate that the singularity problem can also
exist for complex fields and general types of interactions.
We adopt the mostly plus convention for the metric.
The singularity problem.—For definiteness, let us con-

sider a real-valued massive vector field Aμ ¼ ðA0;AÞ with
the Lagrangian

L ¼ −
1

4
FμνFμν − VðAμAμÞ; ð1Þ
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where Fμν ¼ ∂μAν − ∂νAμ and there is no gauge invariance
thanks to the potential V, which includes a mass term along
with self-interactions. A concrete example is the Abelian-
Higgs model, where a quartic self-interaction is induced by
Higgs exchange in the low-energy limit. By varying the
action S ¼ R

d4xL with respect to the field Aν, we find the
Euler-Lagrange equation ∂μFμν − 2V 0ðAμAμÞAν ¼ 0. In
vector notation, it becomes

∇ ·Πþ 2V 0A0 ¼ 0; ð2Þ

_Πþ∇ ×∇ × Aþ 2V 0A ¼ 0; ð3Þ

where the prime denotes the derivative of the potential in
terms of AμAμ and we have defined the conjugate field

Πμ ≡ ∂L=∂ _Aμ ¼ F0μ, so

_A ¼ Πþ∇A0: ð4Þ

One more useful equation can be obtained by noting that
Fμν is antisymmetric, so that ∂μðV 0AμÞ ¼ 0, that is,

−ðV 0 − 2V 00A2
0Þ _A0 − 2A0V 00ðA · _AÞ þ∇ · ðV 0AÞ ¼ 0: ð5Þ

In the language of Hamiltonian mechanics, Π0 ¼ 0 is a
primary constraint, Eq. (2) is a secondary constraint
obtained by requiring _Π0 ¼ δH=δA0 ¼ 0, and Eq. (5) is
a tertiary constraint obtained by requiring the secondary
constraint to be preserved in time [28]. The foundation for
these derivations is the stationary action principle, in which
we have implicitly assumed that the field Aμ is continuous;
otherwise, the infinitesimal variation δAμ is ill-defined. By
applying the above formalism, therefore, we require a
“consistent” classical system to satisfy at least three
conditions everywhere: (i) the field Aμðt; xÞ is real-valued;
(ii) the field Aμðt; xÞ is continuous; and (iii) the second-
class constraints, e.g., Eqs. (2) and (5), are respected.
These conditions are not trivial, and we may gain some

insights about them by using Eqs. (3)–(5) and numerically
evolvingΠ, A, and A0. Given appropriate initial conditions,
suppose that V 0 − 2V 00A2

0 never becomes 0, then the
infinitesimal variations δΠ, δA, and δA0 are always
well-defined in a infinitesimal time interval δt, and the
field Aμ will remain smooth and unique all the time. This is
indeed the case for free massive fields, where
VðAμAμÞ ¼ m2AμAμ=2. For theories with self-interactions,
however, a singularity is encountered if V 0 − 2V 00A2

0 be-
comes 0 at some spacetime point unless −2A0V 00ðA · _AÞ þ
∇ · ðV 0AÞ also vanishes in an appropriate way to ensure a
finite _A0, which otherwise causes a discontinuity in A0 and
violates at least one of the consistency conditions. Thus,
maintaining the continuity of A0 at this point needs an
overconstraint and requires fine-tuning of initial conditions.

It is seen that any plausible interacting Proca theories
should ensure that such a problem is avoided in its validity,
to wit, the field value should never cross the boundary in
field space fjA0j; jAjg specified by

V 0 − 2V 00A2
0 ¼ 0: ð6Þ

One may think that the problem identified here can be
easily avoided if we use Eq. (2) instead of Eq. (5) to obtain
A0. As will be shown shortly, this difficulty is actually
independent of whether and how we evolve the system
numerically.
A concrete model.—In order to understand the signifi-

cance of this singularity bound, it is illuminating to
consider the simplest possibility of a self-interaction:

VðAμAμÞ ¼ m2

2
AμAμ þ λ

4
ðAμAμÞ2; ð7Þ

where A0 can be solved in closed form. We are going to
show that if we stick with conditions (i) and (iii), then
condition (ii) will necessarily be violated if the field system
hits the boundary [Eq. (6)] during its evolution.
The secondary constraint [Eq. (2)] in this case becomes

A3
0 þ c1A0 þ c2 ¼ 0; ð8Þ

where c1 ¼ −m2=λ − A2 and c2 ¼ −∇ ·Π=λ. The general
solution of this cubic equation can be given by the
Cardano’s formula,

Að1Þ
0 ¼ uþ v; ð9Þ

Að2Þ
0 ¼ −1þ i

ffiffiffi
3

p

2
uþ −1 − i

ffiffiffi
3

p

2
v; ð10Þ

Að3Þ
0 ¼ −1 − i

ffiffiffi
3

p

2
uþ −1þ i

ffiffiffi
3

p

2
v; ð11Þ

where u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−c2=2þ

ffiffiffiffi
Δ

p
3

q
and v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−c2=2 −

ffiffiffiffi
Δ

p
3

q
. The

Að1Þ
0 is a real root and the other two are complex conjugate if

Δ > 0. All three are real roots with Að2Þ
0 and Að3Þ

0 being the
same if Δ ¼ 0. And all three are different real roots if
Δ < 0 [29]. Here, the discriminant is defined as

Δ≡
�
c2
2

�
2

þ
�
c1
3

�
3

¼
�∇ ·Π

2λ

�
2

−
�
m2

3λ
þ A2

3

�
3

: ð12Þ

The value of Δ in terms of ∇ ·Π and A is shown in Fig. 1.
A few subtleties need to be clarified when we apply the

Cardano’s formula [Eqs. (9)–(11)]. First, we have defined
the square root of any number by its principal value.
Second, we have defined the cube root of any number by its
principal value when c2 ≤ 0 and its antiprincipal value
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when c2 > 0. The (anti)principal cube root returns the real
cube root for a real number, and the root with the (smallest)
greatest real part for a complex number. These conventions

are adopted such that Að1Þ
0 is always real and all three roots

are continuous everywhere except at ∇ ·Π ¼ 0, where A0

can actually remain continuous by switching roots.
If a field system crosses the boundary Δ ¼ 0 (and

∇ ·Π ≠ 0) during its evolution, then the real roots Að2;3Þ
0

will be annihilated or created depending on which region in
Fig. 1 the system is in before the crossing. It is easy to see
that the discontinuity of A0 is an inevitable consequence if

A0 follows either A
ð2Þ
0 or Að3Þ

0 , and if the system hits Δ ¼ 0

from the white region where Δ < 0.
Now we will show that A0 cannot remain continuous if

the system hits the boundary specified by Eq. (6). To do
this, we can judiciously rewrite the discriminant Δ in terms
of jA0j and jAj by using the secondary constraint [Eq. (2)].
The value of Δ in terms of jA0j and jAj is shown in
Fig. 2. At Δ ¼ 0, the three roots [Eqs. (9)–(11)] become

jAð1Þ
0 j ¼ 2A0;crit, jAð2;3Þ

0 j ¼ A0;crit, where [30]

A0;critðAÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ λA2

3λ

r
; ð13Þ

and A0 ¼ 2A0;crit and A0 ¼ A0;crit are visualized as the gray
dashed and solid black curves respectively in Fig. 2. Note
that only A0 ¼ A0;crit (solid black line) corresponds to the
boundary V 0 − 2V 00A2

0 ¼ 0, and the adjacent regions sepa-
rated by this line both have Δ < 0, which justifies the
foregoing claim.
On the other hand, it is always safe to cross the gray

dashed line, since in this case A0 follows the root A
ð1Þ
0 and

Að1Þ
0 is real and continuous. But there is no guarantee that

the evolution will be healthy if the root Að1Þ
0 is chosen for A0

initially, because A0 switches roots at∇ ·Π ¼ 0. In order to
avoid the singularity problem and also allowing field values
to be small, we conclude that the field evolution should be
restricted in the nonmeshed region in Fig. 2.

A minimal model of Eq. (7) is carried out numerically in
1þ 1-dimensional spacetime to support the above analysis.
We present field-space trajectories for repulsive self-
interactions in Fig. 3. The case of attractive self-interactions
is similar, and thus only shown in the Supplemental Material
[31], Sec. I, where numerical details are also provided.
Up to this point, it looks like that the “discontinuity

problem” is a more appropriate name inasmuch as the
temporal component A0 cannot be continuous when the
field system hits the boundary specified by Eq. (6). In fact,
the discontinuity is just an artificial phenomenon because
in principle we can stick with the conditions (i) and
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FIG. 2. The value of the discriminant Δ in terms of A0 and A
for repulsive (λ > 0, left) and attractive (λ < 0, right) self-
interactions. The colored and white regions correspond to Δ > 0
andΔ < 0 as in Fig. 1, and the gray dashed and black solid curves
represent A0 ¼ 2A0;crit and A0 ¼ A0;crit at which Δ ¼ 0. A
consistent classical system should never cross the black solid
curve, which is exactly the one specified by Eq. (6) (see the texts
for proof). Allowing field values to be small, the system during
the evolution should never enter into the meshed region.
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FIG. 1. The value of the discriminantΔ in terms of∇ ·Π and A,
defined by Eq. (12), for repulsive (λ > 0, left) and attractive
(λ < 0, right) self-interactions. There are one, two, or three
different real roots of A0 in Eq. (8) when Δ is >, ¼ or < 0.
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FIG. 3. Field-space trajectories of a numerical example for
repulsive self-interactions, where the system crosses the black
solid boundary specified by Eq. (6). The colored and white
regions, and the gray dashed and black solid curves have the same
meaning as in Figs. 1 and 2. The blue and red trajectories
represent the time evolution of fields at two adjacent spatial
locations starting from the solid point. As shown by the blue
trajectory, when the system meets the black solid boundary, the
value of A0 can no longer remain continuous and suddenly jumps
to the gray dashed line, which violates the consistency conditions.
Numerical details and an example for attractive self-interactions
are provided in the Supplemental Material [31], Sec. I.
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(ii) instead, and then we will reach a conclusion that the
second-class constraints cannot be obeyed. The real prob-
lem is that at least one of the consistency conditions will be
violated if the boundary [Eq. (6)] is hit, which is closely
related to a singularity in _A0.
Conclusions and discussions.—We have demonstrated

that there exists a generic constraint on field values for
interacting Proca theory. Such a constraint can be obtained
by observing that a classical massive spin-1 field Aμðt; xÞ
should be both real-valued and continuous, and the second-
class constraints of the system be preserved everywhere.
Ensuring these conditions is crucial to get realistic results in
some contexts, where nongravitationally interacting
classical fields may play a pivotal role, such as density
perturbations in dark photon production [6], vector oscil-
lons [9,32] and black hole superradiance of vectors
[10–14]. Taking nonderivative self-interactions as a con-
crete example, we have shown that the field system during
its evolution should never meet the singularity bound
specified by Eq. (6), otherwise the effective description
becomes inconsistent.
Loosely speaking, trajectories in phase space (if we

could ever visualize them for partial differential equations)
would intersect at the singularity bound [Eq. (6)], indicat-
ing that A0 can no longer be solved uniquely. This situation
is usually avoided in physics equations because of the
Picard-Lindelof theorem (also called the existence and
uniqueness theorem), which states that the existence and
uniqueness of solutions are guaranteed if the derivative of
the variable is continuously differentiable. To fully appre-
ciate this point, in Supplemental Material [31], Sec. II, we
provide a toy model with second-class constraints where
the phase portrait can be shown explicitly. We also note
there the existence of a basin of attraction toward the
singularity bound. If the same goes for interacting massive
vectors, the allowed field space is further restricted.
Our procedure to obtain the singularity bound is sys-

tematic, and also works for more general interactions (such
as derivative interactions and interactions with external
fields)—finding the tertiary constraint in the theory and
then picking out the coefficient of the time derivative of the
auxiliary component. (This procedure may even work for
spin-2 fields, and we leave this investigation for future
work.) Following the procedure, we can also find that the
singularity bound equally exists for complex fields. To see
this, we may separate the real and imaginary part of a
complex field Aμ ¼ Rμ þ iIμ, then the theory of Aμ

becomes a theory of two interacting real fields Rμ and
Iμ, which are both constrained by demanding the absence
of the singularity for _R0 and _I0.
We note that the singularity problem can be avoided by

gauge-invariant interactions, e.g., those only involving
Fμν, although this may not be the only solution. This is
because the gauge-invariant part in action must satisfy
∂μðδSGI=δAμÞ ¼ 0, while we have ∂μðδS=δAμÞ ¼ 0 if the

equation of motion is satisfied [35]. Thus, the tertiary
constraint like Eq. (5) can be obtained solely from gauge-
symmetry-breaking terms. This is an example where
gauge invariance plays a role even in theories without
gauge invariance.
The existence of the singularity problem in a theory

indicates that the theory cannot be the complete story.
Learning from perturbative unitarity [37–39], the standard
solution would be to introduce new particles or to look for a
UV completion above the scale where the singularity bound
is met. For example, we can introduce a Higgs boson to
rescue the quartic theory [Eq. (7)]. We leave such consi-
derations for future work.

We would like to thank Mustafa Amin, Ray Hagimoto,
Soichiro Hashiba, Thomas Helfer, Mudit Jain, Siyang Ling,
and Andrew Long for fruitful discussions. We would
especially like to thank Mustafa Amin and Andrew
Long for a careful reading of the manuscript and sugges-
tions for its improvement. H. Y. Z. is partly supported by
DOE-0000250746.

Note added.—In recent Letters [13,40], the authors also
consider self-interactions that are described by Eq. (1) and
interpret the singularity problem discussed here as a ghost
instability or a loss of hyperbolicity by rewriting the field
equations for Aμ in the form of wave equations (up to some
terms with derivatives) and by identifying an effective
metric ĝμν. The condition ĝ00 ¼ 0 turns out to be the same
as Eq. (6). We acknowledge that these works are comple-
mentary to this Letter and may provide some physical
intuition of the singularity problem for self-interacting
massive vectors. There are some caveats, though: (i) The
vector field would become ghosts by diverging, at which
point the entire theory actually breaks down (so the field
would not get a chance to acquire kinetic terms with a
wrong sign). (ii) The loss of hyperbolicity is often danger-
ous but not always fatal for physical systems (see
Refs. [41–43] for examples).
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