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We present an effective field theory for the nonlinear fluctuating hydrodynamics of a single conserved
charge with or without time-reversal symmetry, based on the Martin-Siggia-Rose formalism. Applying this
formalism to fluids with only charge and multipole conservation, and with broken time-reversal symmetry,
we predict infinitely many new dynamical universality classes, including some with arbitrarily large upper
critical dimensions. Using large scale simulations of classical Markov chains, we find numerical evidence
for a breakdown of hydrodynamics in quadrupole-conserving models with broken time-reversal symmetry
in one spatial dimension. Our framework can be applied to the hydrodynamics around stationary states of
open systems, broadening the applicability of previously developed ideas and methods to a wide range of
systems in driven and active matter.
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Introduction.—In the past few years, infinitely many
universality classes of hydrodynamics have been discov-
ered [1–14], with exotic conservation laws such as the
conservation of multipole charges or charges along sub-
dimensional manifolds. Dubbed “fracton fluids,” as such
universality classes describe the thermalization of generic
models of interacting fractons (particles with mobility
constraints) [15–25], a careful study of these new hydro-
dynamic universality classes is likely to give valuable
insight into the foundational underpinnings of hydrody-
namics as an effective field theory (EFT) [26–28], espe-
cially in nonthermal systems with unusual symmetries.
In this Letter, we find new universality classes of fracton

hydrodynamics with broken time-reversal symmetry. To
understand why this construction is subtle, let us consider
the simplest fracton fluid: a 1D system with charge and
dipole symmetry [1–4], which can be experimentally
realized in tilted optical lattices [29]. Letting ρ denote
the density of conserved charge, one finds that dipole
conservation ∂t

R
dx xρ ¼ 0 mandates

∂tρþ ∂
2
xJxx ¼ 0: ð1Þ

With time-reversal symmetry,

Jxx ¼ D∂
2
xρþ � � � ð2Þ

is necessary, where the dots denote subleading terms in
derivative expansion. Thus far, this result is justified using
effective field theory methods based on coupling this fluid
to background (mixed-rank) gauge fields [1]; a more
straightforward argument is that Jxx is time-reversal odd:
since there is no T-odd parameter in the model that could
relate Jxx to ρwithin ideal hydrodynamics, only derivatives

of ρ can appear in Jxx. When time-reversal symmetry is
broken, is it possible to write Jxx ¼ −D0ρþ � � �?
Our purpose in this Letter is to give a systematic and

highly generalizable framework capable of answering this
question (negatively). We will develop a systematic effective
field theory framework for studying hydrodynamics of
nonthermal systems, with or without time-reversal sym-
metry. Studying many different examples of fracton fluids
without time-reversal symmetry, we will discover an infinite
new family of dynamical universality classes, which general-
ize the KPZ (Kardar-Parisi-Zhang) fixed point [30–33] and
multipolar extensions thereof [9].
Effective field theory.—We first develop a user-friendly

EFT for a nonthermal fluid (one in which energy is not
conserved, and temperature is not well defined). We focus
on systems with a single conserved charge with density ρ,
which is a scalar under rotations, inversions, and time
reversal; generalizations will appear elsewhere. We assume
that the dynamics is local in space, ergodic, and that there
exists a steady state probability distribution on the classical
state space (or quantum density matrix) invariant under the
microscopic dynamics. In contrast, we will not assume that
the dynamics is invariant under time-reversal or any spatial
symmetry.
For pedagogical purposes, consider nonlinear fluctuating

hydrodynamics from a traditional perspective via classical
stochastic differential equations [34]. (Note that our even-
tual EFT will also describe the hydrodynamics of micro-
scopically quantum systems.) It is useful (for now) to think
of ρx as the discretization of a continuum function ρðxÞ
onto some d-dimensional lattice. We write

dρx
dt

¼ FxðρÞ þ ζxðtÞ; ð3Þ
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where Fx is some nonlinear function of ρs on nearby lattice
sites, consistent with all necessary symmetries, and ζxðtÞ
corresponds to stochastic fluctuations. Equation (3) is in the
Ito interpretation. Eventually, we’ll want a rulebook for
how to calculate Fx and the statistics of ζx. For now, assume
that the noise is white, with zero mean and

hζxðtÞζx0 ðt0Þi ¼ ϵQxx0 ðρÞδðt − t0Þ; ð4Þ
with ϵ a perturbatively small “bookkeeping” parameter, and
Qij symmetric and positive semidefinite. It will be useful to
replace (3) by the equivalent Fokker-Planck equation for
Pðρ; tÞ,

∂P
∂t

¼ ∂

∂ρx

�
−FxðρÞPþ ϵ

2

∂

∂ρx0
ðQxx0 ðρÞPÞ

�
; ð5Þ

where summation over repeated indices is understood.
Now we bring in our first key assumption: the existence

of a steady state distribution,

PeqðρÞ ∝ exp½−ΦðρÞ=ϵ�: ð6Þ
If ϵ → 0, this distribution becomes tightly peaked near
minima of Φ at small ϵ. This limit is both technically
convenient and physically sensible: on very long scales, a
fluid should be approximately described by noise-free partial
differential equations (e.g., Fick’s Law). Combining (5)
and (6) we conclude that [35]

0þOðϵ0Þ≡ 1

ϵ

�
−Fxμx þ

1

2
Qxx0μxμx0

�

¼ −iHð−iμ=ϵ; ρÞ; ð7Þ
where we have defined

μx ≡ −
∂Φ
∂ρx

: ð8Þ

Already, we can see sharp connections to thermodynamics
and statistical mechanics: Φ plays the role of entropy S, the
thermodynamic potential in the microcanonical ensemble,
while μ is the chemical potential conjugate to ρx. This
emergent thermodynamics does not require finite temper-
ature, energy conservation, or time-reversal symmetry.
Moreover, the noise variance Qxx0 is not arbitrary: (7)
mandates a fluctuation-dissipation theorem [36,37] relating
Qxx0 to Fx; the consequences of this will be especially clear
in the EFT language.
In (7), we also defined a function Hð−iμ=ϵ; ρÞ. We will

now show that it can be interpreted as a “Hamiltonian.” The
path integral of the system described by (3) is given by the
Martin-Siggia-Rose method [38]:

Z ¼
Z

DρDζ δ½∂tρ − FðρÞ þ ζ�e−
R

dt 1
2ϵζQ

−1ζ ; ð9Þ

which is equivalent to

Z ¼
Z

DρDπDζ ei
R

dtðπ∂tρ−FðρÞ·πþ i
2ϵζQ

−1ζþζπÞ

¼
Z

DρDπ ei
R

dtL: ð10Þ

In the last equation we get the effective Lagrangian

L ¼ π∂tρ − FðρÞπ þ iϵ
2
πQπ ¼ π∂tρ −Hðπ; ρÞ: ð11Þ

Note that Hðπ ¼ −iμ=ϵ; ρÞ is simply (7) up to OðϵÞ.
From now on, we replace ρx with its continuum limit

ρðxÞ. Fx,Qxx0 , and Pðρ; tÞ then become functionals of ρðxÞ.
The Hamiltonian in the continuum limit is

H ¼
Z

dx

�
Fðx; ρÞπðxÞ − iϵ

2
πðxÞQðx; ρÞπðxÞ

�
; ð12Þ

where F and Q can include spatial derivatives acting on ρ
and/or π.
There are three important transformations and/or sym-

metries we wish to impose within EFT:
Charge and/or multipole conservation: For any inte-

grable function fðxÞ, we define a “multipolar” charge as

Qf ≔
Z

ddx fðxÞρðxÞ: ð13Þ

Qfi is conserved if the system is invariant under

πðxÞ → πðxÞ þ fðxÞcðtÞ; ð14Þ

where ciðtÞ is an arbitrary function of time. Under this
transformation, the action transforms as

S → Sþ
Z

dt ddx fðxÞcðtÞ∂tρðxÞ: ð15Þ

The invariance of the action gives

δS
δcðtÞ ¼

d
dt

Z
ddxf ðxÞρðxÞ ¼ d

dt
Qf ¼ 0: ð16Þ

Parity: Under parity, x → −x and ρðxÞ → ρð−xÞ. We
further demand the canonical momentum πðxÞ → πð−xÞ.
Time reversal: Under time reversal, t → −t and

ρðx; tÞ → ρðx;−tÞ. Supposing for the moment that we have
time-reversal symmetry and satisfy (17), in order for the
Lagrangian to be invariant under time reversal, the term
π∂tρ’s contribution to the action should remain the same
(up to a total derivative). Under time reversal, ∂tρ → −∂tρ.
If π → −π under time reversal, from the invariance of the
Hamiltonian, Hðπ; ρÞ ¼ Hð−π; ρÞ, we would find that
the leading order of π in the time-derivative free terms
of the Hamiltonian is H ∼ π2, which means the dynamics
of the system is fully stochastic.
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If we want a system whose dynamics is not fully
stochastic, we have to change the behavior of π under
time reversal, namely, πðx; tÞ → −πðx;−tÞ þ igðxÞ, so now
Hðπ; ρÞ ¼ Hð−π þ ig; ρÞ. From the above analysis, we
know that only when g∂tρ is a total derivative can the
equations of motion be invariant. According to (7), the
Hamiltonian satisfies

Hð0; ρÞ ¼ Hð−iμ=ϵ; ρÞ þOðϵ0Þ ¼ 0: ð17Þ
A natural choice is therefore

πðx; tÞ → −πðx;−tÞ − iμðxÞ=ϵ: ð18Þ
Note that (18) is a Z2 transformation reminiscent of the

Kubo-Martin-Schwinger (KMS) symmetry used to imple-
ment time-reversal symmetry in dissipative thermal systems
at temperature T. It is consistent with the condition that two
applications of the time reversal should return dynamical
fields to their original values. Equation (18) is the unique
kind of Z2 transformation on functions (also called an
involution) not requiring an infinite order series in π. Since μ
is a total derivative, assuming thatH is invariant under (18),
the change in the action is a total derivative:

S → Sþ iΔΦ=ϵ; ð19Þ
where ΔΦ denotes the difference in the thermodynamic
potential Φ in the initial and final state.
Remarkably, our EFT-based guess for how to implement

time reversal can also be justified microscopically.
Assuming statistical time-translation invariance for sim-
plicity, time-reversal symmetry is microscopically imple-
mented via detailed balance: if at time t the microstate of
the system is ρ0, and at time t ¼ 0 the microstate is ρ0, then

Pðρ0; tjρ0; 0ÞPeqðρ0Þ ¼ Pðρ0; tjρ0; 0ÞPeqðρ0Þ ð20Þ

Here Pð� � �Þ denotes the transition probability, which can be
calculated via path integral [38]

Pðρ0; tjρ0; 0Þ ¼
Z

ρð0Þ¼ρ0;ρðtÞ¼ρ0

DρDπ ei
R

dtL: ð21Þ

Observe that the transformation (18) is accompanied with
t → −t, which flips the two boundary conditions in the path
integral. Combining (19) with (6) we obtain (20).
So far, our discussion has focused on theories with

Gaussian noise, which are described by a quadratic
Hamiltonian Hðπ; ρÞ. However, it is straightforward to
consider higher order Hamiltonians from the EFT perspec-
tive. What is highly nontrivial is to convert the action
S½π; ρ� back to the Fokker-Planck equation, once we
consider nonlinearities in π; this task will be done in a
future Letter. In the Supplemental Material (SM) [39], we
give the generalization of (7) to nonperturbatively large
noise without time reversal.

Equation (18) is also the correct definition of time
reversal in situations where detailed balance is broken.
In this case, it may not be a symmetry (S need not be
invariant). Still, within linear response, we can cleanly
separate out the time-reversal even and odd contributions to

S: Fx ¼ FðeÞ
x þ FðoÞ

x , where FðoÞ
x satisfies

R
x F

ðoÞ
x μx ¼ 0. It

is easy to verify that (18) still holds if, instead of (19), we
have

S → S� þ iΔΦ=ϵ; ð22Þ
where S� is the original action with FðoÞ

x → −FðoÞ
x , and

where FðeÞ
x obeys (7). FðoÞ

x is unrelated to the noise Qxx0 ,
and correspond to time-reversal breaking terms [hence the
sign flip in (22)] that are not dissipative. In hydrodynamics
such terms can arise from quantum anomalies [40,41],
Hall transport [42], and more general situations when
boost invariance is broken [43]. We conclude that any
hydrodynamic theory for ρ, with a stationary homogeneous
distribution, transforms in a “covariant” way under the
symmetry (22) at leading orders in the derivative expansion
(see SM). This allows us to provide quite strong constraints
on fracton hydrodynamics without time-reversal symmetry.
Fracton fluids.—We now begin to classify the new

universality classes of fracton hydrodynamics with or
without P or T symmetry. Here we will systematically
discuss systems with only three kinds of multipole charge
conservation: monopole, dipole, and quadrupole conserva-
tion, but our framework can be easily generalized to other
systems. At least for multipole conserving theories, it
appears that all of the peculiar possible phenomena can
be found already within one of these three theories.
We start by writing down all possible leading-order terms

in Hamiltonian; namely, we will consider at most quadratic
terms in π, and keep as few derivatives and nonlinearities in
ρ or μ as possible.
Charge conserving: the action is invariant under the

transformation π → π þ cðtÞ, so the Hamiltonian should be
a function of ∂xπ or higher order derivative terms:

H ¼ AðρÞ∂xπ þ σðρÞ∂xμ∂xπ − iϵQðρÞð∂xπÞ2 þ � � � : ð23Þ

Dipole conserving: H contains ∂
2
xπ or higher order

terms, since it is invariant under π → π þ xcðtÞ:

H ¼ AðρÞ∂2xπ þ ∂xBðρÞ∂2xπ þ σðρÞ∂2xμ∂2xπ
− iϵQðρÞð∂2xπÞ2 þ � � � : ð24Þ

Quadrupole conserving: NowH should consist only of
∂
3
xπ or higher order terms:

H ¼ AðρÞ∂3xπ þ ∂xBðρÞ∂3xπ þ ∂
2
xCðρÞ∂3xπ

þ σðρÞ∂3xμ∂3xπ − iϵQðρÞð∂3xπÞ2 þ � � � : ð25Þ
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In the above equations, AðρÞ, BðρÞ, CðρÞ, σðρÞ, andQðρÞ
are (as of yet) undetermined functions of ρ, which do not
include any derivatives. Combining all the other constraints
we imposed to the system, (7), (17), and (18), we list all
possible forms of the undetermined functions in Table I.
From the table, we see that with or without P or T, the
leading order dissipative terms σðρÞ are always the same
and are fixed by the conditions (7) and (17). This is the
fluctuation-dissipation theorem [36]. Second, when the
systems have PT symmetry or neither, there always exists
a nonzero leading order term, which is dissipationless.
The monopole charge-conserving case allows for a generic
function fðμÞ: indeed, for F antiderivative of f, the
corresponding term in the Hamiltonian transforms as
f∂xπ → f∂xπ þ if∂xμ ¼ f∂xπ þ ∂xFðμÞ, where the sec-
ond term is a total derivative, and similar steps lead to
the other nonzero entries of Table I. These terms can lead to
instabilities. In the charge-conserving case, the endpoint of
this instability is the KPZ fixed point [30–33]; in higher
dimensions, we have found a new generalization of the
KPZ fixed point.
To estimate the critical dimensions for these fixed points,

we assume that the charge susceptibility
R
ddxhρ2ðxÞi is

finite, which implies the scaling ρ ∼ L−ðd=2Þ, where L is the
system size. In the charge conserving case, the leading
nonlinearity in the current is Jx ¼ AðρÞ ∼ ρ2 ∼ L−d, while
the leading dissipative term is Fick’s law Jx ¼ −σ∂xμ∼
∂xρ ∼ L−1−ðd=2Þ. We see that, as L → ∞, the nonlinearity
dominates over the dissipative term below d ¼ 2. Taking
BðρÞ to be the leading nonlinearity in the dipole conserving
case (see Table I), a similar reasoning gives d ¼ 2 as the
critical dimension; while in the quadrupole conserving
case, with the leading nonlinearity being AðρÞ, the upper
critical dimension is d ¼ 6. For n-pole conserving systems
in general, we find upper critical dimension d ¼ 2ð1þ nÞ if
n is even, and d ¼ 2n if n is odd. Hence, for sufficiently
large n, the upper critical dimension for hydrodynamics can
be arbitrarily large.

We can also answer the question we posed at the
beginning of the Letter, under (2). We cannot write
Jxx ¼ −D0ρþ � � �, because the dissipationless part of the
dispersion relation can change if we break T or P
symmetry, but the leading order dissipative terms in the
systems (within linear response) do not change. This
follows from the requirement of stationarity, (7).
Numerical simulations.—We now present large-scale

simulations of classical Markov chains in one-dimensional
lattice models with quadrupole conservation, and with or
without time-reversal symmetry. The time-reversal sym-
metric chain is constructed generalizing [3,6]: we allow
charges of value qx ¼ 0;�1;…;�4 to exist on each of the
L sites of a 1D lattice, with periodic boundary conditions; at
each time step, we act with “gates” on each q-tuple of
adjacent sites, and replace the configuration of charges
present with another one with identical charge, dipole, and
quadrupole moment. We have taken q ¼ 6 in our simu-
lations to ensure the dynamics does not get frozen [44,45]
and that the late-time physics is captured by hydrodynamics.
We analyze the correlator

Cðx; tÞ ¼ hqxþyðtþ sÞqyðsÞiy; ð26Þ

with the average taken over position y, and random
realizations of the gates and initial conditions; the correlator
is insensitive to the value of s≲ 105. With time-reversal
symmetry, by dimensional analysis we know that Cð0; tÞ ∼
t−1=z with z ¼ 6, which can be obtained by comparing the
scaling of charge q ∼ L−1

2 with the dynamical scaling
exponent ∂t ∼ ∂

z
x. As in [3,6] we can confirm this scaling

readily in numerics: see Fig. 1.
Now let us sketch how we break time-reversal symmetry:

details are found in the SM. If we only had charge
conservation, then we could break time-reversal symmetry
by simply hopping a unit of charge to the right neighbor
with some finite probability at the end of each round of
random gates. Importantly, this rule does not modify the
fact that the uniform distribution (taken over all many-body
configurations in each fixed charge sector) is the stationary
distribution of the classical Markov chain: thus, we can
readily numerically evaluate Cðx; tÞ by sampling uniformly
random initial conditions. To generalize this idea to n-pole
conserving models, first observe that the charge conserving
chain can be understood as operating by always trying to
increase the local dipole moment. We modify this picture
by finding gates which try to increase the (nþ 1)-pole
moment in each charge sector, yet do so disturbing the
uniform distribution as little as possible. While we could
not find a Markov chain which provably has a uniform
many-body stationary distribution once n > 0, the chains
which we did find exhibit behaviors which are consistent
with our qualitative expectations: namely, breaking P and T
leads to a dissipationless “drift” term. The effect of this
term on correlators can be estimated by balancing the time

TABLE I. Leading order terms in H for a fracton fluid. fðμÞ
represents an arbitrary function of μ. The slash marks denote
terms which are subleading in the derivative expansion and are
not considered.

Conservation Symmetry AðρÞ BðρÞ CðρÞ σðρÞ
Monopole T or P 0 Q

PT fðμÞ / / Q
None fðμÞ Q

Dipole T or P 0 0 Q
PT 0 μ / Q
None 0 μ Q

Quadrupole T or P 0 0 0 Q
PT μ 0 μ Q
None μ 0 μ Q
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derivative with the linear part of the drift term: ∂tρ ∼ ∂
nþ1
x ρ

for n even and ∂tρ ∼ ∂
nþ2
x ρ for n odd. These lead to a

power-law decay:

Cð0; tÞ ∼
�
t−1=ðnþ1Þ n even

t−1=ðnþ2Þ n odd
: ð27Þ

To estimate the dynamical critical exponent, we must
discard this added drift, so we calculate

gðtÞ≡
Z

dxCðx; tÞ2 ∼ t−1=z; ð28Þ

as our estimate for the dynamical exponent z. Intuitively this
correlator will capture the “width” of an initial charge
distribution at time t. Figure 1 shows that after an initial
transient period of z ¼ 6 scaling, at sufficiently late times
the chain exhibits anomalous scaling with z ≈ 4. A crude
estimate of z can be attempted by balancing the time
derivative in the conservation equation with the leading
nonlinearity induced by the drift ∂tρþ ∂

3
xρ

2 which, account-
ing for ρ ∼ L−1=2, leads to z ¼ 3.5, which is reasonably

close to the measured value, and very far from the value
z ¼ 6 predicted by linear response. Therefore, our simu-
lations are consistent with the existence of a new dynamical
universality class, whose upper critical dimension will
be d ¼ 6.
We emphasize that the simulations of classical models are

sufficient to study hydrodynamics, even as “fracton fluids”
were originally inspired by quantum phases of matter. First,
any possible quantum corrections to hydrodynamics
become important only at frequency scales ℏω ∼ T, which
are generally beyond the hydrodynamic regime of validity
anyway. For the Markov chains we simulated, one would
take T → ∞ and one sees hydrodynamics break down at
ω ∼ 1. Second, previous studies [3,6] on quantum automa-
ton circuits find the same hydrodynamics as the T-invariant
theories of this Letter.
Outlook.—In this Letter we have described the system-

atic construction of nonlinear fluctuating hydrodynamics
without time-reversal symmetry. Our construction is valid
with or without a well-defined temperature, generalizing
recent field theories of hydrodynamics [26–28] to a broad
range of theories which cannot be coupled to a spacetime
metric. A nontrivial example of this is to multipole-
conserving theories, where we have shown that hydro-
dynamics can break down in PT-symmetric models; the
late time physics is described by exotic dynamical univer-
sality classes. We hope to report on additional applications
of our formalism in the near future.
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