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Exchange operator formalism describes many-body integrable systems using phase-space variables
involving an exchange operator that acts on any pair of particles. We establish an equivalence between
models described by exchange operator formalism and the complete infinite family of parent Hamiltonians
describing quantum many-body models with ground states of Jastrow form. This makes it possible to
identify the invariants of motion for any model in the family and establish its integrability, even in the
presence of an external potential. Using this construction we establish the integrability of the long-range
Lieb-Liniger model, describing bosons in a harmonic trap and subject to contact and Coulomb interactions
in one dimension. We further identify a variety of models exemplifying the integrability of Hamiltonians in
this family.
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Integrability in both classical and quantum many-body
systems is associated with the existence of conserved
quantities. At the quantum level, the latter correspond to
operators that commute with the system Hamiltonian and
govern the nonequilibrium dynamics and thermalization of
a system in isolation [1,2]. Several integrable models have
been realized in the laboratory, prompting their use as a test
bed for quantum many-body physics, statistical mechanics,
and nonequilibrium phenomena [3,4].
The integrability of a system may be proven by finding

the set of conserved quantities. In one spatial dimension,
this is possible in systems that are exactly solved using
Bethe ansatz, which posits that the wave function of any
quantum eigenstate admits an expansion in terms of plane
waves with suitable coefficients and quasimomenta. The
latter set the integrals of motion, are also known as the
Bethe roots or rapidities, and serve as “good” quantum
numbers [5,6]. An alternative framework is the exchange
operator formalism (EOF) [7,8], in which the Hamiltonian
of the quantum system admits a decoupled form in terms of
generalized momenta, which readily allows for the iden-
tification of integrals of motion. This approach can be
applied to the study of excited states, as demonstrated in
systems with inverse-square interactions [9,10]. An encom-
passing notion of quantum integrability relies on scattering
without diffraction, encoded in the Yang-Baxter equa-
tion [11–13], when collisions between particles can be
described exclusively as a sequence of two-body scattering
events. The system is then solvable by algebraic Bethe
ansatz, i.e., using the quantum inverse scattering method.
Integrals of motion can be derived from the transfer matrix
[13] or invoking the asymptotic Bethe ansatz [14,15].
While a definite notion of quantum integrability remains
under debate, many of these approaches are closely

interrelated [6,16]. In particular, EOF is related to the
Yang-Baxter equation and asymptotic Bethe ansatz [17,18].
An important class of quantum systems is characterized

by a ground state of (Bijl-Dingle-) Jastrow form, in which
the wave function is simply the pairwise product of a pair
function [19–21]. This facilitates the computation of
correlation functions in these systems [14]. The family
of parent Hamiltonians with Jastrow wave functions (PHJ,
for short) can be determined by solving an inverse problem:
by acting with the kinetic energy operator in the ground-
state wave function, one can recast the resulting terms in the
form of a many-body Schrödinger equation, thus identify-
ing the parent Hamiltonian. This approach has its roots in
the early works by Calogero and Sutherland [22–24]. It has
been extended in a number of ways [25,26] and by now, for
identical particles without internal degrees of freedom, the
complete family of PHJ is known both in one and higher
spatial dimensions, provided that the ground-state wave
function includes at most the product of one-particle
and two-particle functions [27,28]. The corresponding
Hamiltonians generally contain two-body and three-body
interactions. It was shown by Kane et al. [29] that the three-
body contribution does not affect the low-energy physics.
Further, the conditions for the three-body term to vanish or
reduce to a constant have been long established in the
homogeneous case, in the absence of an external potential
[14,30,31].
Paradigmatic instances of PHJ are integrable. Hard-core

bosons in the Tonks-Girardeau regime, realized in the labo-
ratory with ultracold gases [32,33], have ground state of
Jastrow form [34–36] and are integrable, being related to non-
interacting fermions via the Bose-Fermi duality [3,34,37].
The Calogero-Sutherland model with a Jastrow ground
state has a harmonic spectrum, it can be mapped to a set
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of independent harmonic oscillators [38–40], and satisfies
the asymptotic Bethe ansatz [14,15]. Similarly, the attractive
Lieb-Liniger (LL) model of bosons subject to contact
interactions, used to describe ultracold gases in tight wave-
guides [41,42], has a bright quantum soliton as Jastrow
ground state [43]. This system is solvable by coordinate
Bethe ansatz, which yields the Bethe roots as integrals of
motion [5,6,44,45].
One may thus wonder the extent to which the ground-

state correlations can determine the complete integrability
of the system, and what are the required conditions for this
to be the case. In this Letter, we show that the complete
family of one-dimensional many-body quantum models
with ground state of Jastrow form is integrable. To this end,
we first establish the equivalence between this family and
models described by EOF. In doing so, we identify
explicitly the integrals of motion. Our construction holds
in the presence of an external potential, which allows us to
show the integrability of the long-range Lieb-Liniger
model, describing bosons confined in a harmonic trap
and subject to both contact and Coulomb interactions in
one spatial dimension [27,46].
Systems described by EOF.—Consider the family of one-

dimensional systems of identical particles without internal
degrees of freedom. It will prove useful to consider those
models subject to pairwise interactions that are possibly
supplemented with three-body interactions. In this context,
EOF is a powerful framework due to Polychronakos that
explicitly exhibits the integrability of a many-body quan-
tum system in one spatial dimension [7,8]. Its application
has been particularly fruitful in Calogero-Sutherland-
Moser systems involving two-body inverse-square inter-
actions [14,22,23,25,47,48], as discussed in [7,8].
Let Mij denote the exchange operator, which exchanges

the positions of two particles labeled by i and j, respec-
tively. This operator is Hermitian, idempotent M2

ij ¼ I and
symmetric with respect to the indices, i.e., Mij ¼ Mji. For
any one-body operator Aj ≡ AðxjÞ, it obeys the relations
MijAj ¼ AiMij and MijAk ¼ AkMij for distinct i, j, k
[7,8,49]. Note that when for spinless identical particles,Mij

can be identified with the permutation of two particles. In
terms of the canonical position and momentum coordinates,
xi and pj ¼ −iℏ∂=∂xj, one can introduce the generalized
momenta

πi ¼ pi þ i
X
j≠i

VijMij; ð1Þ

for particles j ¼ 1;…; N. The so-called prepotential func-
tion Vij ¼ Vðxi − xjÞ should be antisymmetric (i.e.,
Vij ¼ −Vji) to guarantee the Hermiticity of the generalized
momenta. Using the latter, one can construct permutation-
invariant quantities In ≡P

i π
n
i . In particular, I2 is quad-

ratic in pi’s, and resembles the Hamiltonian of many-body
systems. To describe states of N particles, consider the

tensor product of the single-particle Hilbert space H, i.e.,
H⊗N . For indistinguishable particles, states are restricted to
the bosonic or fermionic subspaces ofH⊗N , denoted asHζ

with ζ ¼ þ1 for spinless bosons and ζ ¼ −1 for spinless
fermions. We define the projector Pζ onto Hζ as [51]
Pζψðx1; x2;…; xNÞ ¼ ð1=N!Þ Pσ ζ

σψðxσ1 ; xσ2 ;…; xσN Þ,
where σ denotes a permutation of the tuple ð1; 2;…; NÞ.
Projecting I2 onto the subspace Hζ and using

MijPζ ¼ PζMij ¼ ζPζ; ð2Þ

we obtain PζI2Pζ=ð2mÞ ¼ PζH0Pζ, where H0 is the
translation-invariant quantum many-body Hamiltonian
defined as follows

H0 ¼
X
i

p2
i

2m
þ 1

m

�X
i<j

ðζℏV 0
ij þ V2

ijÞ −
X
i<j<k

Vijk

�
; ð3Þ

where Vijk ¼ VijVjk þ VjkVki þ VkiVij is fully symmetric
and a prime denotes the spatial derivative. The form of H0

will play an important role in proving the integrability of
the family of Hamiltonians generated by EOF and PHJ.
Specific choices of the prepotential function VðxÞ gives rise
to well-known models. For VðxÞ ¼ λ=x, Vijk vanishes by
permutation symmetry and one recovers the Hamiltonian of
identical particles with inverse-square interactions [14,22].
For VðxÞ ¼ λ cotðaxÞ, Vijk is a constant andH0 involves the
inverse sine square potentials. The case VðxÞ ¼ csgnðxÞ,
corresponding Vijk being a negative constant, gives rise to
the celebrated Lieb-Liniger (LL) model [44,45] describing
ultracold gases in tight waveguides [3,41]. For all these
cases where Vijk vanishes or is a constant, In commute with
each other. As the system Hamiltonian coincides with I2 on
the bosonic or fermionic sector, the set of In can be
identified as invariants of motion, i.e., ½In; Im� ¼ 0. We
note that all the models that have been shown to be
integrable by the EOF in Ref. [7] happen to have a
ground-state wave function of Jastrow form, which we
discuss next.
Parent Hamiltonians with Jastrow ground state.—

Consider a homogenous one-dimensional many-body
quantum system described by a ground state of Jastrow
form [19–21],

Φ0ðx1;…; xNÞ ¼
Y
i<j

fij; ð4Þ

this is, the pairwise product of the pair function fij ¼
fðxi − xjÞ [14]. In the “beautiful models” [14] that concern
us here, quantum statistics is encoded in the symmetry of
fðxÞ which is an even function for bosons and odd for
fermions, i.e., without resorting to the use of permanents or
determinants. The case of one dimensional anyons can
similarly be taken into account by including a phase factor
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θ, i.e., fðxÞ ¼ e−iθsgnðxÞfð−xÞ [52–54]. The complete
family of PHJ of ground state of the Jastrow form (4)
has been identified in one spatial dimension [27] and
includes paradigmatic models such as the LL gas with
contact interactions [44,45] and the rational Calogero-
Sutherland model with inverse-square interactions
[22,23], as well as the recently introduced long-range
LL model [46]. For a given choice of f, the parent
Hamiltonian H0 takes the form

H0 ¼
X
i

p2
i

2m
þ ℏ2

m

�X
i<j

f00ij
fij

þ
X
i<j<k

�
f0ijf

0
ik

fijfik
−
f0ijf

0
jk

fijfjk
þ f0ikf

0
jk

fikfjk

��
: ð5Þ

Here, f0 and f00 denote the first and second spatial
derivatives of f, respectively. The explicit expressions
for this Hamiltonian directly follow from evaluating the
Laplacian on the Jastrow wave function (4) and recasting
all resulting terms in the form of a Schrödinger equation.
Equivalence of EOF and PHJ for spinless indistinguish-

able particles.—We now establish the correspondence
between EOF and PHJ for spinless identical particles.
Comparing the EOF Hamiltonian and the PHJ in
Eqs. (3) and (5), the two-body terms are equal if
ℏ2f00ðxijÞ=fðxijÞ ¼ ζℏV 0

ij þ V2
ij. Thus, the prepotential

reads

Vij ¼ ζℏ
d

dxij
logðfijÞ ¼ ζℏ

f0ij
fij

: ð6Þ

Independently of whether the pair function is symmetric or
antisymmetric, its logarithmic derivative is guaranteed to
be odd f0ij=fij ¼ −f0ji=fji. Thus, this property holds for
spinless bosons and fermions. The antisymmetry of the
prepotential in Eq. (6) guarantees the Hermiticity condition
of the associated generalized momenta in the EOF,

πi ¼ pi þ iζℏ
X
j≠i

f0ij
fij

Mij: ð7Þ

The prepotential in Eq. (6) further ensures the equivalence
of the three-body interaction in the EOF and the PHJ. Thus,
any spinless system described by EOF, as in Eq. (3), has a
ground state of Jastrow form with a pair function
fij ¼ exp½R xij dy VðyÞ=ðζℏÞ�. Conversely, the complete
infinite family of PHJ can be recast in the EOF provided
(6) is satisfied. This makes it possible to identify the class
of PHJ that is integrable as we shall see later.
Embedding in an external potential.—The embedding of

a system described by EOF in an external potential is
known in the case of a harmonic trap [7]. For the
embedding of a homogenous system in an arbitrary

trapping potential, we draw inspiration from super-
symmetric quantum mechanics [55] and introduce the
one-body superpotential Wi ≡WðxiÞ in terms of which
the external trapping potential Ui will be identified. We
define the operators

ai ¼
πiffiffiffiffiffiffiffi
2m

p − iWi; a†i ¼
πiffiffiffiffiffiffiffi
2m

p þ iWi; ð8Þ

and the permutation-invariant quantities Ĩn ≡P
i h

n
i , where

hi ≡ a†i ai. Projecting Ĩ1 onto Hζ, we find Pζ Ĩ1Pζ ¼
PζHPζ, where H is the Hamiltonian of the system in
the presence of the trap, i.e.,

H ¼ H0 þ
X
i

Ui − ζ

ffiffiffiffi
2

m

r X
i<j

VijðWi −WjÞ; ð9Þ

with the external potential Ui being determined by the
Riccati equation

Ui ¼ W2
i −

ℏffiffiffiffiffiffiffi
2m

p W0
i: ð10Þ

As a familiar example, when H0 is the homogeneous
Calogero model with inverse-square interactions [22] and
Wi ¼

ffiffiffiffiffiffiffiffiffi
m=2

p
ωxi, Eq. (9) reduces to the rational Calogero-

Sutherland model [23,47] including a harmonic trap.
In PHJ, the ground-state wave functions is not limited to

the homogeneous form (4), but also includes more general
ground states

Ψ0 ¼
Y
i<j

fij
Y
i

expðviÞ ¼ Φ0

Y
i

expðviÞ; ð11Þ

where the one-body function vi ¼ vðxiÞ accounts for the
role of the external potential Ui ¼ UðxiÞ that breaks
translational invariance [27]. Specifically, if H0 is the
parent Hamiltonian of Φ0 in Eq. (4), then Ψ0 has the
parent Hamiltonian

H ¼ H0 þ
X
i

Ui þ
ℏ2

m

X
i<j

ðv0i − v0jÞ
f0ij
fij

; ð12Þ

with the one-body local external potentialUi given in terms
of the function vi by

Ui ¼
ℏ2

2m
½ðv0iÞ2 þ v00i �: ð13Þ

As a result, the Hamiltonian H includes the external
potential Ui and an additional pairwise (two-body) poten-
tial which is generally of long-range character.
The equivalence between EOF and PHJ require that the

one-body and potential and the additional long-range term
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are equal in both representations. Comparing Eqs. (10) and
(13), the superpotentialWi and the function vi entering the
one-body function of the Jastrow form are related by

Wi ¼ −
ℏffiffiffiffiffiffiffi
2m

p v0i: ð14Þ

Upon substituting Eq. (14) into Eqs. (9) and (12), we find
that the additional long-range potentials coincide, given the
correspondence Eq. (6) is identified. The ground state of
the Hamiltonian with the external potential in terms of the
prepotential and the superpotential is

Ψ0¼ exp

�
−

ffiffiffiffiffiffiffi
2m

p

ℏ

X
i

Z
xi
WðyÞdy

�Y
i<j

exp

�R xij dyVðyÞ
ζℏ

�
:

ð15Þ

This establishes the equivalence between EOF and PHJ in
the presence of external potential.
Integrability via projection formalism.—For quantum

systems with classical analog, as the PHJ, one can define
quantum integrability by promoting the Poisson bracket
into commutators in the definition of classical integrability.
Polychronakos [7] pursued along this line and showed that
In ≡P

i π
n
i become integrals of motion, i.e., ½In; Im� ¼ 0,

∀ n;m, in the restricted case in which Vijk vanishes or is a
constant. Having shown that any spinless model described
by EOF is a PHJ with a Jastrow ground state, we next
establish the integrability of the complete family of PHJ
models, i.e., without restrictions on the three-body potential
Vijk or the external potential Ui.
Note that any physical observable O for spinless indis-

tinguishable particles must be permutation invariant, i.e.,
Oðx1; x2;…; xNÞ ¼ Oðxσ1 ; xσ2 ;…; xσN Þ,∀ permutation σ.
As a consequence,

½Pζ;O� ¼ 0; ð16Þ

which can be easily checked by acting on any wave
function in H⊗N [49]. Equation (16) implies a permuta-
tion-invariant observable is block diagonal on Hζ and its
orthogonal complement. We define an observable is local if
it only involves derivatives with respect to the coordinates
up to a finite order. Then permutation invariance and
locality implies that if a permutation-invariant and local
observable O vanishes on Hζ, then it also vanishes on the
full Hilbert space H⊗N . That is [56],

PζOPζ ¼ PζO ¼ OPζ ¼ 0 ⇔ O ¼ 0; ð17Þ

for a permutation-invariant and local observable O.
Equations (16) and (17) lead to the following

theorem regarding the commutators of two permutation-

invariant observables, which is extremely useful in prov-
ing integrability.
Theorem 1. For two permutation-invariant and

local observable On and Om, the following three condi-
tions are equivalent to each other: (i) ½On;Om� ¼ 0;
(ii) Pζ½On;Om�Pζ ¼ 0; (iii) ½PζOnPζ;PζOmPζ� ¼ 0.
The equivalence between (i) and (ii) is a consequence of

Eq. (17). The equivalence between (ii) and (iii) follows
from

Pζ½On;Om�Pζ ¼ PζOnOmP2
ζ − PζOmOnP2

ζ

¼ PζOnPζOmPζ − PζOmPζOnPζ

¼ ½PζOnPζ;PζOmPζ�;

where we have used Eq. (16).
Theorem 2. Both the quantum mechanical homog-

enous model (3) and the inhomogeneous model (9)
generated in EOF are integrable, with the integral of
motion being In for the homogenous model and Ĩn for
the inhomogeneous model.
To prove Theorem 2, let us first observe a very

interesting property due to the projection operator Pζ

and the exchange operator Mij. Although the generalized
momentum πi involves N degrees of freedomdue to the
prepotential term, when it is multiplied byMij from the left,
it still satisfies the exchange rule for one-body operators
[49]. As a consequence,

Pζπ
n
iPζ¼PζM2

ijπ
n
iPζ¼PζMijπ

n
i MijPζ¼Pζπ

n
jPζ: ð18Þ

A similar equation also holds for hi. For a more general
version of this identity, see Ref. [49].
On the other hand, since the integrals of motions In and

Ĩn are permutation invariant and local, one can reduce their
commutativity to condition (iii) in Theorem 1. Using
Eq. (18) or the analogous equation for hi, it follows that
the condition (iii) in Theorem 1 is satisfied, with On ¼ In
or On ¼ Ĩn. This concludes the proof of the integrability of
the Hamiltonians (3) and (9).
A few comments are in order. First, since we have proved

the equivalence between EOF and PHJ, the Hamiltonians
(5) and (12) are therefore also integrable. Second, it is
possible to build integrals of motions for families of
classical models generated by the EOF and PHJ according
to the quantum-classical correspondence. One can expand
the powers in In and Ĩn and compute PζInPζ and Pζ ĨnPζ

explicitly with Eq. (2). Then one is left with the expressions
PζKnPζ and PζK̃nPζ, where Kn and K̃n contain only
the phase space variables but no exchange operators. In
particular, we note thatK2 ¼ H0 and K̃1 ¼ H; see Ref. [49],
where one obtains H0 by projecting I2 ontoHζ. According
to Theorem 1, Kn’s and K̃n’s must commute on the whole
Hilbert space H⊗N , respectively. Transitioning to the
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classical model, where the commutator is demoted to
Poisson brackets, the Poisson brackets of Kn ’s and K̃n’s
must vanish, respectively. Thus, we see that Kn’s and K̃n’s
are also the integrals of motion for the classical model with
Hamiltonians (3), (5) and (9), (12), respectively.
Discussion.— It is worth noting that the Jastrow wave

functions Φ0, Ψ0 may not be the true ground state of the
corresponding PHJ if they cannot be properly normalized.
Nevertheless, the family of models generated by EOF and
PHJ is always integrable, regardless of the normalization of
the Jastrow wave function.
For example, if fij ¼ expðgjxijjÞ, H0 becomes the well-

known LL model [27]. However, the Jastrow wave function
is normalizable only when g < 0, which corresponds to the
McGuire bright soliton [43]. Therefore, Φ0 is no longer the
ground state wave function of the repulsive LL model.
However, as we have discussed previously, the integrability
of the Hamiltonian is not affected, so our result reproduces
the integrability of the LL model with the integral of motion
being In or Kn. More interestingly, upon introducing the
external harmonic potential, according to Eq. (11), Ψ0

becomes normalizable even if Φ0 is not and Eq. (5)
corresponds to the Lieb-Liniger-Coulomb model intro-
duced in Refs. [46], i.e.,

H ¼
X
i

�
p2
i

2m
þ 1

2
mω2x2i

�
þ g

X
i<j

�
2ℏ2

m
δðxijÞ −

mω

ℏ
jxijj

�
;

ð19Þ

with ground state E0¼ðNℏω=2Þ−ðg2ℏ2=mÞ½NðN2−1Þ=6�.
This system describes harmonically confined bosons sub-
ject to contact and Coulomb interactions or gravitational
attraction in one spatial dimension. Reference [46] char-
acterized its EOF representation and ground state proper-
ties. Using Theorem 2, we conclude that this system is
integrable, with the integrals of motion being Ĩn ≡P

i h
n
i .

Further physical examples of integrable PHJ systems are
provided in Supplemental Material [49], which includes
Refs. [30,57]. The proof leading to the integrability of PHJ
essentially takes advantage of the permutation invariance
and EOF. As a result it can be applied to models defined on
the real line as well as those embedded in an external
potential. Likewise, it holds for systems with hard-wall
confinement or a ring geometry, provided the pair function
fij and the one body potential vi or Wi fulfill the corres-
ponding boundary conditions.
Conclusion.—We have established the equivalence

between the families of one-dimensional many-body quan-
tum systems generated by the exchange operator formalism
and parent Hamiltonians with a ground-state wave function
of Jastrow form, describing indistinguishable particles with
no internal degrees of freedom. Making use of the projec-
tion operator onto the spinless bosonic or fermionic sub-
space, we have proved the integrability of all these systems

by constructing explicitly the corresponding integrals of
motion. Embedding these translation-invariant models in
an external potential preserves the integrability, in the
presence of long-range interactions, as we have illustrated
in the long-range Lieb-Liniger model and related systems.
These findings advance the study of many-body physics

by uncovering the implications of ground-state correlations
on integrability. They should lead to manifold applications
in the study of quantum solitons, quantum quenches, and
the thermalization of isolated integrable systems (governed
by integrals of motion), and strongly correlated regimes,
generalizing the super-Tonks-Girardeau gas [58], among
others. Our results bear also implications on numerical
methods for strongly correlated systems such as variational
methods and quantum Monte Carlo algorithms, in which
the ubiquitous use of Jastrow trial wave functions may
impose integrability on systems lacking it. It may be
possible to extend our results to higher spatial dimensions
[28], higher-order correlations [59], the inclusion of spin
degrees of freedom [8], mixtures of different species [36],
and distinguishable particles [60,61].
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