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Universal Fidelity Reduction of Quantum Operations from Weak Dissipation
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Quantum information processing is in real systems often limited by dissipation, stemming from
remaining uncontrolled interaction with microscopic degrees of freedom. Given recent experimental
progress, we consider weak dissipation, resulting in a small error probability per operation. Here, we find a
simple formula for the fidelity reduction of any desired quantum operation, where the ideal evolution is
confined to the computational subspace. Interestingly, this reduction is independent of the specific
operation; it depends only on the operation time and the dissipation. Using our formula, we investigate the
situation where dissipation in different parts of the system has correlations, which is detrimental for the
successful application of quantum error correction. Surprisingly, we find that a large class of correlations
gives the same fidelity reduction as uncorrelated dissipation of similar strength.
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Introduction.—Numerous  architectures are being
explored for quantum computers [1], e.g., circuit quantum
electrodynamics [2-5], trapped ions [6,7], quantum dots
[8], and photonics [9]. The long-term goal is solving useful
problems where classical computers fall short [10] and
in the nearer term to outperform classical supercomputers
for specific computing tasks [11]. However, uncontrolled
interactions between the quantum system and its surround-
ings destroy quantum coherence and thus reduce the
fidelity of the quantum operations (gates). How to create
high-fidelity quantum gates in the presence of this envi-
ronmentally induced decoherence is probably the most
important problem to solve, both for near-term quantum
computation and for the long-term goal of fault-tolerant
quantum computing [1,12,13].

With gate fidelities approaching the fault-tolerant thresh-
old, characterizing and reducing the remaining errors
becomes increasingly challenging [14,15]. A well-used
tool for characterization is Clifford-based randomized
benchmarking [16,17], which enables mapping gate errors
onto control parameters and feeding this back to optimize
the gates. With optimized control, the fidelity is limited by
decoherence processes such as energy decay and dephas-
ing. Explicit analytical expressions for this fidelity reduc-
tion has been derived for single-qubit Clifford gates [18] as
well as certain two-qubit gates [11,19], to first order in the
ratio between the gate time = and the decoherence time 1/T".
In Ref. [20], a gate-independent formula was derived for
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the unitarity [21] of a multiqubit system subject to weak
relaxation and dephasing acting independently on the
individual qubits. The unitarity provides an upper bound
for the average gate fidelity.

Here, we derive general analytical results showing how
the fidelity of single-, two-, as well as general multiqubit
gates is affected by weak decoherence. We consider the
standard model for interaction with a Markovian environ-
ment, using a Lindblad master equation, and find that to first
order in 'z, the reduction in fidelity is independent of the
specific gate. This result holds for all single- and multiqubit
gates, where the ideal evolution is confined to the computa-
tional subspace. It also holds for the case when different
qubits see the same environment, i.e., correlated multiqubit
noise processes. We discuss in particular the effect of
energy relaxation and dephasing, and give explicit formulas
for the reduction of the average gate fidelity, which only
depends on the number of qubits involved in the gate and
the rates of the decoherence processes affecting those
qubits. We then explicitly explore the difference between
uncorrelated dissipation and two scenarios of fully corre-
lated multiqubit dissipation. Our results provide bounds that
allow for robust estimation and optimization of single- as
well as multiqubit gate fidelities, and may enable establish-
ing constraints on the power of noisy quantum computers.

Method.—The average gate fidelity F of a trace-
preserving quantum operation &, acting on an N-qubit
system, is defined as [22]

F= [ antylUiE(w U, (1)

where the integral is over all pure initial states |y) and U, is
the unitary operator corresponding to the ideal gate
operation. Note that F = 1 if and only if £ implements
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U, perfectly, while lower values indicate that £ is a
noisy or otherwise imperfect implementation of U,. The
gate operation in Eq. (1) can be generated by a time-
dependent Hamiltonian H(f) applied for a time 7, such
that U, = U(0,7), where we have introduced the time-

evolution operator for the ideal gate operation U(t;,t,) =

T exp[—(i/h) [* H(t)df] and T is the time-ordering
operator.
We describe the effect of decoherence using the standard

Lindblad superoperator
. PO BN
DlLlp = LpL" = Z{L'L,p} (2)

acting on the system density matrix p (others have
considered Kraus operators [11,23]). The time evolution
of the system with N different dissipative processes is then
given by the master equation

where each process has its corresponding rate I'; and
Lindblad jump operator L,. We will later discuss specifi-
cally energy relaxation and dephasing acting on individual
qubits, but for now the jump operators can be any multi-
qubit operator. Note that in contrast to the ideal gate
evolution, the jump operators are allowed to take the
system out of the computational subspace, and thus
include, e.g., heating processes.

Inspired by the current experimental state of the art,
where incoherent errors are on the percent level or less
[24-33], we now expand the solution to the master equation
in the small parameter I'yz < 1 for a pure initial state |y).

The unperturbed solution is simply ,05/ (1) = lw(t))(w(t)],
where |y (7)) = U(0, t)|y). The first-order correction due
to the kth decoherence process is [34]

A0 =T [ o DDA WUy @)

0

which corresponds to applying the dissipator D[L,] to the
ideal pure state |y/(¢')) once, at any time ¢ < ¢. In Ref. [34],
the Hamiltonian is assumed to be time-independent, but we
show in [35] that their expression can be straightforwardly
generalized to time-dependent Hamiltonians, giving
Eq. (4).

Main result.—Each dissipative process contributes inde-
pendently to first order, and with this correction to the ideal
density matrix at the end of the gate, we can evaluate the
gate fidelity using Eq. (1):

~1 +Z/dw WU, 9 Y OUO.Dl). (5)

Evaluating the second term by inserting Eq. (4) and first
performing the integral over initial states [ dy, we find

/dl//[<l/'(f’)|ﬁll//(f')> ()L () = ()L LIy (1))]
z/dle//Iin)(wII:TIw)—<w|ﬁﬁlw>}E5F(i)- (6)

The first expression contains only expectation values of
jump operators with respect to the intermediate pure state
lw(#)). Since the unitary gate evolution U(0,7) only
performs a rotation in the computational Hilbert space, it
leaves the set of all initial states |y) invariant. Integrating
over all initial states |w) in Eq. (5) is thus identical to
integrating over all states |y/(¢')) for any ¢ This renders the
remaining integrand time-independent such that from the
remaining time integral we obtain [35]

Ny
F=1+1) TW6F(Ly) + O(T}). (7)
k=1

This is the main result of this Letter. The reduction of gate
fidelity is thus independent of which unitary gate U, is
performed and proportional to the time 7 it takes to perform
the gate.

By denoting the (unnormalized) state after the action of
the jump operator as |y, ) = L|y), the integrand in Eq. (6)
can be written as (w |y) (w|w;) — (yr|w;). This is clearly
negative, since the second term corresponds to the full
length of (w; |, while the first term is the length of (|
projected onto the unperturbed state (y|. In other words, the
second term is proportional to the probability for a quantum
jump to occur, while the first term is proportional to the
probability that this jump leaves the system in the unper-
turbed ideal state.

Each dissipative channel contributes independently,
proportional to its rate I, and the factor §F(L;), which
we now proceed to evaluate for a few relevant processes.
We note that weak coherent errors also contribute inde-
pendently to first order [35]. We also note that we would
obtain the same expression by applying the first-order error
map either before or after the ideal gate and then averaging
over all initial states [36].

General formula for fidelity reduction of N-qubit
gates.—To evaluate the integral over all pure states in
Eq. (6), we first rewrite it using a density-matrix repre-
sentation,

oF(L) = [ dw(TelLlp, o) =T Lp, ). (8)
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In the case of a single qubit, we can expand the density
matrix in four terms: p, =3 (oo + n,0, + nyo, +no,),
where oy is the 2 x 2 identity matrix and o; fori € {x,y,z}
are the corresponding Pauli matrices. Inserting this expres-
sion in Eq. (8), the first term expands into 16 terms, while
the second gives four terms. The average over dy now
corresponds to a an integral over the three real-valued
coefficients n,, ny, and n, under the normalization con-
straint n3 4+ nj + nZ = 1, i.e., the Bloch sphere. This can be
calculated explicitly [37], but here we follow Ref. [38] and
note that the symmetries of the Hilbert space imply that
(n;) =0 and (n;n;) =6;;/3 for i,j e {x,y,z}, where
angular brackets denote integration over the Bloch sphere,
d;; is the Kronecker delta, and the factor 1/3 follows from
the normalization. Thus, for a single qubit Eq. (8) reduces
to

. 1o 1
SF\(L) = —=Tr[LTL] + —

1 Z Tr[L'6;L0;). (9)

je{x.y.z}

For a system with N qubits, we can expand any density
matrix in a basis consisting of all 4V possible tensor-
product combinations of Pauli matrices and identity. The
element consisting of only identity matrices is the identity
matrix in d =2V dimensions and thus has trace d,
fixing the overall normalization to 1/d. Denotlng the
other d?> — 1 traceless basis matrices as f,, we write

= (1/d)(1, + S°%5" n;f,). Following Ref. [38] again,
We find similar rules for averages over the real-valued
coefficients n; as in the single-qubit case [35]: (n;) = 0 and
(n;n;) = 6;;/(d +1). Thus, for operations on N qubits,
Eq. (8) reduces to

1- Sy TelLTFiLT ]

6FN(£) = d2 TI'[ } d2<d+ 1) ’

(10)

giving a general formula for the reduction of fidelity of
general N-qubit gates to first order in Markovian dissipa-
tion. The expression is indeed gate-independent, but
depends on the nature of the dissipative processes,
expressed through the corresponding Lindblad jump oper-
ator L. We now proceed to discuss different forms of this
operator, in particular the difference between processes that
act independently or in a correlated fashion on different
qubits.

Effect of uncorrelated relaxation and dephasing.—We
first consider individual qubit energy relaxation acting on
one qubit with jump operator L =o¢_ and rate T';, and
additional pure dephasing with jump operator ¢, and rate
"y [note that the rate multiplying the dissipator in Eq. (3) is
I'y/2, making the coherences decay with the rate I';]. For
uncorrelated dissipation, the N-qubit jump operators are
tensor products with identity matrices acting on all other
qubits. Since the trace operations in Eq. (10) then factorize

into products of single-qubit traces, we straightforwardly
find

4
d+1’
(11)

extending the expressions for single- and two-qubit
Clifford gates given in Ref. [11] to arbitrary gates on an
arbitrary number of qubits.

Remembering that different dissipators add independ-
ently to the gate fidelity according to Eq. (7), we can then
find the first-order reduction in gate fidelity due to
uncorrelated energy relaxation and pure dephasing on all
N qubits [35]:

5FN(G%®G%.. Ny =~

o)) =28Fy (ol ® 6}...0)

N
Fuchl— TZ (DF +1%), (12)
k=

1

where I'f = 1/T} (I, = 1/T}) is the relaxation (dephas-
ing) rate of qubit k£ and T" (T ) is the relaxation (dephasing)
time. We note that the effect of heating with jump operator
L = 6, andrate T, enters in the same way as the relaxation
in Eq. (12). By comparing the single and two-qubit gate
fidelities in an experimental system, this formula allows
one to assess to what extent the gates are decoherence-
limited. However, as we will see below, a multiqubit gate
error that agrees with this expression does not guarantee
that the noise processes are indeed uncorrelated between
qubits.

We stress that the gate independence of the gate fidelity
is only valid to first order in the dissipative correction.
For single-qubit rotations around the x and z axes, this is
illustrated by the analytical solutions to the master equation
with energy relaxation and dephasing, which, for =z
rotations, to second order in the dissipation yield the gate
fidelities

_ I +0, 1/11, 5

Fo=1--—1"2 24200, +12 )2, (13
o 3 8(12 irglilbyt ) (13)

_ 0+, 1 4

The limitation of gate independence to first order is also
clear from the fact that in the second-order expansion, the
dissipator will act two times, so the expressions include
averages that are not over the full Hilbert space and thus
depend on the relation between the gate operation and the
dissipation. In [35], we provide exact expressions for the
fidelity reduction for a few important single- and two-
qubit gates.

Results for correlated noise.—Dissipation can be corre-
lated in many different ways. Here, we discuss two cases
that affect the gate fidelity differently. First, we treat
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correlated decoherence arising from many qubits connected
to the same environmental mode, e.g., an extended micro-
wave mode in the packaging of a superconducting qubit
chip [39,40]. For simplicity, we consider equal coupling of
all N qubits, leading to the jump operator L}, = >V | o
describing correlated dephasing with rate I'j. [again
corresponding to a rate I';./2 in Eq. (3)], as well as the

jump operator LY. = S"¥ | 6* describing correlated relax-
ation with rate I'j.. The correlated dephasing corresponds
to a decay of the coherence between two multiqubit states,
with a rate 6n°T’,., where n is the difference in excitation
number between the two states [41]. In a three-qubit
system, the coherence between |000) and |111) thus decays
with the rate 9T, while the subspace spanned by states
with the same number of excitations, e.g., |100), |010), and
|001), is not affected by dephasing. In a similar fashion, the
correlated relaxation gives rise to nondecaying multiqubit
dark states as well as bright states decaying quickly due to
superradiance.

We can straightforwardly evaluate the reduction of
N-qubit gate fidelity due to correlated dephasing and
relaxation using Eq. (10), finding [35]

Nd

F=1——
N 2(d+1)

T(Flc +F(/Jc)v (15)
which somewhat surprisingly is identical to the reduction
in fidelity when all N qubits are subject to uncorrelated
dephasing with rate I'y. and uncorrelated relaxation with
rate I'y,. This illustrates that the average gate fidelity is
not a sensitive probe for detecting whether the dissipation
arises from this type of additive linear coupling to a common
bath. Averaging over all initial states tends to hide the fact
that this type of correlated dissipation acts very differently
on different parts of the computational Hilbert space and
thus creates correlated errors between qubits, which is
potentially detrimental for quantum error correction [42].

Finally, consider instead a two-photon relaxation proc-
ess, where two qubits can relax to a bath accepting only the
sum of the two qubits’ energies, corresponding to the jump
operator L, » = 0_ @ o_andarateI',,. If one measures the
relaxation time of the qubits individually, with the other
qubits in their ground states, this process will not contrib-
ute. However, for the two-qubit gate fidelity one finds an
extra reduction [35],

F o Fue_ 2T (16)
5

which would add to the reduction predicted by the
measured single-qubit relaxation and dephasing rates.
The average two-qubit gate fidelity can thus detect this
type of two-photon relaxation process.

Conclusion and outlook.—In this Letter, we investigated
the effect of weak dissipative processes on the fidelity of
quantum operations. For operations remaining in the

computational subspace, the reduction is independent of
the operation to first order in the product of the dissipation
rate and the gate time. We presented a simple formula for
the reduction of a general multiqubit operation in terms
of the dissipative rates and the corresponding Lindblad
jump operators. We also discussed the difference between
uncorrelated and correlated dissipation and found that
the fidelity reduction for a large class of correlated
dissipation is similar to uncorrelated dissipation of similar
strength.

The results presented here are widely applicable in the
field of quantum computing since they enable simple and
fast calculation and optimization of fidelities for single- and
multiqubit gates, and can help estimate the computational
power of noisy quantum hardware. Such analysis was,
e.g., performed in Refs. [11,18,19,25] and our general
formula reduces to and agrees with the expressions used
there. Our formula was also used explicitly in the analysis
of a recent experiment [43]. A natural extension of this
work is to investigate operations going outside of the
computational subspace, something that is currently used in
many quantum-computing architectures. Also, as we high-
light in two simple examples, the second-order correction
to the average gate fidelity is indeed gate-dependent. Based
on our approach, it is straightforward to analyze the effect
of weak dissipation to second order, which could guide the
choice of gates as the dissipation is further reduced.

We acknowledge useful discussions with Andreas
Bengtsson and John Martinis. We acknowledge support
from the Knut and Alice Wallenberg Foundation through
the Wallenberg Centre for Quantum Technology (WACQT)
and from the EU Flagship on Quantum Technology H2020-
FETFLAG-2018-03 Project No. 820363 OpenSuperQ.

Note added.—After this manuscript was submitted for
publication, we became aware of the unpublished manu-
script [44] from Alexander N. Korotkov, who calculates
the first-order contribution to the process fidelity due to
Lindblad-form decoherence, and observes that in this
approximation the fidelity does not depend on the desired
unitary evolution.

After this manuscript was submitted for publication,
we also became aware of the code documentation of
IBM’s QISKIT IGNIS [36], which provides the exact fidelity
reduction for two cases, single-qubit Z rotations and the
two-qubit CZ gate, in agreement with our results in Eq. (14)
and [35].
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