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The scalable production of multipartite entangled states in ensembles of qubits is a crucial function of
quantum devices, as such states are an essential resource both for fundamental studies on entanglement, as
well as for applied tasks. Here we focus on the U(1) symmetric Hamiltonians for qubits with dipolar
interactions—a model realized in several state-of-the-art quantum simulation platforms for lattice spin
models, including Rydberg-atom arrays with resonant interactions. Making use of exact and variational
simulations, we theoretically show that the nonequilibrium dynamics generated by this Hamiltonian shares
fundamental features with that of the one-axis-twisting model, namely, the simplest interacting collective-
spin model with U(1) symmetry. The evolution governed by the dipolar Hamiltonian generates a cascade
of multipartite entangled states—spin-squeezed states, Schrödinger’s cat states, and multicomponent
superpositions of coherent spin states. Investigating systems with up to N ¼ 144 qubits, we observe full
scalability of the entanglement features of these states directly related to metrology, namely, scalable spin
squeezing at an evolution time OðN1=3Þ and Heisenberg scaling of sensitivity of the spin parity to global
rotations for cat states reached at times OðNÞ. Our results suggest that the native Hamiltonian dynamics of
state-of-the-art quantum simulation platforms, such as Rydberg-atom arrays, can act as a robust source of
multipartite entanglement.
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Introduction.—Quantum entanglement [1] is the distinc-
tive feature of many-body quantum mechanics, at the root
of its fundamental complexity and its potential as a
technological resource [2–4]. Generic pure states in the
Hilbert space have a large bipartite entanglement, captured
by entanglement entropies of a subsystem that scale like
the subsystem volume [5]; a similar scaling is observed in
states that are obtained, e.g., by evolving initially non-
entangled states with a generic interacting many-body
Hamiltonian for a macroscopic time, leading to quantum
thermalization [6]. Nonetheless, a more specialized form of
entanglement is widely recognized as a resource, namely,
“certifiable multipartite” entanglement, in which (1) the
number of inseparable degrees of freedom (also known as
entanglement depth [7]) is as big as a macroscopic fraction
of the system, and (2) such a depth can be efficiently
estimated with criteria based on the measurement of a few
observables. States of this kind allow for an efficient (i.e.,
scalable) entanglement certification [8], and they represent
the basis of quantum technology tasks, such as entangle-
ment-assisted metrology [3,4]. Therefore, identifying
robust protocols that lead to an efficient and scalable
production of certifiable multipartite states—namely, of
states with an entanglement depth scaling polynomially
with the number N of degrees of freedom and in a time
scaling polynomially with N—is a central task of modern
quantum science and technology. In this Letter, we show
that scalable production of multipartite entangled states can
be achieved in qubit ensembles with U(1) symmetric

dipolar interactions, which are most prominently realized
by Rydberg atoms with resonant interactions [9], among
other platforms [10–12]. Making use of state-of-the-art
time-dependent variational approaches, pushed to macro-
scopic evolution times, we show that two-dimensional
lattices of qubits interacting with dipolar couplings for
two spin components, initialized in a coherent spin state
along an interaction axis, evade generic thermalization;
and they develop paradigmatic examples of multipartite
entangled states, namely, spin-squeezed states [13,14] and
Schrödinger’s cat states [15,16]. The dynamics of dipolar
systems is found to exhibit a deep similarity to that of the
paradigmatic model of collective-spin interactions, namely,
the one-axis-twisting (OAT) Hamiltonian [13]. In particu-
lar, we observe catlike states in dipolar lattices for up to
N ¼ 144 qubits—a remarkable observation in a system
with non-mean-field interactions. Our Letter paves the way
for the scalable production of multipartite entanglement in
dipolar quantum simulators.
Certifiable multipartite entanglement.—We specialize

our attention to the case of qubit ensembles, whose most
basic description is achieved in terms of the collective-spin
operator J ¼ P

N
i¼1 Si, where Si’s represent spin-1=2 oper-

ators for each of the N qubits. A primary example of
certifiable multipartite entanglement in qubit ensembles is
offered by spin-squeezed states [13,14], namely, entangled
states that are characterized by a finite net spin orientation
hJi; and by relative fluctuations of one collective-spin
component transverse to the average orientation that are
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reduced with respect to all fully separable states. The
relative fluctuations are captured by the spin-squeezing
parameter [14]

ξ2R ¼ Nmin⊥VarðJ⊥Þ
jhJij2 ; ð1Þ

where the minimization is made over the plane
perpendicular to hJi, and spin squeezing amounts to the
condition ξ2R < 1. Spin squeezing is an entanglement wit-
ness [17] and it is an entanglement-depth estimator: ξ2R <
1=k with k > 1 guarantees that a state is not k-producible,
namely, the smallest block of entangled qubits is composed
of kþ 1 elements [18–20]. Moreover, when subject to
rotations e−iθJ

0⊥ around the antisqueezed direction J0⊥
(perpendicular to both hJi and to the squeezed component),
spin-squeezed states allow for an estimate of the angle of
rotation with an uncertainty δθ ¼ ξR=

ffiffiffiffi
N

p
below the so-

called standard quantum limit ðδθÞSQL ¼ 1=
ffiffiffiffi
N

p
. A second

example of certifiable multipartite entanglement is offered
by Schrödinger’s cat [or Greenberger-Horne-Zeilinger
(GHZ) [21] ] states. Introducing the coherent spin state
(CSS) with all spins polarized along the n direction,
jCSSni ¼ jni⊗N

—with j � ni a generic qubit state with
Bloch vector �n—the most general form for a cat state (up
to local unitaries) is jGHZni ¼ ðjCSSni þ eiϕjCSS−niÞ=ffiffiffi
2

p
. This state has an entanglement depth of N and, when

rotated around the n direction with the unitary e−iθJ·n, it
allows for an estimate of the rotation angle with uncertainty
δθ ¼ 1=N, representing the ultimate (Heisenberg) limit for
phase estimation. A generalization of the cat state is offered
by so-called q-headed cat states [15], which are super-
positions of q CSSs along directions np (p ¼ 0;…; q − 1)
in, e.g., the xy plane, forming an angle of 2πp=q with the x
axis: jq cati ¼ A−1Pq−1

p¼0 cpjCSSnpi with complex cp

coefficients of unit modulus and A as a normalization
factor.
Long-range interacting XX Hamiltonians and OAT

model.—In this Letter, we show how spin-squeezed states
and catlike states are generated along the unitary dynamics
initialized in the coherent spin state jCSSxi with n ¼ ex;
and governed by the long-range XX ferromagnetic
Hamiltonian

Hα−XX ¼ −
J
N α

X

i<j

1

rαij
ðSxi Sxj þ Syi S

y
jÞ; ð2Þ

where J > 0 is the coupling constant, rij is the distance
between the ith and jth spins, and N α is a normalization
factor ensuring an extensive energy. Throughout this Letter,
we shall consider spins arranged on a planar lattice with
N ¼ L × L sites and periodic boundary conditions; we
shall present results for both the square and the triangular
lattice. All of our results are for dipolar (α ¼ 3) interactions
(for which we can take N 3 ¼ 1), so as to realize with
Eq. (2) the Hamiltonian of resonantly interacting Rydberg
atoms [9]. Recent experiments [9,22–24] use pairs of
Rydberg states of Rb atoms with principal quantum number
n≳ 60 to encode qubits. For these states, the coupling
constant J can be either positive or negative depending on
the chosen states—the sign being irrelevant for the dynam-
ics initialized in the CSSx state [25], so that we shall choose
J > 0 in what follows. For the typical interatomic spacings
used in the experiment, one has that J ∼ 2π × 1 − 10 MHz
(taking ℏ ¼ 1).
In order to understand the dynamics of the dipolar

system, a fundamental reference is offered by the limit
α ¼ 0. In this limit, taking N 0 ¼ N, one obtains
H0−XX ¼ ½ðJzÞ2=2I� þ c, with c ¼ −ðJ =2NÞJ2 þ J =4
as a constant factor, since the Hamiltonian commutes with
J2. The latter Hamiltonian is the OAT model [13] of a
planar rotor with moment of inertia I ¼ N=J , whose

(a)
(d)

(b) (c)

FIG. 1. (a) Cascade of entangled states observed in the OAT model and in this Letter—here we only indicate even-headed cat states,
but q-headed states with odd q exist as well, at times t ¼ 2πI=q. (b) Dynamics of the average spin hJxiðtÞ for the dipolar XX model on
the square lattice. (c) Fourier transform hJxiðωÞ, for coherence with the y-axis label in the figure. (d) Effective moment of inertia for the
square (Squ) and triangular (Tri) dipolar lattices as extracted from the TVMC dynamics (squares and triangles) and estimated from the
low-energy spectrum (dashed lines). The specific combination πIðeffÞN J represents the time of the q ¼ 2 cat state.
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dynamics is exactly solvable. When the dynamics is
initialized in the jCSSxi state, this model is known to
generate a cascade of entangled states [4,13,15,16] [see
Fig. 1(a) for a sketch], namely, (1) at a time tsq ∼ N1=3, a
spin-squeezed state for ξ2R ∼ N−2=3, and (2) (with N even)
at times tq ¼ 2πI=q a q-cat state—in particular, a GHZ
state of the kind jGHZxi ¼ ðjCSSxi þ ijCSS−xiÞ=

ffiffiffi
2

p
for

tGHZ ¼ πI. The OAT Hamiltonian can be realized with
spinor Bose condensates in a single spatial mode, and spin
squeezing has been observed in seminal experiments
[26–28] (see also Ref. [29] for a trapped-ion realization);
more recently, its implementation with superconducting
circuits has allowed for the generation of (q-headed) cat
states with up to N ¼ 20 qubits [30]. The full OAT
dynamics is also realized with large single-atom spins in
Dy gases [31]. Several theoretical works have explored the
effective realization of OAT dynamics in similar models
[32–37], as well as the entanglement and Bell nonlocality
content of the generated states [38–41]. The main result of
this Letter is that the same sequence of entangled states
generated by the OAT dynamics can be realized with the
dipolar Hamiltonian (2) with α ¼ 3 for Rydberg atoms,
with metrological qualities of the produced states that have
the same scaling behavior as in the ideal case of the OAT
dynamics. This result is far from trivial, as the OAT model
is integrable (with nonthermalizing dynamics), while the
dipolar Hamiltonian is expected to be chaotic (see dis-
cussion below).
Time-dependent variational dynamics.—To investigate

the scalable production of entangled states along the
dynamics generated by the dipolar XX model, we compute
the exact dynamics up to N ¼ 20 qubits [42,43], and
for larger N we employ a time-dependent variational
Monte Carlo (TVMC) scheme [44,45], based on the
pair-product (or spin-Jastrow) wave function [46]
jΨðtÞi≕ P

σ

Q
j≠k cjkðσj; σk; tÞjσi, where σi is the state

of the ith spin on the computational basis (eigenbasis of Szi ).
The evolution of the pair coefficients cjk is dictated by the
time-dependent variational principle. This wave function
captures exactly the dynamics of the OAT model [36];
as shown in the Supplemental Material [47], it remains
extremely accurate in the case of α ¼ 3 on planar lattices
when compared with exact calculations for small sizes;
and it allows us to push the calculation of the dynamics to
sizes N ∼ 100 and to reach macroscopic evolution times
tJ ∼OðNÞ thanks to its small number of variational
parameters [OðNÞ with translational symmetry].
OAT-like dynamics of a planar dipolar array.—To

establish a first link between the OAT dynamics and the
dynamics of the dipolar XX model, we investigate the time
evolution of the average collective spin, whose only
component that is not identically zero is hJxiðtÞ.
Figure 1(b) shows the time evolution of hJxi, exhibiting
the characteristic pattern of the OAT dynamics, with an
inversion of the collective-spin orientation at time tinv

followed by a revival of the original orientation at time
trev. These two events occur at times 2πI and 4πI in the
OAT dynamics, and therefore they allow us to define an
effective size-dependent moment of inertia IðeffÞN for the

dipolar system such that tinv ¼ 2πIðeffÞN and trev ¼ 4πIðeffÞN .

The effective moment of inertia IðeffÞN for the dipolar square
and triangular lattices is shown in Fig. 1(d), and it is found
to scale linearly with N; in particular, the triangular lattice
has a smaller IðeffÞN due to its higher connectivity, guaran-
teeing a faster dynamics. In fact, as further discussed in the
Supplemental Material [47], IðeffÞN can be predicted ab initio
by inspecting the low-energy excitation spectrum for a
small system (N ¼ 16) and recognizing in it the character-
istic planar rotor spectrum (known as the Anderson tower
of states [36,50,51]). This allows us to extract the moment
of inertia IðeffÞN¼16, which can then be appropriately rescaled
to an arbitrary size N by using Kac renormalization factors,
in very good agreement with the moment of inertia
extracted directly from the time dependence of system of
size N [see Fig. 1(d)]. The Fourier transform of hJxiðtÞ
further reveals the nature of the low-lying energy spectrum
of the system as that of a planar rotor: indeed, as Jx

connects states with Jz ¼ M differing by one unit, one
expects [47] to see characteristic frequencies with energies
ωIðeffÞN ¼ ½ðM þ 1Þ2 −M2�=2 ¼ M þ 1=2, which is pre-
cisely what is observed in Fig. 1(c).
Squeezed states and OAT scaling.—The first class of

multipartite entangled states produced by the Hamiltonian
dynamics is represented by spin-squeezed states. Figure 2
shows the time evolution for the squeezing parameter for
various system sizes: scalable squeezing is exhibited, with a
scaling of the optimal squeezing time and value that is
compatible with the behavior of the OAT model. Our
results are consistent with those of Ref. [33], based on an
independent semiclassical calculation.
Multi- and double-headed cat states.—The squeezing

dynamics is followed by the generation of oversqueezed
states: their entanglement pattern is best recognizable at

(a) (b)

FIG. 2. (a) Evolution of the spin-squeezing parameter for the
dipolar XX model on a square lattice, where the circles mark the
optimum. (b) Scaling of the optimal squeezing value and optimal

squeezing time (with Kac normalization KðαÞ
N [47]), showing

exponents ν ¼ 0.72 and μ ¼ 0.36 (to be compared with ν ¼ 2=3
and μ ¼ 1=3 for the OAT model).
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times 2πIðeffÞ=q, at which these states are expected to take
the form of q-cat states [see Fig. 3(a) for a sketch]. In order
to detect the appearance of a q-cat state, we inspect the
probability distribution PðJxÞ for the Jx spin component
[52], reconstructed via exact calculations in Fig. 3(b) (while
in the Supplemental Material [47] we show a TVMC study
of the overlap with the jq-cati states). At times 2πIðeffÞ=q,
the PðJxÞ distribution exhibits a multipeaked structure,
reflecting the appearance of a q-cat state as superposition of
several CSSs with discrete projections along the Jx axis. In
particular, we observe a characteristic four-peak structure
for the q ¼ 6 cat state, a three-peak structure for the q ¼ 4
cat state, and a two-peak structure for the q ¼ 2 cat=GHZ
state. In the latter case, the distribution associated with the
ideal cat state would be PðJxÞ ¼ 1=2 for Jx ¼ �N=2 and
zero otherwise, while the dipolar cat state exhibits instead
two peaks with a tail. Nonetheless, as shown in Fig. 3(c),
the tail in question decays exponentially when moving
away from the maxima; this localized structure of the
distribution around its maxima has important consequences
that we shall further explore below.
In spite of their different multipeak structures, the

distributions for the q > 2 cat states have nearly the same
variance, as shown in Fig. 4(a); therefore, their specific
nature is only seen via higher moments. On the other
hand, the q ¼ 2 cat=GHZ state stands out for its variance
VarðJxÞ, which attains the maximum possible value of
N2=4 for N qubits in the case of the ideal cat state; while it
attains a value that approaches this maximum in the case of
the state generated by the dipolar dynamics. As shown in
Fig. 4(b), for the system sizes of interest the maximum of

the variance VarðJxÞ reached for dipolar cat states scales
indeed with N2, attaining a value which is > 90% of its
maximum. Even though we do not have access to the PðJxÞ
distribution within the TVMC approach, this result is fully
coherent with the distribution remaining exponentially
localized around �N=2 values up to the largest systems
we considered.
Heisenberg-limited interferometry using parity.—The

dipolar cat state of maximum variance VarðJxÞ differs
from the ideal GHZ state in that it contains pairs of
macroscopically distinct states other than jCSS�xi, as
evidenced by the PðJxÞ distribution [Fig. 3(b)]. As a
consequence, its overlap with the ideal GHZ state degrades
with system size, as shown in the Supplemental Material
[47]. Yet the state retains macroscopic quantum coherence,
which is at the root of its extreme metrological sensitivity,
representing the most significant consequence of its macro-
scopic entanglement depth. A fundamental figure of merit
for the entanglement content of catlike states is provided
by their sensitivity to rotations UðθÞ ¼ e−iθJ

x
, which is

best captured by the θ dependence of the expectation value
of the parity operator Pz ¼ Q

ið2Szi Þ, namely, hPziθ ¼
hΨðtÞjUð−θÞPzUðθÞjΨðtÞi. The quantum Cramér-Rao
bound [4] imposes that

max
θ�

1

VarðPzÞθ¼θ�

����
dhPziθ
dθ

����
2

θ¼θ�
≤ QFIðJxÞ ≤ 4VarðJxÞ;

ð3Þ

where the left-hand side expresses the inverse squared
uncertainty ðδθÞ−2 on the angle estimation using the parity
measurement, and QFIðJxÞ is the quantum Fisher informa-
tion associated with the Jx operator, which in the case of
pure states coincides with the upper bound given by
4VarðJxÞ. Our TVMC calculations allow us to reconstruct
the left-hand side of the inequality (3) for θ� ¼ 0 [47]. The
result is shown in Fig. 4(a) and compared to 4VarðJxÞ:
there we see that, upon formation of the dipolar cat state,
the inequality chain of Eq. (3) collapses to an identity,

(a)

(b)

(c)

FIG. 3. (a) Sketch of the q-cat states studied here—the balls
indicate the coherent states involved in the q-cat state.
(b) Distributions PðJxÞ obtained at the times of formation of
the cat states with q ¼ 6, 4, and 2, obtained via exact calculations
on a 5 × 4 square lattice—only the P values for even Jx are
indicated, as the probability for the odd Jx values vanish
identically, since the Hamiltonian is parity conserving.
(c) Log-lin plot of the tail of the peaks for the q ¼ 2 cat state;
the dashed line is the fit to an exponential.

(a)

(b)

FIG. 4. (a) Time evolution of 4VarðJxÞ=N2 compared to that of
the inverse uncertainty on phase estimation from the evolution of
the parity—the results are for a square lattice with N ¼ 100.
(b) Size dependence of the maximal variance of Jx during time
evolution, for both square and triangular lattices.
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showing that the measurement of the parity around θ� ¼ 0
is optimal, as expected for cat states. This optimality is
observed for all the system sizes we considered: therefore,
the fact that 4VarðJxÞ ≈ aN2 with a≳ 0.9 [as shown in
Fig. 4(b)] allows us to conclude that dipolar cat states can
attain the Heisenberg scaling for interferometric precision
and they can achieve > 90% of the Heisenberg limit.
Discussion and conclusions.—We have shown that

planar qubit arrays with dipolar interactions can reproduce
the entanglement dynamics of the one-axis-twisting
Hamiltonian, with the scalable production of spin-squeezed
states and catlike states. This result is rooted in the deep
correspondence between the low-energy spectra of the two
models, taking the form of a tower of states for a planar
rotor. Nonetheless, the cascade of entangled states and the
revivals of the initial state observed in this Letter are in clear
contradiction with the picture of quantum thermalization of
closed quantum systems [53], in which local observables
should exhibit small fluctuations around their thermody-
namic equilibrium value. This observation is at odds with
the fact that the dipolar spin model is expected to be a
nonintegrable one. The deviation of the observed dynamics
with respect to standard thermalization can be understood
within a picture in which the collective spin and the
fluctuations of the spins at finite momentum effectively
decouple, as we shall present in a forthcoming publication;
nonetheless, this decoupling is only approximate and
should break down at sufficiently long times. Yet our
observation is that dipolar systems comprisingN ∼Oð100Þ
qubits—currently accessible experimentally with Rydberg-
atom arrays [54,55]—do not show any significant
degradation of the decoupling picture up to macroscopic
evolution times ∼OðNÞ. This fundamental property of
dipolar Hamiltonians implies that atomic quantum simu-
lators realizing dipolar qubit ensembles with U(1)
symmetry—Rydberg atoms [9], as well as dipolar mole-
cules [10], trapped ions [29,56], magnetic atoms [12],
etc.—have the potential to reach unprecedented levels of
multipartite entanglement, including cat states with N >
100 and Heisenberg scaling of metrological properties. The
latter scaling requires the measurement of the parity, which
is perfectly accessible in state-of-the-art quantum simula-
tors granting single-qubit addressability. In the specific case
of Rydberg atoms with resonant interactions, the ∼OðNÞ
evolution times required to reach large cat states may
appear out of reach due to the finite lifetime of the Rydberg
states; but the lifetime can be extended far beyond the
requirements of our observations when using, e.g., circular
Rydberg states [57].

We acknowledge useful discussions with A. Browaeys
and I. Frérot. This work is supported by the Agence
Nationale de la Recherche (EELS project, ANR-18-
CE47-0004) and by QuantERA (“MAQS” project). All

numerical simulations have been performed on the PSMN
cluster of the ENS of Lyon. Exact results have been
obtained through the QuSpin package [42,43]. Supporting
numerical data are available in Ref. [58].
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[26] J. Estève, C. Gross, A. Weller, S. Giovanazzi, and M. K.
Oberthaler, Nature (London) 455, 1216 (2008).

[27] M. F. Riedel, P. Böhi, Y. Li, T. W. Hänsch, A. Sinatra, and P.
Treutlein, Nature (London) 464, 1170 (2010).

[28] O. Hosten, N. J. Engelsen, R. Krishnakumar, and M. A.
Kasevich, Nature (London) 529, 505 (2016).

PHYSICAL REVIEW LETTERS 129, 150503 (2022)

150503-5

https://doi.org/10.1103/RevModPhys.81.865
https://arXiv.org/abs/1203.5813
https://doi.org/10.1088/1751-8113/47/42/424006
https://doi.org/10.1103/RevModPhys.90.035005
https://doi.org/10.1103/PhysRevLett.71.1291
https://doi.org/10.1126/science.aaf6725
https://doi.org/10.1103/PhysRevLett.86.4431
https://doi.org/10.1103/PhysRevLett.86.4431
https://doi.org/10.1016/j.physrep.2009.02.004
https://doi.org/10.1038/s41567-019-0733-z
https://doi.org/10.1038/nphys3985
https://doi.org/10.1103/PhysRevLett.121.023601
https://arXiv.org/abs/2201.02672
https://doi.org/10.1103/PhysRevA.47.5138
https://doi.org/10.1103/PhysRevA.50.67
https://doi.org/10.1103/PhysRevA.56.2249
https://doi.org/10.1103/PhysRevA.56.2249
https://doi.org/10.1103/PhysRevLett.82.1835
https://doi.org/10.1038/35051038
https://doi.org/10.1038/35051038
https://doi.org/10.1103/PhysRevLett.102.100401
https://doi.org/10.1103/PhysRevLett.102.100401
https://doi.org/10.1103/PhysRevA.85.022321
https://doi.org/10.1103/PhysRevA.85.022321
https://doi.org/10.1103/PhysRevA.85.022322
https://doi.org/10.1103/PhysRevLett.114.113002
https://doi.org/10.1126/science.aav9105
https://arXiv.org/abs/2207.12930
https://doi.org/10.1103/PhysRevLett.120.050401
https://doi.org/10.1103/PhysRevLett.120.050401
https://doi.org/10.1038/nature07332
https://doi.org/10.1038/nature08988
https://doi.org/10.1038/nature16176


[29] J. G. Bohnet, B. C. Sawyer, J. W. Britton, M. L. Wall, A. M.
Rey, M. Foss-Feig, and J. J. Bollinger, Science 352, 1297
(2016).

[30] C. Song, K. Xu, H. Li, Y.-R. Zhang, X. Zhang, W. Liu, Q.
Guo, Z. Wang, W. Ren, J. Hao et al., Science 365, 574
(2019).

[31] T. Chalopin, C. Bouazza, A. Evrard, V. Makhalov, D.
Dreon, J. Dalibard, L. A. Sidorenkov, and S.
Nascimbene, Nat. Commun. 9 (2018).

[32] D. Kajtoch, E. Witkowska, and A. Sinatra, Europhys. Lett.
123, 20012 (2018).

[33] M. A. Perlin, C. Qu, and A. M. Rey, Phys. Rev. Lett. 125,
223401 (2020).

[34] T. Bilitewski, L. De Marco, J.-R. Li, K. Matsuda, W. G.
Tobias, G. Valtolina, J. Ye, and A. M. Rey, Phys. Rev. Lett.
126, 113401 (2021).

[35] M. Płodzień, M. Kościelski, E. Witkowska, and A. Sinatra,
Phys. Rev. A 102, 013328 (2020).

[36] T. Comparin, F. Mezzacapo, and T. Roscilde, Phys. Rev. A
105, 022625 (2022).

[37] T. H. Yanes, M. Płodzień, M. M. Sinkevičienė, G. Žlabys,
G. Juzeliūnas, and E. Witkowska, Phys. Rev. Lett. 129,
090403 (2022).

[38] R. Schmied, J.-D. Bancal, B. Allard, M. Fadel, V. Scarani,
P. Treutlein, and N. Sangouard, Science 352, 441 (2016).

[39] A. Aloy, J. Tura, F. Baccari, A. Acín, M. Lewenstein, and
R. Augusiak, Phys. Rev. Lett. 123, 100507 (2019).

[40] F. Baccari, J. Tura, M. Fadel, A. Aloy, J.-D. Bancal, N.
Sangouard, M. Lewenstein, A. Acín, and R. Augusiak,
Phys. Rev. A 100, 022121 (2019).

[41] M. Płodzień, M. Lewenstein, E. Witkowska, and J.
Chwedeńczuk, arXiv:2206.10542.

[42] P. Weinberg and M. Bukov, SciPost Phys. 2, 003 (2017).
[43] P. Weinberg and M. Bukov, SciPost Phys. 7, 20 (2019).
[44] G. Carleo, F. Becca, M. Schiró, and M. Fabrizio, Sci. Rep. 2,

243 (2012).
[45] F. Becca and S. Sorella, Quantum Monte Carlo Approaches

for Correlated Systems (Cambridge University Press,
Cambridge, England, 2017).

[46] J. Thibaut, T. Roscilde, and F. Mezzacapo, Phys. Rev. B
100, 155148 (2019).

[47] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.129.150503 for details
about (1) the validation of the pair-product ansatz, (2) the
calculation of the effective moment of inertia for the dipolar
system, (3) the quench spectroscopy of the tower-of-states
spectrum, (4) the TVMC computation of state overlaps,
(5) the TVMC study of overlaps with q-cat states, (6) the
fidelity between the dipolar cat states and GHZ states, and
(7) the TVMC calculation of parity derivatives with respect
to rotation angle, which includes Refs. [48,49].

[48] M. Medvidović and G. Carleo, npj Quantum Inf. 7 (2021).
[49] A. Omran, H. Levine, A. Keesling, G. Semeghini, T. T.

Wang, S. Ebadi, H. Bernien, A. S. Zibrov, H. Pichler, S.
Choi et al., Science 365, 570 (2019).

[50] P. W. Anderson, Basic Notions of Condensed Matter
Physics (Taylor & Francis, Boca Raton, FL, 1997).

[51] H. Tasaki, J. Stat. Phys. 174, 735 (2019).
[52] G. Ferrini, A. Minguzzi, and F. W. J. Hekking, Phys. Rev. A

80, 043628 (2009).
[53] L. D’Alessio, Y. Kafri, A. Polkovnikov, and M. Rigol, Adv.

Phys. 65, 239 (2016).
[54] P. Scholl, M. Schuler, H. J. Williams, A. A. Eberharter, D.

Barredo, K.-N. Schymik, V. Lienhard, L.-P. Henry, T. C.
Lang, T. Lahaye et al., Nature (London) 595, 233 (2021).

[55] S. Ebadi, T. T. Wang, H. Levine, A. Keesling, G. Semeghini,
A. Omran, D. Bluvstein, R. Samajdar, H. Pichler, W.W. Ho
et al., Nature (London) 595, 227 (2021).

[56] T. Brydges, A. Elben, P. Jurcevic, B. Vermersch, C. Maier,
B. P. Lanyon, P. Zoller, R. Blatt, and C. F. Roos, Science
364, 260 (2019).

[57] T. L. Nguyen, J. M. Raimond, C. Sayrin, R. Cortiñas,
T. Cantat-Moltrecht, F. Assemat, I. Dotsenko, S. Gleyzes,
S. Haroche, G. Roux et al., Phys. Rev. X 8, 011032
(2018).

[58] T. Comparin, F. Mezzacapo, and T. Roscilde, Supporting
data for “Multipartite entangled states in dipolar quantum
simulators” (2022), 10.5281/zenodo.6534223.

PHYSICAL REVIEW LETTERS 129, 150503 (2022)

150503-6

https://doi.org/10.1126/science.aad9958
https://doi.org/10.1126/science.aad9958
https://doi.org/10.1126/science.aay0600
https://doi.org/10.1126/science.aay0600
https://doi.org/10.1038/s41467-018-07433-1
https://doi.org/10.1209/0295-5075/123/20012
https://doi.org/10.1209/0295-5075/123/20012
https://doi.org/10.1103/PhysRevLett.125.223401
https://doi.org/10.1103/PhysRevLett.125.223401
https://doi.org/10.1103/PhysRevLett.126.113401
https://doi.org/10.1103/PhysRevLett.126.113401
https://doi.org/10.1103/PhysRevA.102.013328
https://doi.org/10.1103/PhysRevA.105.022625
https://doi.org/10.1103/PhysRevA.105.022625
https://doi.org/10.1103/PhysRevLett.129.090403
https://doi.org/10.1103/PhysRevLett.129.090403
https://doi.org/10.1126/science.aad8665
https://doi.org/10.1103/PhysRevLett.123.100507
https://doi.org/10.1103/PhysRevA.100.022121
https://arXiv.org/abs/2206.10542
https://doi.org/10.21468/SciPostPhys.2.1.003
https://doi.org/10.21468/SciPostPhys.7.2.020
https://doi.org/10.1038/srep00243
https://doi.org/10.1038/srep00243
https://doi.org/10.1103/PhysRevB.100.155148
https://doi.org/10.1103/PhysRevB.100.155148
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.150503
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.150503
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.150503
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.150503
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.150503
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.150503
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.150503
https://doi.org/10.1038/s41534-021-00440-z
https://doi.org/10.1126/science.aax9743
https://doi.org/10.1007/s10955-018-2193-8
https://doi.org/10.1103/PhysRevA.80.043628
https://doi.org/10.1103/PhysRevA.80.043628
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1038/s41586-021-03585-1
https://doi.org/10.1038/s41586-021-03582-4
https://doi.org/10.1126/science.aau4963
https://doi.org/10.1126/science.aau4963
https://doi.org/10.1103/PhysRevX.8.011032
https://doi.org/10.1103/PhysRevX.8.011032
https://doi.org/10.5281/zenodo.6534223

