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The performance of quantum gates is often assessed using some form of randomized benchmarking.
However, the existing methods become infeasible for more than approximately five qubits. Here we show
how to use a simple and customizable class of circuits—randomized mirror circuits—to perform scalable,
robust, and flexible randomized benchmarking of Clifford gates. We show that this technique
approximately estimates the infidelity of an average many-qubit logic layer, and we use simulations of
up to 225 qubits with physically realistic error rates in the range 0.1%–1% to demonstrate its scalability. We
then use up to 16 physical qubits of a cloud quantum computing platform to demonstrate that our technique
can reveal and quantify crosstalk errors in many-qubit circuits.
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Quantum information processors suffer from a wide
variety of errors that must be quantified if their performance
is to be understood and improved. A processor’s errors are
commonly probed using randomized benchmarks that
involve running random circuits [1–21], e.g., standard
randomized benchmarking (RB) [3,4] or one of its many
variants [3–17], cross-entropy benchmarking [18], or the
quantum volume benchmark [21]. Randomized bench-
marks are appealing because they aggregate many kinds
of error into one number that quantifies average perfor-
mance over a large circuit ensemble. Unlike tomographic
techniques [22] that estimate a set of parameters that may
be exponentially large in the number of qubits (n),
randomized benchmarks hold the potential for scalable
performance assessment.
Yet current randomized benchmarks have one of two

scaling problems. Quantum volume and cross-entropy
benchmarking require classical computations that are
exponentially expensive in n, becoming infeasible beyond
n ∼ 50 [18–21]. In contrast, standard RB requires only
efficient classical computations, but it benchmarks
composite gates from the n-qubit Clifford group. They
require Oðn2= log nÞ two-qubit gates to implement
[23–25], so the fidelity of a typical n-qubit Clifford
decreases quickly with n. Lower compilation overheads
[e.g., Oðlog nÞ] are possible with access to many-qubit
gates [26], but in all realistic architectures the circuit depth
required to implement a typical Clifford will increase with
the number of qubits. As a result, standard RB has only
been implemented on up to three qubits [27], and even its
streamlined variant “direct RB” (DRB) has only been
implemented on up to five qubits [17].
In this Letter we introduce a simple, flexible, and robust

RB method that removes the Clifford compilation bottle-
neck that limits current methods. We show how randomized

mirror circuits [Fig. 1(a)] enable scalable RB of Clifford
gates. This work advances circuit mirroring [28], a recently
introduced method for scalable benchmarking of quantum
computers. Reference [28] shows how mirror circuits can
be used to map out how a quantum computer’s performance
on circuits depends on their widths and depths (volumetric
benchmarking [29]), but it does not show how to quantify
gate fidelity. Here, we show how to use randomized mirror
circuits to estimate the infidelity of an average Pauli-
dressed [30–33] n-qubit circuit layer [Fig. 1(a), gray boxes]
and we present a theory that proves that this method—
mirror RB (MRB)—is reliable. MRB can be applied
whenever a typical n-qubit circuit layer has significantly
nonzero fidelity, enabling RB of hundreds or even thou-
sands of qubits with physically realistic error rates
[Oð10−2Þ–Oð10−3Þ]. We demonstrate and validate MRB
on up to 225 qubits using simulations (Fig. 2), and on up to
16 physical qubits using IBM Q’s cloud quantum comput-
ing platform (Figs. 1, 3, and 4).
Randomized mirror circuits.—MRB uses randomized

mirror circuits [28], shown in Fig. 1(a). By design, each
randomized mirror circuit C should ideally always produce
a single bit string sC that is efficient to compute.
Distributions over these circuits are parametrized by an
n-qubit layer set L ¼ fLg [34], a probability distribution Ω
over L, and a benchmark depth d that specifies the number
of Pauli-dressed layers in the circuit. Both L and Ω are
customizable, but we require that (1) each layer contains
only Clifford gates, (2) each layer’s inverse L−1 is also
within L, (3) ΩðLÞ ¼ ΩðL−1Þ, and (4) Ω-random layers
quickly locally randomize an error (local “twirling”) and
spread it across multiple qubits. Condition (4) is also
required for reliable DRB, and the circumstances under
which it is satisfied have been studied in detail [17]. For all
demonstrations herein, the layer set consists of parallel
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applications of CNOTs between connected qubits and all 24
single-qubit Clifford gates. This enables transparent quan-
tification of the errors caused by native two-qubit gates,
including crosstalk. Note, however, that our method can be
applied to, e.g., CNOTs synthesized via SWAP chains,
enabling comparisons between the errors in identical layer
sets on different devices. All our distributions Ω have
a similar form whereby sampling a layer consists of
(1) sampling some CNOTs and (2) sampling uniformly
random single-qubit Clifford gates for all qubits not acted
on by those CNOTs.
Mirror RB.—MRB aims to measure ϵΩ≔

P
LΩðLÞϵðLÞ,

where Ω is a user-chosen distribution over L, and ϵðLÞ is
the entanglement infidelity of the Pauli-dressed version of
the n-qubit layer L [gray boxes, Fig. 1(a)]. In all our
demonstrations we do not compile the Paulis into the L
layers, but this is permissible. MRB estimates ϵΩ using data
from an Ω-sampled randomized mirror circuit. For each
circuit C that we run, we estimate its effective polarization:

S ¼ 4n

4n − 1
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hk
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where hk is the probability that the circuit outputs a bit
string that is a Hamming distance of k from its target bit
string (sC). As our theory (below) shows, the simple
additional analysis in computing S mitigates the limited
twirling enacted by our circuits.
MRB is the following protocol. 1. For a range of integers

d ≥ 0, sample K randomized mirror circuits of benchmark
depth d where d is even [see Fig. 1(a)], using the
distribution Ω, and run each one N ≥ 1 times.
2. Estimate each circuit’s effective polarization S. 3. Fit
S̄d, the mean of S at benchmark depth d, to S̄d ¼ Apd,
where A and p are fit parameters, and then compute rΩ ¼
ð4n − 1Þð1 − pÞ=4n as an estimate of ϵΩ.
Theory.—We now show that MRB is reliable, i.e., S̄d ≈

Apd and rΩ ≈ ϵΩ under broad conditions. We assume that
errors are Markovian [22] but not necessarily gate inde-
pendent (many, but not all, non-Markovian errors appear
Markovian within random circuits [35–37]). We use UðLÞ
and ϕðLÞ to denote the n-qubit superoperators that re-
present a layer L’s perfect and imperfect implementations,
respectively, and EðLÞ its error map, i.e., ϕðLÞ ¼
EðLÞUðLÞ. Our theory starts from a single rando-
mized mirror circuit C of benchmark depth d. So
C ¼ F−1

0 PdL−1
1 � � �P1þd=2L−1

d=2Pd=2Ld=2 � � �P1L1P0F0,

where (1) Pi are Pauli layers, (2) F0 and F−1
0 consist of one-

qubit Clifford gates, and (3) Li are Ω-sampled layers and
L−1
i their inverses. The components (1)–(3) are sampled

independently. To compute S̄d, as a function of EðLÞ, we
can therefore average over (1)–(3) separately in turn.
The Pauli layers [green boxes, Fig. 1(a)] are indepen-

dent, uniformly random, and interleaved between every
other layer. They therefore have two effects: they rando-
mize the target bit string (s), which guarantees that S̄d → 0
as d → ∞ to a good approximation [38], and they twirl the
errors on the Li layers into stochastic Pauli errors [30–33].

(a) (b)
No. Qubits

FIG. 2. Validating MRB with many-qubit simulations. Simu-
lations of MRB on up to 225 qubits show that it reliably
approximates the infidelity of n-qubit layers, i.e., rΩ ≈ ϵΩ.
(a) rΩ versus ϵΩ for randomly sampled error models. Each point
was generated from an independent simulation (sampling an error
model and circuits, simulating the circuits, and then applying the
analysis to estimate rΩ) for gates subject to stochastic Pauli
errors. (b) rΩ and ϵΩ versus n for two illustrative error models,
with (model 2) and without (model 1) long-range crosstalk. This
demonstrates the power of MRB to highlight crosstalk errors.

(a)

(b)

FIG. 1. Scalable RB with mirror circuits. (a) Randomized
mirror circuits over Clifford gates enable scalable RB. These
circuits contain d=2 pairs of layers consisting of a layer and its
inverse (pink boxes) sampled from some set of n-qubit Clifford
layers, dþ 1 layers of uniformly random Pauli gates (green
boxes), and a layer of uniformly random one-qubit Clifford gates
and this layer’s inverse (blue boxes). The number of “Pauli-
dressed” layers (gray boxes) d is the circuit’s benchmark depth.
These circuits’ “effective polarization” S, a quantity closely
related to success probability, decays exponentially with d.
(b) Demonstrating our method on 1, 2, 4, 8, and 16 qubit subsets
of IBM Q Rueschlikon. Points (violin plots) are the means
(distributions) of S versus d, and the curves are fits to S ¼ Apd.
Each r is a rescaling of p that approximates the infidelity of an
average Pauli-dressed n-qubit layer (uncertainties are 1σ here and
throughout).
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So we can analyze the “residual” circuit C ¼
F−1
0 L−1

1 � � �L−1
d Ld � � �L1F0 with each Li’s error map

EðLiÞ a stochastic Pauli channel. The composite super-
operator for this circuit is ϕðCÞ ¼ ϕðF−1

0 ÞEdϕðF0Þ, where
Ed ≡ ϕðL−1

1 Þ � � �ϕðL−1
d ÞϕðLdÞ � � �ϕðL1Þ is a stochastic

Pauli channel, as each UðLiÞ is a Clifford operator.
The initial layer [blue boxes, Fig. 1(a)] F0

contains independent, uniformly random single-qubit
Clifford gates. Averaging over this implements local
two-design twirling on each qubit [39]. That is, Ēd ≡
ð1=24Þn PF0

½UðF−1
0 ÞEdUðF0Þ� is a stochastic Pauli chan-

nel with equal marginal probabilities to induce an X, Y, or
Z error on any fixed qubit. An error induced by Ēd flips at
least one output bit if and only if it applies X or Y to at least
one qubit. So, if Ēd induces a weight k error (an error on k
qubits), the circuit outputs sC with a probability of 1=3k.
Generally, a weight k error causes flips on j of the output

bits with probability Mjk ¼
� k
j

�
ð2j=3kÞ. So h⃗ ¼ Mp⃗,

where hk and pk are the probabilities that k bits are flipped
and that Ēd induces a weight k error, respectively,
with k ¼ 0;…; n. By inverting M, we obtain p0 ¼P

n
k¼0 ð−1=2Þkhk ≡H. Because p0 ¼ 1 − ϵðEdÞ, where

ϵðEdÞ is Ed’s entanglement infidelity, H therefore equals
Ed’s entanglement fidelity, and S [Eq. (1)] its polarization
γðEdÞ ≔ 1 − 4nϵðEdÞ=ð4n − 1Þ. State preparation and
measurement errors also contribute to S (and H), as do
errors in F0 and F−1

0 . But their effect is approximately d
independent, so S ≈ AγðEdÞ for some A.
We have related a randomized mirror circuit’s S to the

polarization of its superoperator [γðEdÞ]. Now we relate
γðEdÞ to the polarizations of the circuit’s constituent layers
[γðEðLiÞÞ]. If every EðLiÞ is an n-qubit depolarizing
channel, with layer-dependent error rates, then γðEdÞ ¼Q

d
i¼1 γi−1γi, where γi ≡ γðEðLiÞÞ. More generally, we

argue that γðEdÞ ≈
Q

d
i¼1 γi−1γi. For two stochastic Pauli

channels EA and EB, γðEAEBÞ ¼ γðEAÞγðEBÞ þ η, where
η ¼ P

jfεA;j − ½εðEAÞ=ð4n − 1Þ�gfεB;j − ½εðEBÞ=ð4n − 1Þ�g
and ϵ⃗i is the vector of 4n − 1 Pauli error probabilities for Ei.
η quantifies the rate that errors cancel when composing the
two channels, relative to the rate that they cancel when
composing n-qubit depolarization channels. It is negligible
unless ϵ⃗A and ϵ⃗B are sparse (e.g., if ϵ⃗A ¼ ϵ⃗B and the error
probability is equally distributed over K errors, then
η ¼ εðEAÞ2f½1=K� − ½1=ð4n − 1Þ�g). So, unless the Pauli
error probability distributions of the Li are sharply spiked,
then γðEdÞ ≈

Q
d
i¼1 γi−1γi for any randomized mirror

circuit. Furthermore, because of the properties that we
demand of Ω (see above), our circuits are “scrambling”—
they locally randomize errors, and quickly spread them
across many qubits. This suppresses error cancellation
further [17]. So γðEdÞ ≈

Q
d
i¼1 γi−1γi for a typical random-

ized mirror circuit.

Finally, we calculate the effect of averaging over
the Li layers [pink boxes, Fig. 1(a)]. They are independ-
ently sampled from Ω, so S̄d ≈ A½PL ΩðLÞγL−1γL�d=2,
where γL ≡ γðEðLÞÞ. That is, S̄d ≈ Apd, where p2≈P

L ΩðLÞγL−1γL. Rewriting this in terms of ϵΩ and CovΩ ¼
½PL ΩðLÞϵðL−1ÞϵðLÞ� − ½ϵΩ�2 gives p2 ≈ ½1 − ð4nεΩÞ=
ð4n − 1Þ�2 þ ð4nCovΩÞ=ð4n − 1Þ. So if CovΩ¼0, then
rΩ≈ϵΩ. CovΩ quantifies the correlation between the
error rate of a Ω-random layer L and its inverse L−1, so
CovΩ ≠ 0 is likely. This covariance satisfies ϵΩð1−ϵΩÞ ≥
CovΩ ≥ −ϵ2Ω, so ϵΩ þOðϵ2ΩÞ ⪆ rΩ ⪆ ðϵΩ=2Þ þOðϵ2ΩÞ.
Therefore rΩ is never significantly large than ϵΩ, and it
can be smaller by at most a factor of ≈2. The fϵðLÞg
distributions that get close to these bounds on CovΩ are not
physically typical; e.g., the upper bound is saturated if
ϵðLÞ ¼ ϵðL−1Þ and ϵðLÞ ¼ 0 or ϵðLÞ ¼ 1 for each L. We
therefore conjecture that, for physically relevant fϵðLÞg, rΩ
typically only slightly underestimates ϵΩ. This is supported
by our simulations and our demonstrations on physical
qubits.
Simulations.—We simulated MRB on 1–225 qubits with

randomly sampled stochastic Pauli error models. The
qubits were arranged on a 15 × 15 lattice (the layer set
is described above). We independently sampled a total of
900 MRB circuit sets with a range of n ∈ ½1; 225�. We used
a distribution Ω whereby a layer sampled from Ω has an
expected CNOT density of 1=8. For each MRB circuit set we
used a different randomly sampled error model, consisting
of biased and correlated Pauli errors with one- and two-
qubit gates having an expected infidelity of 0.1% and 1%,
respectively [40]. Figure 2(a) shows ϵΩ versus rΩ. We
observe that rΩ ≈ ϵΩ, with rΩ typically slightly less than ϵΩ,
as expected from our theory. Quantifying estimation error
by δrel ¼ ðrΩ − ϵΩÞ=ðϵΩÞ, we find that δrel > −0.32 in all
900 simulations, and for each n its mean δ̄rel satisfies
0.003 > δ̄rel > −0.16. Although this systematic underesti-
mation of ϵΩ is undesirable, it is arguably small enough to
be insignificant (RB is typically used for rough estimates of
gate performance rather than precision characterization).
To show howMRB can be used to reveal crosstalk errors,

we simulated it on our hypothetical 225-qubit processor
with two illustrative models, one with and one without
crosstalk. The crosstalk-free model consisted of 0.5%
readout error on each qubit, and depolarization on the
one- and two-qubit gates, with 0.1% and 1% error rates,
respectively. In the crosstalk model, each CNOT also caused
the error probability for qubit q to increase by ϵðqÞ, with
ϵðqÞ a slowly decreasing function of the distance
(on the lattice) from q to the CNOT’s location [40].
Figure 2(b) shows rΩ (points) and ϵΩ (dotted line) versus
n for both models. We find that rΩ ≈ ϵΩ (averaged over n,
δ̄rel ≈ −0.17 and δ̄rel ≈ −0.08 for the crosstalk-free and
crosstalk models, respectively), and that rΩ grows quad-
ratically at low n under the crosstalk model—an effect that
cannot be observed without running many-qubit circuits.
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Validating MRB with cloud access experiments.—To
demonstrate MRB and compare it to existing techniques,
we ran MRB, DRB [17], and standard RB [3] on 1–5 qubits
of IBMQQuito [45]. DRB is designed to measure the same
quantity as MRB (ϵΩ) and is known to be reliable but
unscalable (because its circuits start by preparing a random
n-qubit stabilizer state). For DRB and MRB we sampled
layers with an expected CNOT density of ξ ¼ 1=8 [40]
(standard RB does not have flexible sampling and its error
rate is incomparable). Figures 3(a)–3(c) show that we
observe exponential decays for all three methods and all
n (for all methods d ¼ 0 corresponds to the shortest
allowed circuit, consisting of a random n-qubit Clifford
and its inverse for standard RB and preparation in and
measurement of a random stabilizer state for DRB). For
standard RB and DRB we rescale the success probabilities
P to polarizations ðP − 1=2nÞ=ð1 − 1=2nÞ (this has no
effect on the estimated r) for easier comparison with MRB.

Figures 3(a)–3(c) also highlight the fundamentally im-
proved scaling of MRB. The d ¼ 0 polarization [Fig. 3(e)]
decaysmuchmore quicklywithn for DRBand standardRB,
because they use subroutines containing Oðn2= log nÞ
gates, whereas d ¼ 0 randomized mirror circuits use
OðnÞ gates. The error rates estimated by DRB and MRB
are in close agreement for all n [Fig. 3(d)], validating MRB.
We also predicted rΩ from Quito’s calibration data [40].
These predictions [stars, Fig. 3(d)] are consistent with our
observations for n ¼ 1, 2, but they are overoptimistic as n
increases. This discrepancy indicates crosstalk errors caused
by CNOTs. This is because IBM’s one- and two-qubit
calibration data are obtained from simultaneous one-qubit
RB and isolated two-qubit RB (i.e., all other qubits are left
idle) [39,45], respectively. Therefore, the one-qubit error
rates include contributions from any one-qubit gate cross-
talk, whereas the two-qubit error rates do not include
contributions from two-qubit gate crosstalk.
Mapping out a processor’s performance.—MRB can be

used to map out performance of a processor’s n-qubit layers
when varying both n and the embedding of those qubits, as
we demonstrate on IBM Q Rueschlikon (16 qubits) [45].
For n ∈ f1; 2; 4; 8; 16g we divided Rueschlikon into 16=n
regions, and ran randomized mirror circuits on each region
(the one-qubit circuits were performed simultaneously to
match IBM’s calibration experiments) [40]. In this dem-
onstration, we fixed the expected number of CNOTs in a
layer to 1=2. Figure 1(b) shows exponential decays for one
region of each size (the leftmost regions in Fig. 4), and
Figs. 4(a) and 4(b) show rΩ for all benchmarked regions

(a)

(b)
(d)

(e)

(c)

No. Qubits

FIG. 3. Validating MRB using cloud access experiments. MRB,
DRB, and standard RB on 1–5 qubits of IBM Q Quito. (a)–
(c) The means (points) and distributions (violin plots) of the
circuit polarizations versus benchmark depth (d), and fits to an
exponential Apd (curves). (d) Error rates (r) obtained from the
fit’s decay rate for DRB and MRB versus the number of qubits
(n), and the values predicted from calibration data. The DRB and
MRB error rates are in close agreement, validating MRB against
the reliable but unscalable DRB protocol. The measured r
diverges from the predictions of Quito’s calibration data as n
increases, indicating crosstalk. (e) The mean polarizations at
d ¼ 0 (S0) decrease rapidly with n for DRB and standard RB
[at best logðS0Þ ¼ 1 −Oðn2= log nÞ] making them infeasible
beyond a few qubits, whereas logðS0Þ ¼ 1 −OðnÞ for MRB.

IBM Q Rueschlikon Region

n-Qubit Error Rates Measured Using n-qubit MRB

n-Qubit Error Rates Predicted from Calibration Data
              (1- and 2-Qubit Standard RB)

(a)

(b)

FIG. 4. Mapping out the performance of a 16-qubit processor.
MRB was used to probe the performance of n-qubit regions of
IBM Q Rueschlikon. (a) The measured error rate ðrΩÞ for each
qubit subset that was tested (black lines are 1σ uncertainties) and
(b) the overoptimistic predictions from calibration data. The
horizontal axis is a device schematic (nodes are qubits and edges
the available CNOTs).
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and the predictions from the calibration data, respectively.
The prediction underestimates rΩ for n > 2, again signify-
ing crosstalk induced by CNOTs (see discussion above).
Discussion.—In this Letter we have introduced a tech-

nique that enables holistic RB of hundreds or thousands
of qubits, while retaining the core simplicity of standard
RB—fitting data from random circuits to an exponential.
We anticipate that techniques based on standard RB
[10,14,39,46–55] can be enhanced using ideas introduced
here. For example, MRB does not require compilation of
subroutines, so it removes the circuit scheduling complexi-
ties that plague simultaneous standard RB [14,39], sug-
gesting that MRB will be more powerful for probing
crosstalk. Similarly, running multiple MRB experiments
with Ω varied could be used to isolate the error rates of
different subsets of layers [17]. This would enable reliable
predictions of the performance of many-qubit, randomly
compiled circuits [30–33] (randomized compiling guaran-
tees that layer fidelities are sufficient to predict overall
circuit performance [35], which is not true otherwise [28]).
Our demonstrations on a cloud quantum computing

platform revealed and quantified crosstalk errors that are
invisible to one- and two-qubit RB, highlighting the need
for scalable methods like ours. Outside the paradigm of RB
there are a variety of methods for testing n-qubit circuit
layers, and our technique complements them. For example,
cycle benchmarking [33,56] and Pauli noise estimation
[57,58] can characterize a Pauli-dressed n-qubit layer.
These techniques extract more information about a layer’s
errors, but, unlike MRB, they test only one (or a few) of a
processor’s many possible n-qubit layers. Methods for
extracting more information from mirror circuit data,
e.g., by using the techniques of Refs. [56–58], are an
intriguing possibility [59,60].
Our method is built on a particular type of randomized

mirror circuits, but circuit mirroring [28] is a flexible tool
that could be used to construct a range of randomized
benchmarks with complementary properties to ours. For
example, mirror circuits can contain non-Clifford gates
[28], which suggests a route to scalable RB of universal
gate sets, and scalable “full stack” benchmarks.

All data and analysis code are available at Ref. [61]. Our
circuit sampling code is available in PYGSTI [62,63].
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Note added.—Recently, Mayer et al. [65] presented a
complementary theory for MRB that assumes gate-
independent errors and a two-design gate set.
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