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While Bell nonlocality of a bipartite system is counterintuitive, multipartite nonlocality in our many-
body world turns out to be even more so. Recent theoretical study reveals in a theory-agnostic manner that
genuine multipartite nonlocal correlations cannot be explained by any causal theory involving fewer-partite
nonclassical resources and global shared randomness. Here, we provide a Bell-type inequality as a test for
genuine multipartite nonlocality in network by exploiting a matrix representation of the causal structure of a
multipartite system. We further present experimental demonstrations that both four-photon GHZ state and
generalized four-photon GHZ state significantly violate the inequality, i.e., the observed four-partite
correlations resist explanations involving three-way nonlocal resources subject to local operations and
common shared randomness, hence confirming that nature is boundless multipartite nonlocal.

DOI: 10.1103/PhysRevLett.129.150401

Introduction.—Nature allows nonlocal correlations
between spacelike separated parties that cannot be
explained by classical causal models. Nonlocality has been
firmly established via the violation of the celebrated Bell
inequality [1–3] in a number of experiments with bipartite
quantum systems [4–10] and has led to critical applications
in quantum information science such as quantum telepor-
tation [11], quantum key distribution [12–14], and quantum
randomness [15–17]. Going beyond, understanding non-
locality of a system with three or more parties is an
intriguing question, which may potentially impact a broad
range of applications such as multipartite cryptography
[18], quantum computation [19–21], correlating particles
that never interacted [22,23], many-body physics [24–27],
and quantum networks that have advanced significantly in
the past few years [28–46], besides deepening our under-
standing of nonlocality.
Multipartite systems have much richer correlation struc-

tures compared to bipartite systems. According to
Svetlichny’s proposal of genuine multipartite nonlocality
[47] restricted by no-signaling conditions [48,49], it is
possible to construct genuine multipartite correlations with
bipartite resources [50]. Actually, Svetlichny’s original
proposal provided a device-independent witness of genuine
multipartite entanglement [51,52], in which he adopted the
framework of local operation and classical communica-
tions. However, for spacelike separated parties in multi-
partite Bell scenarios, classical communications are not at
their disposal, which enforces no-signaling condition.
Furthermore, it is a realistic scenario that all parties may
have global access to common shared randomness. Hence,

it is of particular interest to ask whether there are multi-
partite nonlocal correlations that cannot be explained with
bipartite and any other fewer-partite nonlocal resources that
are subject to local operations (without classical commu-
nications) and shared randomness (LOSR) [53–57]. This
question led to the latest theoretical advances of genuine
LOSR network multipartite entanglement [58] and genuine
LOSR network multipartite nonlocality [51,52,59,60].
In [51,52], Coiteux-Roy, Wolfe, and Renou defined

genuine LOSR multipartite nonlocality, referred to as
genuine multipartite nonlocality in network here, to be
those correlations that cannot be simulated with local
composition of any k-partite (with k ∈ f1; 2;…; N − 1g)
resources with access to common shared randomness for a
network with N parties. From the theory-agnostic perspec-
tive, they considered any plausible causal theory, including
classical theory, quantum theory, and hypothetical gener-
alized probabilistic theory, that is compatible with device
replication. Exploiting the inflation techniques [61–63],
they designed a device-independent Bell-type inequality
for genuine LOSR multipartite nonlocality [51,52] and
proved that N-partite GHZ state can violate their inequality
and thus is genuine LOSR multipartite nonlocal for any
finite N. This line of research promotes our understanding
of nonlocality by revealing that nature is boundlessly
nonlocal and in the meantime showcases the usefulness
of inflation technique.
In this Letter, we first propose an algebraic approach to

inflation technique via matrix representation of the causal
structure, i.e., party-resource relations of a general network
with N parties. This enables the construction of a new test
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of genuine LOSR multipartite nonlocality in terms of Bell-
type inequality, in which each party performs two alter-
native dichotomic measurements. This test outperforms the
one proposed in [51] with an improved noise threshold that
attains the optimal value found via linear programming in
[52] for tripartite GHZ state. Furthermore, we experimen-
tally demonstrate that four-photon and three-photon GHZ
states and the respective generalized GHZ states violate the
inequalities. Finally, we conclude with a discussion
that a large family of quantum pure states can violate
the Bell-type inequality besides quantum GHZ state and
W state [51,52].
Test in triangular network.—In the framework of LOSR,

we consider first a network of three parties, labeled with
V ¼ fA;B;Cg, with global access to common shared
randomness ζ as shown in Fig. 1(a). Each pair of parties
share a two-way resource, namely, ωAB ≡ C̄, ωBC ≡ Ā, and
ωCA ≡ B̄, which can be very general, such as classical,
quantum, or no-signaling. As shown in Fig. 1(b), the
network can be faithfully represented by a 3 × 3 incidence
matrix Γ with elements Γij ¼ 1 − δij for i; j ¼ 0, 1, 2. A
matrix element Γij ¼ 1ð0Þ indicates that the ith party in the
ordered set fA; B;Cg is (not) sharing the jth resource in the
ordered set R ¼ fĀ; B̄; C̄g. Following Ref. [51,52], based
on the assumption of device replication and causality, a
non-fan-out inflation of the triangular network of order 3 is
a network of nine parties fV;V 0;V 00g connected by resour-
ces fR;R0;R00g. Its faithful incidence matrix representa-
tion Γ0 is presented in Fig. 1(b), in which each row and
column have exactly N − 1 nonzero entries, one for each
type of resources and parties, respectively.
In the triangular network, each party performs two

alternative dichotomic measurements Vx ¼ fAx; By; Czg

(respectively with random and private inputs x, y, z ¼ 0,
1) with outcomes a ¼ fa; b; cg ∈ f−1; 1g, giving rise to a
set of correlations PðajVxÞ. In the inflated network, the
measurements for the same type of parties are identical,
e.g., measurements A0

x and A00
x performed by parties

A0, A00 are the same as Ax, so do other parties, respecti-
vely. As a result, we obtain an inflated correlation
Q3ðaa0a00jVxV 0

x0V
00
x00 Þ satisfying a set of compatibility rules.

First, it is no-signaling for all parties. Second, as a
consequence of no-signaling and causality, as long as
two subnetworks are isomorphic the correlations among
the corresponding parties are identical. In an inflated
network, two subnetworks are isomorphic if they are
isomorphic under the dropping of the primes of the parties
and resources [52]. For instance we have hA0B0iQ3

¼
hABiQ3

, hA0C0iQ3
¼ hACiQ3

, and hABCiQ3
¼ hABCiP.

And lastly it is nonnegative, e.g.,

X

α;β¼�1

y¼0;1

Q3½ð−1Þyαβ;−β; α; βjA1ByC1C0
0� ≥ 0; ð1Þ

from which it follows that

2 − hA1ðB0 − B1ÞC1 þ ðB0 þ B1ÞC0
0iQ3

≥ 0: ð2Þ

To proceed we note that

hByC0
0iQ3

¼ hB0
yC0

0iQ3
≥ hB0

yA0
0iQ3

þ hA0
0C

0
0iQ3

− 1

¼ hByA0 þ A0C0iP − 1:

Here, the first equality holds because of isomorphism
fB;C0g and fB0; C0g, both of which do not share a common
nonlocal resource and locally they have the same pattern of
resources sharing, which is evident in matrix Γ0 (see lemma
later in the text). The inequality comes from positivityP

� Q3ð∓;�;�jA0
0B

0
yC0

0Þ ≥ 0. The last equality is due to
isomorphisms such as fA0B0gwith fABg and compatibility.
Finally, we obtain the following Bell-type inequality as a
test of LOSR genuine three-partite nonlocality in a tri-
angular network:

hA0ðB0 þ B1Þ þ A1ðB0 − B1ÞC1 þ 2A0C0iP ≤ 4: ð3Þ

Some remarks are in order. First, it is straightforward
to show that substituting GHZ state jGHZ3i ¼ j000iþ
j111i= ffiffiffi

2
p

under local measurements A0 ¼ C0 ¼ Z,
A1 ¼ C1 ¼ X, and By ¼ ðZ þ ð−1ÞyXÞ= ffiffiffi

2
p

to the left-

hand side of inequality [Eq. (3)] yields 2þ 2
ffiffiffi
2

p
, hence

violating the inequality. [Note that we use j0iðj1iÞ to
denote photon in horizontal (vertical) polarization state
jHiðjViÞ and X, Y, Z are Pauli matrices.]
Second, each party performs two alternative dichotomic

measurements in our test, in contrast to the original

FIG. 1. A triangular network with parties V ¼ fA; B; Cg and
resources R ¼ fĀ; B̄; C̄g (enclosed by dashed line) and its non-
fan-out inflation of order 3 (entire) in (a) with their respective
matrix representations Γ (enclosed by dashed line) and Γ0 in (b),
where blank entries represent zero. All parties have access to
common shared randomness (ζ).
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proposals in which one party performs three alter-
native dichotomic measurements [51,52]. This enables us
to find the device-independent maximal violation to the
inequality, hence providing a device-independent detection
of genuine multipartite nonlocality. It turns out that the
maximum is attained at projective measurements per-
formed on a 3-qubit pure state [64]. Thus, for quantum
theory (Q), we have (see Supplemental Material [65])

hA0ðB0 þ B1Þ þ A1ðB0 − B1ÞC1 þ 2A0C0iP≤
Q
2 þ 2

ffiffiffi
2

p
.

Clearly GHZ state provides the maximal violation.
Interestingly the algebraic upper bound of this inequality
is 6, which is attained by the extremal Box 8 as documented
in Ref. [66].
Third, by symmetry we can obtain other Bell-type

inequalities for genuine multipartite nonlocality in network
by exchanging some parties, e.g., A and C.
General network.—As isomorphic subnetworks give rise

to identical correlations, it is critical to identify isomorphic
subnetworks in designing tests for genuine LOSR multi-
partite nonlocality in network. The following lemma
provides a criterion for isomorphism among two-party
subnetworks exploiting the matrix representation for
inflated network.
Lemma. Consider an inflated network of order k with

kN parties fNμgkN−1
μ¼0 specified by kN × kN incidence

matrix Γ. The same type of parties and resources are
labeled with indices having the same remainder modular N.
Two subnetworks fNμ; Nνg and fNμ0 ; Nν0g are isomorphic
iff γ⃗μν ¼ γ⃗μ0ν0 , where the N-dimensional vector γ⃗μν is
defined by components

½γ⃗μν�s ≔
X

t≡s ðmod NÞ
Γμt ⊕2 Γνt ð4Þ

for 0 ≤ s ≤ N − 1 where ⊕2 denotes addition modular 2.
The proof is straightforward by noting that each com-

ponent of vector γ⃗μν can assume only three possible values:
f0; 1; 2g. It is zero if and only if they share the corre-
sponding resource and 1 if and only if the corresponding
resource is N̄μ and N̄ν and 2 if and only if the corresponding
resources are not shared. For examples, in the inflated
network in Fig. 1, we have isomorphic subnetworks
fB;C0g ∼ fB0; C0g and fA; Bg ∼ fA0; B0g, which is evident
given γ⃗BC0 ¼ γ⃗B0C0 ¼ ð2; 1; 1Þ and γ⃗AB ¼ γ⃗A0B0 ¼ ð1; 1; 0Þ.
Here, we use ∼ to denote that the two subnetworks have the
same causal structures. Similarly we have fA;Cg∼
fA0; C0g, while subnetworks fB;Cg and fB0; C0g are not
isomorphic.
Equipped with this lemma, we can extend the Bell-type

inequality for triangular network to a general network with
N parties (see Supplemental Material [65]).
Theorem. For a general network with N parties,

labeled with fA;B;C;D;…;Wg, with each group of
N − 1 parties sharing a nonlocal resource in addition to

global randomness, the correlation produced by two local
dichotomic measurements on each party satisfies the
following Bell-type inequality:

SN ≔ hA0ðB0 þ B1Þ þ 2ðA0C0 þ C0D0 þ � � � þ V0W0Þ

þ A1ðB0 − B1ÞC1D1…W1iP ≤
LOSR

2ðN − 1Þ; ð5Þ

≤
Q
2

ffiffiffi
2

p
þ 2ðN − 2Þ: ð6Þ

The LOSR bound is maximally violated by N-qubit
GHZ state with a white-noise threshold ηN ¼ ½ðN − 1Þ=
ðN − 2þ ffiffiffi

2
p Þ�, which improves over previous results [51]

(see Supplemental Material [65]). For example, we obtain
η3 ¼ 0.83, which is smaller than 0.93 in [51] and coincides
with the optimal threshold found via linear programming in
[52], hence confirming that our analytical results are
optimal. We shall present below experimental verification
of our results in the cases of N ¼ 3, 4.
Experiments.—A schematic of implementing a quantum

network distributing four-photon GHZ state to four parties
—Alice (A), Bob (B), Charlie (C), and David (D)—is
depicted in Fig. 2. We first prepare two EPR sources. We
use a pulse pattern generator (PPG) to send out trigger
pulses at a rate of 250 MHz. In each source, the trigger
pulse signals a distributed feedback (DFB) laser to emit a
laser pulse at λ ¼ 1558 nm. We shorten the pulse width
from 2 ns to 90 ps with an intensity modulator (IM). After
passing through an erbium-doped fiber amplifier (EDFA), a
periodically poled MgO-doped lithium niobate (PPLN)
waveguide to double the frequency, and a dense wavelength
division multiplex (DWDM) filter to remove the residual
pump light, we use the produced pulse at λp ¼ 779 nm to
drive a Type-0 spontaneous parametric downconversion
(SPDC) process in a piece of PPLN crystal in a Sagnac
interferometer, which emits probabilistically a pair of
photons in EPR state jΦþi ¼ ðjHHi þ jVViÞ= ffiffiffi

2
p

[67]
at the phase-matched wavelength 1556 nm (signal) and
1560 nm (idler). Interfering signal photons from the
two EPR sources on a polarizing beam splitter (PBS),
we create four-photon GHZ state, jGHZ4i ¼ ðjHHHHiþ
jVVVViÞ= ffiffiffi

2
p

, after postselection [68]. We pass photons
through fiber Bragg gratings (FBGs) with bandwidths of
3.3 GHz before entering single-photon detectors to sup-
press the spectral distinguishability between photons from
different EPR sources and keep the photon-pair production
rate of each EPR source at 0.0025 per trigger to strongly
mitigate the multiphoton effect. Quantum tomography
measurements indicate that the state fidelity is greater than
0.99 for the two-photon states produced at EPR sources
with respect to the ideal Bell state jΦþi and is 0.9740�
0.0043 for the produced four-photon state with respect to
the ideal state jGHZ4i, respectively.
We install a quantum random number generator at each

party [67,69–75], which privately and randomly feeds a 2-
bit random number (xα ∈ f0; 1g) to the party to switch

PHYSICAL REVIEW LETTERS 129, 150401 (2022)

150401-3



between measurement bases Z (xα ¼ 0) and X (xα ¼ 1) for
Alice, Charlie, and David, and between (Z þ X) (xα ¼ 0)
and (Z − X) (xα ¼ 1) for Bob to perform measurement to
her or his share of photon, where the Pauli matrices X, Z,
and Z � X are implemented by a half-wave plate (HWP) at

each party, respectively. The generation of random numbers
is synchronized to the PPG. We switch the measurement
settings every 30 s, reserving the first 10 s to reset the
measurement settings, including quantum random number
generation and wave plate rotation, and the remaining 20 s
for data collection. We collect 33252 four-photon coinci-
dence events over 16 measurement setting combinations in
14741 switching cycles. We compute the correlation
function S4 ¼ 6.6484� 0.0209, which surpasses the
LOSR bound 6 by more than 30 standard deviations as
shown in Fig. 3(a), i.e., the observed correlation cannot be
reproduced by involving any three-way nonlocal resources
with local operations and unlimited shared randomness.
Hence, the observed correlation is genuinely LOSR four-
partite nonlocal.
Each of David’s successful detections of a photon

probabilistically heralds the presence of a three-photon
GHZ state shared between Alice, Charlie, and Bob. We
show in Fig. 3(b) the correlation function S3 ¼ 4.6674�
0.0323 surpasses the LOSR bound 4 by more than 20
standard deviations, i.e., the observed correlation cannot be
reproduced by involving any two-way nonlocal resources
with local operations and unlimited shared randomness.
Discussions and conclusions.—Besides GHZ state and

W state [51,52], we now show that a large family of pure
states can violate inequality [Eq. (5)]. First, it is straight-
forward to show that the generalized N-qubit GHZ state
jξNi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½ð1þ ξÞ þ 2�p j0i⊗N þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½ð1 − ξÞ=2�p j1i⊗N viola-
tes inequality [Eq. (5)] with the same measurement settings
as those for GHZ state, whenever jξj < ξc with jξj ∈ ½−1; 1�

FIG. 2. Schematic of the experiment. We prepare two EPR sources by driving two SPDC processes in parallel (see text for details). In
each SPDC process, we inject a laser pulse at 779 nm into a PPLN crystal in a Sagnac interferometer [67], which probabilistically emits a
pair of polarization-entangled photons in EPR state jΦþi at paired wavelengths 1556 nm (signal) and 1560 nm (idler). We interfere
signal photons from the two sources on a PBS and obtain four-photon GHZ state sharing between parties A, B, C, and D after
postselection. A quantum random number generator (QRNG) is used to instruct each party to perform two alternative dichotomic
measurements to the photon at his disposal. DHWP, dual-wavelength HWP for 1560 nm and 779 nm; DWDM, dense wavelength
division multiplexing; FPBS, fiber PBS; FPC, fiber polarization controller; SNSPD, superconducting nanowire single-photon detector.

(a)

(b)

FIG. 3. Experimental measurements of correlation function SN
(left panel) and violations of inequality [Eq. (5)], SN − 2ðN − 1Þ,
(right panel) with GHZ statesN ¼ 4 in (a) andN ¼ 3 in (b). Error
bars represent 1 standard deviation in experiments.
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and ξc ¼ 0.91 independent of N. We present in Fig. 4
experimental demonstrations for N ¼ 3 and N ¼ 4 with
ξ ¼ 0.5 along with theoretical predictions. The results
uphold a good agreement.
Furthermore, under local unitaries, the most general

three-qubit pure state can be cast into the canonical
form [76]

jΨ3i¼h0j000iþh1eiϕj100iþh2j101iþh3j110iþh4j111i

with hi ≥ 0 and
P

i h
2
i ¼ 1 and ϕ ∈ ½0; π�. Performing the

same measurements to this state as that for GHZ state shall
violate inequality [Eq. (3)] if the state satisfies the conditionffiffiffi
2

p ½ðh0þh4Þ2þ2h23þh20þh24−1�þ4ðh20þh24þh22Þ−2>4.
It is reasonable for one to anticipate that the study of

multipartite nonlocality may be as fruitful as that of Bell
nonlocality [3]. Hence, it will be interesting to explore more
states and new approaches suitable for the test of genuine
LOSRmultipartite nonlocality, for example, the Hardy type
of nonlocality tests, which have been used to detect genuine
multipartite nonlocality in Svetlichny’s original definition
with no-signaling restrictions [77,78]. The matrix repre-
sentation of the causal relation of networks introduced in
this Letter may provide a convenient tool in these explora-
tions. While our experiment presents a test of the genuine
multipartite nonlocality, we note that the measurement
events of one party are not spacelike separated from those
of other parties and the photon detection efficiencies are
low; hence, our experiment has the loopholes of locality
and fair sampling assumption [3]. The next task along this
line of research may be to conduct an experimental test of
genuine multipartite nonlocality without these loopholes,

like the loophole-free test of Bell inequality [6–10], and a
strategy to do so was just proposed in [79].
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