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The rheology of biological tissue plays an important role in many processes, from organ formation to
cancer invasion. Here, we use a multiphase field model of motile cells to simulate active microrheology
within a tissue monolayer. When unperturbed, the tissue exhibits a transition between a solidlike state and a
fluidlike state tuned by cell motility and deformability—the ratio of the energetic costs of steric cell-cell
repulsion and cell-edge tension. When perturbed, solid tissues exhibit local yield-stress behavior, with a
threshold force for the onset of motion of a probe particle that vanishes upon approaching the solid-to-
liquid transition. This onset of motion is qualitatively different in the low and high deformability regimes.
At high deformability, the tissue is amorphous when solid, it responds compliantly to deformations, and the
probe transition to motion is smooth. At low deformability, the monolayer is more ordered translationally
and stiffer, and the onset of motion appears discontinuous. Our results suggest that cellular or nanoparticle
transport in different types of tissues can be fundamentally different and point to ways in which it can be
controlled.
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The dynamics of cells in dense tissues is important
for understanding many biological processes, including
embryonic development [1], cancer metastasis [2], and
wound healing [3]. It underlies the epithelial-mesenchymal
transition observed in vivo [4–6], in which stationary
epithelial cells change to a more motile, mesenchymal
phenotype. Experiments have also demonstrated a transi-
tion from glassy, or solidlike, to liquid dynamics in
epithelial monolayers both in vitro [7–12] and in vivo
[7,13]. Theoretical work on various models of dense
tissues, including multiphase field [14], Voronoi [15,16],
vertex [17–19], and cellular Potts models [20,21], has
shown that this melting transition can be driven by the
interplay of cell surface tension, cell motility, and active
noise. An important question is whether the solid-to-liquid
transition has an impact in tissue function in health and
disease. Theory and experiments have begun to address this
issue by exploring the rheological and mechanical proper-
ties of biological tissues, which have key consequences to
their macroscopic biophysical behavior [13,22–31]. A
mechanistic and quantitative understanding of the impact
of cell surface tension and cell motility on the rheology and
transport properties of biophysical tissues is, however, still
lacking.
To shed light on this aspect, we study the local response

of the tissue to the drag of an embedded colloidal probe.
Constantly forced probes and oscillatory active micro-
rheology [32] have been used to study the local material
response in a wide variety of active and passive systems,
including colloidal suspensions [33–37], biological tissues

[23,38], and active disks [39–41]. While distinct from
macrorheology that measures the material response on
macroscopic scales, the two methods often yield qualita-
tively similar behavior when used to probe the rheology of
complex fluids [42]. Active microrheology also provides a
promising and nondestructive technique for understanding
how cells in dense tissues generate spatially localized
forces and transmit them to large scales.
Using a multiphase field model [14,43–50] of cells, we

show that solidlike tissues exhibit a finite threshold for the
onset of motion of an embedded probe pulled at a constant
force. In passive systems of rigid particles, the existence of
a finite threshold to probe motion correlates with a yield
stress at the macroscopic scale [38]. Although no macro-
rheology data are available for our system, our finding
suggests that our model tissue may behave as a yield stress
material even in the presence of noisy cell motility [22,51].
A finite yield stress has indeed been reported in biolo-
gical tissues [13] and in simulations of sheared vertex
models [28].
The onset of probe motion depends on cell deformability,

a measure of cell-edge tension. Near onset, velocity-force
curves become sharper for rigid monolayers, and the
probe’s instantaneous velocity behaves differently. At high
deformability, this velocity is sharply and evenly distrib-
uted around its mean as the probe smoothly squeezes
through compliant neighboring cells, resulting in small
local yield stress. At low deformability, the probe needs to
displace cells within its vicinity to move, resulting in
velocity distributions with fat tails and large local yield
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stress. These differences correlate with the structural top-
ology of the solidlike state, which is near crystalline for
rigid cells, but glassy and defect-ridden for soft cells.
Model.—We describe a tissue monolayer using a multi-

phase field model with N cells, each represented by a scalar
field ϕiðrÞ. Phase field models incorporate cell shape
deformation (a measure of tissue fluidity [15,17]) and
allow for cell intercalation and density inhomogeneities,
and they capture many properties of dense tissue layers
[45,52,53]. The free energy of the system is given by

F ¼
XN
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The first term sets ϕ0 ¼ 2 and 0 in the interior and exterior
of each cell, respectively. The second term penalizes
gradients in the phase with a stiffness K. These two terms
determine the interfacial thickness ξ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

2K=α
p

and the
cell-edge tension σ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8Kα=9
p

, which is in turn controlled
by cortex contractility and cell-cell adhesion. The third
term is a soft constraint on the cell area, with the preferred
area set to that of a circle of radius R ¼ 12. Finally, the
fourth term models steric repulsion (ϵ ¼ 0.1) by penalizing
cell overlap.
Cell dynamics is overdamped due to friction with the

substrate and is governed by the equation

∂ϕi

∂t
þ vi · ∇ϕi ¼ −

1

γ

δF
δϕi

; ð2Þ

where γ ¼ 10 is an inverse mobility. Cell motility enters
through advection by the cell self-propulsion velocity
vi ¼ v0ðcos θi; sin θiÞ. As in active Brownian particle
models, we assume that, in isolation, all cells move at
the same speed v0, while the direction of motion θi is
randomized by noise at rate Dr, dθiðtÞ ¼

ffiffiffiffiffiffiffiffi
2Dr

p
dWiðtÞ,

where WiðtÞ is a Wiener process and Dr ¼ 10−4. This
minimal version of the model has been shown to capture the
organization of epithelial monolayers [53]. We quantify
cellular activity through the Péclet number Pe ¼ v0=ðRDrÞ,
with v0=Dr the cells’ persistence length. Both v0 and Dr
can be mapped to physical values via mean squared
displacement (MSD) data of cells.
When cells interact, they may change their area (at a cost

λ), overlap (cost ϵξR), or deform their perimeter and shape
(cost σR). We quantify cell deformability via the dimen-
sionless parameter d ¼ ϵξR=ðσRÞ and vary it from 0.3
to 6.0 by changing σ for fixed ξ ¼ 2. The compressibility
χ ¼ λ=ðϵξRÞ characterizes the competition between area
changes and overlap and is fixed to χ ¼ 125=3, giving
polydisperse systems without cell overlap (physically

corresponding to extrusion out of the plane in a cell
monolayer [14]). Further details of implementing the model
are discussed in Supplemental Material (SM) [54] and
in [14].
We embed in the tissue a probe particle described by a

rigid phase field (d ¼ 0.015, χ ¼ 2500) of the same size as
the cells and subject to the same free energy, so that it
remains circular at all times. The probe is pulled at a
constant force F along the x axis, and we measure its
velocity as vbt ¼ ½xbðtþ ΔtÞ − xbðtÞ�=Δt, with xbðtÞ the
instantaneous x position of the probe, over intervals of
Δt ¼ 0.01D−1

r for a range of values of d and Pe.
We characterize the solidlike or liquidlike state of the

system by studying the long-time behavior of cells’ MSD,
with MSDðtÞ ∼ tα (see SM [54]). In the solidlike state the
cells behave subdiffusively (α < 1), whereas in the liquid-
like state they move diffusively (α ¼ 1; Figs. S1 and S2 in
SM [54]).
Threshold force and local yield stress.—In our solidlike

tissues, a finite threshold force Fc is required for the
probe to move at a nonzero velocity (Fig. 1). In colloidal
suspensions, the threshold force probed by microrheology
can be related quantitatively to the macroscopic yield
stress [42]. While the detailed form of such a relation
has not been established for the case of deformable
particles, this suggests that the behavior of Fc should be
at least qualitatively similar to that of the tissue yield stress.
A typical velocity-force curve for our rheological probe

is shown in Fig. 1. We identify three dynamical regimes.
At low forces, the probe rattles within its cage but is unable
to escape (light brown region). At greater forces (green
region), it deforms its neighbors strongly enough to escape
the cage but can be temporarily trapped in new cages,
resulting in stick-slip motion. As the force increases
further, the probe no longer spends any time caged—its

FIG. 1. A typical velocity-force curve for a hard probe particle
in a glassy tissue [ðd; PeÞ ¼ ð3.0; 0.1Þ] showing three dynamical
regimes [from left to right: caging (brown), stick-slip (green), and
moving freely (purple)]. Upper inset: the relative strength of the
velocity fluctuations decreases above the critical force. Lower
inset: a snapshot of the simulation setup.
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instantaneous velocity becomes finite at all times, and the
velocity-force curve turns almost linear. We identify the
threshold force Fc as that at which the average long-time
displacement of the bead’s position Δxb ¼ xbð200D−1

r Þ −
xbð20D−1

r Þ equals R. The precise choice of the cutoff, or a
definition based on the long-time exponent with which
displacement grows with time, does not affect the quali-
tative behavior of Fc as a function of Pe and deformability
(Figs. S3–S5 [54]) [54]. Below Fc, the probe is either
completely caged or engages in very rare stick-slip motion.
Just above Fc, it instead moves substantially through the
tissue, in frequent stick-slip or steady motion. The strength
of velocity fluctuations relative to the mean decreases for
F > Fc (Fig. 1, upper inset), which is further evidence for a
dynamical transition associated with local yielding.
To examine the effect of activity, we vary Pe at fixed

deformability. The resulting velocity-force curves are
shown in Fig. 2(a) for highly deformable cells (d ¼ 3.0).
Increasing activity leads to a smoother transition at the
onset of motion. This is qualitatively similar to the thermal
rounding observed in depinning phenomena [55], although
in our system the probe velocity is zero over a finite range
of applied forces for small Pe, indicating that the threshold
force Fc is nonzero even in the presence of noise.
Specifically, Fc and the associated local yield stress
decrease with Pe, but remain finite within the precision
of our simulations until Pe ¼ 0.4 [Fig. 2(a), inset]. This is
also the point at which the tissue melts, as shown by MSD
data (Fig. S1 [54]), suggesting the existence of a finite local
yield stress can be used to characterize the global solidlike
or fluidlike state of the tissue.
To examine the effect of deformability, we fix Pe ¼ 0.1

and vary d, such that the system remains solidlike for all
values of d considered (Fig. S2 [54]). Figure 2(b) and SM

Fig. S7 [54] show that the onset of motion changes
qualitatively depending on cell-edge tension (or deform-
ability). Tissues composed of cells with low tension are
highly compliant and can adapt to the deformation induced
by the probe simply through cell-shape changes. This gives
a smooth, continuous onset of motion and low local yield
stress. In contrast, rigid cells that resist deformation
result in a sharp, almost discontinuous onset of motion
and large local yield stress, as in this case the probe needs to
push aside its neighbors to start moving. The decrease of
threshold force with increasing deformability can be under-
stood by assuming that Fc ∼ keff , where keff is the effective
spring constant felt by a caged particle. A calculation shows
that keff ∼ 1=d (see SM [54]), consistent with data shown in
the inset of Fig. 2(b). A more detailed analysis may require
considering many-body interactions, as in foams [56]. The
qualitative difference in the behavior at low and high
deformability becomes apparent when plotting histograms
of the probe’s instantaneous velocities, which are much
broader and exhibit fatter tails for low d, especially in the
vicinity of Fc [Figs. 2(c)–2(f) and S8 [54]].
Deformation patterns close to the probe.—As the probe

is dragged around the tissue, it can substantially deform
cells nearby. To quantify the extent of such deformations,
we consider the deformation tensor Si [45], where

Si;αβ ¼ −
Z

d2r

�
ð∂αϕiÞð∂βϕiÞ −

δαβ
2

ð∂γϕiÞ2
�
: ð3Þ

This tensor has eigenvectors n̂ei and n̂ci with eigenvalues si

and −si, respectively, where si ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2i;xx þ S2i;xy

q
gives the

magnitude of the deformation. n̂ei ¼ ðsinφi;− cosφiÞ
points along the axis of greatest elongation, whereas

FIG. 2. Probe velocity vb versus applied force F from varying cell motility and deformability. (a) Velocity-force curves at high
deformability (d ¼ 3.0) versus Pe. Inset: the threshold force Fc versus Pe. Circles denote a glassy state with a subdiffusive MSD,
whereas squares indicate a liquid system with a diffusive MSD. (b) Velocity-force curves at Pe ¼ 0.1 for various deformability (d ¼ 0.3,
0.75, 1.5, 3.0, and 6.0). Inset: Fc versus d. All points correspond to the tissue being in a glassy state. (c)–(f) Normalized histograms of vb
for d ¼ 3.0 and 0.3 for forces F just below and above Fc. The values above Fc are chosen as close as possible to give comparable values
of F=Fc.
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n̂ci ¼ ðcosφi; sinφiÞ is along the axis of greatest compres-
sion, and φi is the angle between n̂ci and the x axis
[Fig. 3(a)]. Using this tensor, we measure the degree of
deformation of each cell in the direction from the probe by
defining the radial compression field

CðrÞ ¼
X
i

siH½ϕiðrÞ − ϕ0=2� cos ½2ðαi − φiÞ�; ð4Þ

whereH is the Heaviside function and the field is smoothed
to interpolate values on cell boundaries. Here, αi is defined
by the vector ûi ¼ ðcos αi; sin αiÞ pointing from the center
of the probe to that of cell i. Positive or negative values of
CðrÞ, respectively, signify local compression or elongation
along r. Figure 3(b) shows a snapshot of CðrÞ, indicating a
buildup of compression along x in front of the probe and a
wake of elongation behind. The latter is reminiscent of the
density voids found in the wake of a colloidal probe
dragged through granular materials [57–63], suspensions
of active hard spheres [40,41], colloidal suspensions
[64–66], and foams [67].
Compression and elongation are largest at about one

cell length from the probe, independent of F [Fig. 3(c)],
and the magnitude of the deformation increases with d.

While compression remains roughly constant beyond Fc,
as the probe only requires enough of a compression to
escape its cage, the magnitude of elongation behind the
probe is nonmonotonic with F [Fig. 3(d)]. This behavior
arises because elongation requires the probe to create free
space where the cells behind it can expand. When the probe
undergoes stick-slip motion, the large instantaneous forces
create empty regions behind it. Instead, when the probe
moves freely, the cells behind it follow the motion smoothly,
hence their elongation decreases. The maximum elongation
is found just atFc for the lowd case, but further away for high
d, consistent with the former being a sharper transition,
where the transitional stick-slip regime is narrower.
Defect statistics and topological healing.—To identify

the physical mechanisms underlying the behavior at differ-
ent deformability, we analyze the topological structure of
cell center packing in the solidlike state. Figures 4 and S9
[54] show that defects obtained by Delaunay triangulation
of the cell centers of mass are strikingly different at
different d. The system is more ordered for rigid than
for deformable cells, and defects are rarer in the former case
[Figs. S10(a) and S10(b) [54]]. This is because at small d,
cells try to minimize their perimeter by forming hexagonal
shapes that can tile the plane regularly, whereas at high d,
shape changes lead to a wider repertoire of possible
emerging amorphous structures.
At all values of deformability, the probe’s motion

heals the system, reducing the number of defects over

FIG. 3. Quantifying cell deformation around the probe.
(a) Schematics explaining the radial compression field CðrÞ,
computed based on the alignment of the cell compression axis n̂ci
with the vector ûi pointing from the center of the probe (blue) to
that of the cell (yellow). (b) Heat map of CðrÞ for d ¼ 3.0,
Pe ¼ 0.1, and F ¼ 0.93Fc, showing the axis of cell elonga-
tion n̂ei . (c) Profiles of CðrÞ along the probe’s center in the
x direction, i.e., hCðx;y¼ ybÞi, for d¼ 0.3 and 3.0 with Pe ¼ 0.1.
(d) Absolute values of the minima and maxima of hCðx; y ¼ ybÞi
versus F for parameters as in (c). (a)

(b) (c)

FIG. 4. Reduction in the number of disclinations Nd within the
system over time at different deformability d. (a) Example time
series of Nd for d ¼ 0.3 and 3.0. Snapshots show the Delaunay
triangulation of the system at tDr ¼ 0 and 200. Fivefold and
sevenfold disclinations are shown as blue and red circles,
respectively, and the probe particle marked in gray. (b) and (c)
Time series showing the percentage change in Nd over time at
various F for (b) d ¼ 0.3 and (c) d ¼ 3.0.
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time [Figs. 4(b) and 4(c) and SM Fig. S10(a) [54]]. The
timescales associated with this topological healing, how-
ever, depend on deformability and are smaller for low d.
Again, this points to a sharper transition for rigid mono-
layers, and to a more compliant response of softer ones.
While the probe heals the system locally, global healing
can be achieved by increasing activity [Figs. S10(c) and
S10(d) [54]]. The free motion of the probe therefore acts
as noise in the system. The behavior is qualitatively similar to
that of two-dimensional extended systems pinned by quen-
ched disorder, where a uniform external drive first depins the
system, setting it intomotion, and thenheals it at large applied
forces, restoring partial translational order [68,69].
To conclude, we used simulations to probe the local

mechanics in model cell monolayers. We found that the
monolayer responds to local deformations like a yield-
stress material even in the presence of noisy cell motility.
We also showed that there is a fundamental relationship
between the nature of the local yielding transition and
microscopic cell properties such as cell-edge tension, as
captured here by deformability, and cell motility. In mono-
layers of rigid cells local yielding requires cell displace-
ment, resulting in a large threshold force. In contrast,
monolayers of soft cells are compliant and yield locally
through cell deformation [70], resulting in a smaller
threshold force. As the surface tension of cancerous cells
is thought to be larger than that of healthy tissues, these
results suggest that intratissue dynamics may change
significantly in disease, and it would be of interest to test
this prediction experimentally—e.g., modifying σ by bleb-
bistatin or cadherin knockouts. Our results are also relevant
to recent dynamical measurements in Drosophila embryos
based on embedding a probe inside a cell [38], or
ferroelectric droplets in between neighboring cells [13],
which suggest that local probes can provide quantitative
information on local tissue rheology in vivo.
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