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Chiral gapless boundary modes are characteristic of quantum Hall (QH) states. For hole-conjugate
fractional QH phases counterpropagating edge modes (upstream and downstream) are expected. In the
presence of electrostatic interactions and disorder these modes may renormalize into charge and upstream
neutral modes. Orthodox models of Laughlin phases anticipate only a downstream charge mode. Here we
show that in the latter case, in the presence of a smooth confining potential, edge reconstruction leads to the
emergence of pairs of counterpropagating modes, which, by way of mode renormalization, may give rise to
nontopological upstream neutral modes, possessing nontrivial statistics. This may explain the experimental
observation of ubiquitous neutral modes, and the overwhelming suppression of anyonic interference in
Mach-Zehnder interferometry platforms. We also point out other signatures of such edge reconstruction.
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Introduction.—Transport properties of two-dimensional
topological insulators, such as, quantum Hall (QH) states
are determined by gapless edge modes [1]. The structure of
the boundary is, in turn, constrained by the bulk topological
invariants [2]. Particlelike fractional QH states (described
by a positive definite K matrix) are expected to support one
or more gapless “downstream” chiral edge modes [2–4].
By contrast, hole-conjugate states host multiple branches of
boundary modes, some of which propagate upstream, thus
satisfying bulk topological constraints [5–8]. Such counter-
propagating edge modes are renormalized by disorder-
induced tunneling and intermode interactions, which may
lead to the emergence of upstream neutral modes [9,10].
Notwithstanding the different classes of topological bulk
states, neutral modes appear to be ubiquitous. Experimental
signatures of the latter include upstream heat transport with
net zero charge [11] as well as suppression of anyonic
interference [12]. These have been observed in hole-
conjugate and non-Abelian QH states [13–22], and most
surprisingly, in particlelike states as well [18,19].
Laughlin states (ν ¼ 1=m for odd m), the simplest

example of particlelike phases, are expected to support a
single downstream edge mode (hence no upstream neutral).
However, transport measurements of these states [18,19]
reveal that the structure of the edge is much more intricate.
Specifically, Ref. [18] observed that partial transmission of
charge current through a quantum point contact (QPC) is
accompanied by upstream electric noise (with no net
current). Reference [19] observed that the visibility of the
interference pattern in an electronic Mach-Zehnder inter-
ferometer decreases as the filling factor (ν) is reduced from 2
to 1, and is fully suppressed for ν ≤ 1. For Laughlin states,
these results are clearly inconsistent with the orthodox edge
model, indicating the presence of additional neutralmodes at

the edge. The emergence of such modes at the QH edge has
far-reaching implications. Upstream neutral modes may act
as which-path detectors, thus suppressing anyonic interfer-
ence signatures [12]. Furthermore, upstream neutrals may
lead to the generation of shot noise with universal Fano
factor on a QPC conductance plateau [23,24]. Given the
recent successes in observing of anyonic interference
[25,26] and measuring universal Fano factors [27], under-
standing the ubiquitous emergence of neutral modes, even at
the edge of Laughlin phases, is of central importance.
A smooth confining potential at the boundary is known to

induce quantum phase transitions at the edge, which leave
the bulk unperturbed, in both integer [28–37] and fractional
[38–48] QH phases, as well as in time-reversal-invariant
topological insulators [49,50]. Such transitions (a.k.a. edge
reconstruction), which may lead to a change in the number,
ordering, and/or the nature of the edge modes, are driven by
the competition between the electrostatic effects of a smooth
confining potential and the exchange and correlation ener-
gies of an incompressible QH state. For sufficiently smooth
potentials, this competition leads to nucleation of additional
electronic strips (in QH phases) along the edge [51,52],
which define pairs of counterpropagating chiral modes at
their respective boundaries. Hence, the structure of the
reconstructed edge is not uniquely determined by the
bulk-boundary correspondence. Specifically, the K matrix
entering the effective (1þ 1D) boundary theory is no longer
identical to the most compact K matrix describing the bulk
topological order. Anomalous bulk-boundary correspon-
dence has also been proposed in other topological media
[53]. Edge reconstruction has several experimental mani-
festations, e.g., a quantized heat conductance much larger
than expected from the orthodox edge structure [54], and the
breakdown of quantization of tunneling exponents in the
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fractional QH regime [55]. Additionally, intermode inter-
actions and disorder-induced tunneling among these addi-
tional and the original (topological) edge modes may lead to
a subsequent renormalization, which qualitatively modifies
their nature and may even give rise to additional (non-
topological) upstream neutral modes [56].
Our challenge here is to account theoretically for the

reconstruction and, subsequently, renormalization, of the
edge of aLaughlin state (specifically, ν ¼ 1=3). To reach this
goal, we need to determine the precise filling factor of the
additional side strip nucleated at a smooth edge. Figure 1
depicts two a priori possible edge configurations, which are
considered in our analysis [57]. We stress that there is a
qualitative difference between these two edge structures.
The additional side strip of filling factor 1=3 (1=5) defines
counterpropagating modes of charge e=3 (e=5). For the case
of 1=3 side strip [Fig. 1(a)], subsequent renormalization of
themodes (due to disorder-induced tunneling)would lead to
localization of a pair of counterpropagating modes and
may render transport experiments blind to the presence of

reconstruction. On the other hand, for the 1=5 strip
[Fig. 1(b)], subsequent renormalization of the original
e=3 mode and the upstream e=5 mode would not induce
localization, and (as we demonstrate here) would have clear
experimental manifestations. Our analysis identifies which
structure is energetically preferable in a given param-
eter range.
Exact diagonalization [41–44], being limited to small

system sizes, does not allow us to obtain a quantized filling
factor at the edge. We stress that such an analysis cannot
clearly resolve the precise configuration of the edge, and, in
particular, is unable to predict whether upstream neutral
modes do or do not emerge upon reconstruction. For this
reason, we employ a variational analysis to study the edge
[37,38], which overcomes these size limitations, while fully
accounting for quantum correlations, inherently present in
the Laughlin state. Specifically, we treat the strip-size (NS)
and separation (LS) (cf. Fig. 1) as variational parameters,
and evaluate the energy of the states in both configurations
as a function of the confining potential slope. When the
confining potential is sharp, there is no edge reconstruction,
i.e., the lowest energy structure corresponds to NS ¼ 0.
As shown in Fig. 2, for moderately smooth potentials, an
additional side strip comprising a ν ¼ 1=3 phase emerges,
while for even smoother potentials, the filling factor of the
side strip becomes ν ¼ 1=5. The edge modes of the latter
structure, and their ensuing renormalization leading to the
emergence of neutral modes, may account for the exper-
imental results reported in Refs. [18,19].
Our results for the reconstructed edge structure may be

verified in carefully designed transport experiments.
Consider, for instance, the behavior of the two-terminal
conductance (g2-ter) as a function of the sample length. With
a single gapless mode, g2-ter is independent of the sample

FIG. 1. Schematic of two a priori possible configurations at the
edge of the bulk ν ¼ 1=3 phase. For a sharp confining potential,
there is a single (ν ¼ 1=3) quantum Hall droplet. For smoother
edge potentials, an additional side strip, with filling factor (a) 1=3
or (b) 1=5, composed of NS electrons may be nucleated along the
edge. The side strip is separated from the bulk (comprising NB
electrons) by LS guiding centers.

(a) (b) (c) (d)

FIG. 2. Results of the variational calculations with 50 electrons. (a)–(c) The energy (hHi) of the states in the two variational classes as
a function of the total angular momentum at (a) sharp (d ¼ 0.01l), (b) moderately smooth (d ¼ 2.25l), and (c) very smooth
(d ¼ 2.50l) confining potentials, where l is the magnetic length. In all cases, the energy of the unreconstructed state (hHiur) has been
subtracted. The blue (red) circles show energy of states with a side strip of ν ¼ 1=3 (ν ¼ 1=5). The black square marks the state with the
lowest energy. (d) The lowest possible energy in the two variational classes as a function of the smoothness of the confining potential
(parameterized by d=l). The blue (red) line corresponds to states with a side strip of ν ¼ 1=3 (ν ¼ 1=5). For sharp edges the ground state
is the unreconstructed ν ¼ 1=3 state with angular momentum 3675ℏ. This state supports a single chiral e=3 mode. For moderately
smooth potentials (2.17 < d=l < 2.42), an additional ν ¼ 1=3 side strip is nucleated, which defines a pair of counterpropagating e=3
modes (in addition to the chiral e=3 mode arising from the bulk). For very smooth potentials (d > 2.42l), a ν ¼ 1=5 side strip is
generated, which supports a pair of e=5 edge modes.
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length and is determined solely by the bulk filling factor
(in this case g2-ter ¼ 1=3 × e2=h). For reconstructed edges,
though, the conductance may vary with the sample length
[60] due to intermode equilibration facilitated by inter-
actions and disorder-induced tunneling [61,62]. For suffi-
ciently long samples (with full edge equilibration),
g2-ter ¼ 1=3 × e2=h for any edge structure. For shorter
samples (with no intermode equilibration), g2-ter assumes
the value 1 × e2=h (11=15 × e2=h) for a side strip of filling
factor 1=3 (1=5). Furthermore, for the configuration with a
ν ¼ 1=5 side strip, disorder-induced random tunneling and
intermode interactions between the counterpropagating e=3
and e=5 modes lead to the emergence of new effective
modes (Fig. 3), which, upon renormalization, may com-
prise upstream neutral modes. The experimental conse-
quences of the emergence of such nontopological neutrals
are similar to those discussed above for the case of hole-
conjugate QH states.
Model.—We analyze the edge of the ν ¼ 1=3 state in the

disk geometry. The Hilbert space is restricted to the lowest
Landau level and we assume spin-polarized electrons. In
this limit, the bulk ν ¼ 1=3 state is well described by the
Laughlin wave function [63,64]

Ψ1
3
;N ¼

YN

i¼1

�Y

j>i

ðzi − zjÞ3
�
e−

1
4

P
i
jzij2 ; ð1Þ

where N is the number of electrons, zj ¼ ðxj − iyjÞ=l is
the position of jth electron, and l is the magnetic length.
The Hamiltonian of the system is H ¼ Hee þHc, where
Hee is the electronic repulsion and Hc is the confining
potential (assumed to be circularly symmetric). Since H is
rotationally invariant, the many-body variational states may
be classified using the total angular momentum.
We assume the electrons interact via the long-range

Coulomb interaction (ðe2=4πϵ0Þ
P

i≠j 1=jr⃗i − r⃗jj). The
confining potential is modeled as the electrostatic potential

of a positively charged background disk separated from the
electron gas by a distance d along the magnetic field
[41,42]. The density and radius of the background disk are
fixed such that the full system is charge neutral [65]. The
slope of the ensuing potential is controlled by d=l, which is
our tuning parameter. The potential is quite sharp for d ∼ 0,
and becomes smoother as d increases. In our model
Ec ¼ ðe2=4πϵ0lÞ sets the energy scale for both the elec-
tronic repulsion and the confining potential, and hence
drops out of the analysis.
Variational analysis.—Figure 1 shows the two classes of

variational states considered here to describe the recon-
structed edge of a ν ¼ 1=3 Laughlin state. Both classes
represent product states (jΨð1=3Þ;NB

i ⊗ jΨð1=mSÞ;NS;MS
i) of

the bulk and a single edge strip. The edge strip comprising
NS electrons is described by a ν ¼ 1=mS Laughlin state
(mS ¼ 3, 5) with MS quasiholes at the center. The corre-
sponding (unnormalized) wave function is [63,64]

Ψ 1
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In our analysis, the total number of electrons (NB þ NS) is
fixed (to be 50 here). The number of electrons in the strip
(NS) and the number of unoccupied guiding centers
between the bulk and the strip (LS ¼ MS þ 2 − 3NB) are
the two parameters that label the states in both the classes
considered here. The energy (hHi) of these states may be
evaluated as a function of d, using standard classical
Monte Carlo techniques [65]. The unreconstructed state
(without an additional edge strip) is included in both classes
(corresponding to NS ¼ 0). It is the lowest energy state for
sharp confining potentials. By contrast, the ground state
supports an additional edge strip (finite NS and LS) for
smoother potentials. The precise filling factor of this strip
(and the nature of the additional counterpropagating
modes) may be determined by comparing the energies of
the states in the two classes.
Results.—Figure 2 depicts the energy (hHi) of the states

in both classes, labeled by the total angular momentum, for
several values of d, which controls the sharpness of the
confining potential. The blue (red) dots [in Figs. 2(a)–2(c)]
correspond to edges with a ν ¼ 1=3 (ν ¼ 1=5) side strip.
The black square marks the lowest energy state. In all cases,
the energy of the unreconstructed state was subtracted to
ease the comparison. For a sharp confining potential
[d ⪅ 2.1l, Fig. 2(a)] the Laughlin state (with no additional
side strip), supporting a single chiral e=3 edge mode, has
the lowest energy (as expected).
The lowest energy state at smoother potentials [d⪆2.1l]

comprises an additional side strip. This side strip may have
filling factor 1=3 [Fig. 2(b)] for a moderately smooth
potential (NS¼15, LS¼11 for d¼2.25l) or 1=5 [Fig. 2(c)]
for very shallow potential (NS ¼ 14, LS ¼ 3 for d ¼ 2.5l).

FIG. 3. For the edge structure with a ν ¼ 1=5 strip, interactions
(represented by the red curve) and disorder-induced electron
tunneling (blue dashed line) between the inner two edge modes
may lead to emergence of a renormalized downstream charge
(ϕc) and an upstream neutral mode (ϕn). The outermost mode is
assumed to be completely decoupled from the inner two modes.
This idealization is justified by the variational analysis, which
shows that as the confining potential becomes shallower, the
width of the side strip (proportional to NS) increases faster than
the separation of the strip (LS).
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Figure 2(d) shows the variation of the lowest possible
energy in the two classes with the confining potential slope.
Evidently, the side strip filling factor is 1=3 in the range
2.17l < d < 2.42l, and switches to 1=5 for larger d. The
reconstructed edge configurations support, in addition to
the single e=3 mode arising from the bulk, a pair of
counterpropagating e=3 or e=5 modes. In the rest of this
Letter, we focus on the experimental manifestations of
these additional counterpropagating modes.
Transport signatures–two terminal conductance.—The

various edge structures obtained in our numerical analysis
may be identified through their unique signatures in
designed transport experiments. The (electric) two terminal
conductance (g2-ter) as a function of the length of the edge
(L) is one such measurement. There, in the absence of edge
equilibration, the chiral channels exiting the source contact
are biased with respect to the modes entering it. The
presence of impurities and potential disorder generates
random tunneling between the (co- and counterpropagat-
ing) modes at the edge, which may facilitate intermode
equilibration over a characteristic length leq. For L ≫ leq,
the two-terminal conductance is g2-ter ¼ 1=3 × e2=h irre-
spective of the confining potential slope, reflecting the bulk
filling factor.
More interesting is the L ≪ leq regime, where g2-ter is

sensitive to the detailed structure of the edge. For the
unreconstructed edge, g2-ter ¼ 1=3 × e2=h for all values of
L; the presence of a single chiral 1=3 mode implies that the
notion of equilibration is irrelevant. For reconstructed
edges the additional pair of counterpropagating modes
also contribute to g2-ter. For an edge comprising a ν ¼ 1=3
side stripe, g2-ter ¼ 1 × e2=h (1=3 × 3). For a ν ¼ 1=5 side
strip, g2-ter ¼ 11=15 × e2=h (1=3þ 2 × 1=5). Such uneq-
uilibrated counterpropagating modes have been reported
for other bulk filling fractions [68].
Plateaus in conductance through a QPC.—The exist-

ence of counterpropagating 1=5modes at the edge of a bulk
1=3 state may also be detected through measurement of the
conductance across a QPC. For a ν ¼ 1=3 bulk phase, the
conductance through a fully open QPC (transmission ¼ 1)
is expected to be 1=3 × e2=h (assuming full electrical
equilibration). If the edge comprises an additional
ν ¼ 1=5 strip and in the absence of strong edge renorm-
alization, one may pinch-off the QPC such that the inner-
most 1=3 and the upstream 1=5 modes are fully reflected,
and only the outermost 1=5 mode is transmitted. Then a
conductance plateau at 1=5 × e2=h is expected. As the bulk
filling factor does not deviate while tuning the QPC, this
would be a smoking-gun signature of the presence of a 1=5
strip at the edge of a bulk 1=3 phase.
Neutral modes.—Consider the reconstructed edge with a

ν ¼ 1=5 side strip. The low energy dynamics of the three
chiral modes may be described by (chiral) bosonic fields ϕj

for j ¼ 1, 2, 3 (outermost being 1 and the innermost
being 3) [2–4]. The fields satisfy the Kac-Moody algebra,

½ϕj1ðxÞ;ϕj2ðx0Þ� ¼ iπδj1j2K
−1
j sgnðx − x0Þ, where the ele-

ments of the K matrix are K1 ¼ 5, K2 ¼ −5, K3 ¼ 3.
These bare edge modes may undergo subsequent renorm-
alization due to disorder-induced tunneling and intermode
interactions. Our variational analysis indicates that for
sufficiently smooth potentials, the outermost downstream
e=5 mode would be located far from the inner two modes
and hence, couple very weakly with those. This motivates
the idealization that ϕ1 is completely decoupled from ϕ2;3

(cf. Fig. 3). The inner modes correspond to an upstream e=5
mode (ϕ2) and a downstream e=3 mode (ϕ3). Because of
the unequal charges, this pair of counterpropagating modes
cannot be localized by disorder-induced backscattering.
Instead, the renormalized modes support excitations with
generic (nonuniversal) charges eu and ed [61], where u and
d denote the upstream and downstream direction, respec-
tively. Interestingly, under certain conditions, the upstream
mode may be charge neutral, i.e., eu ¼ 0. In this case, the
bulk-boundary correspondence dictates that ed ¼ 2e=15.
The emergent edge structure thus consists of two down-
stream modes ϕ1 (with charge e=5) and ϕc (charge 2e=15)
and one upstream neutral mode ϕn.
The emergent ϕn mode has several experimental con-

sequences. It may lead to an upstream heat flow without an
accompanying charge current. Such observations, consis-
tent with either charge equilibration or the presence of a
coherent neutral mode, were reported in Refs. [13,18].
Another major consequence is that neutral modes may
suppress the visibility of anyonic interference in electronic
Mach-Zehnder setups [12], as was reported in Ref. [19].
Finally, consider the QPC setup discussed previously,
which may be tuned to a quantized conductance plateau
of 1=5. Because of the presence of counterpropagating
modes (which are fully reflected at the QPC), the system
may exhibit shot noise even though the conductance is
quantized; the ensuing Fano factor may also be quantized if
certain conditions are satisfied [23,24].
Conclusions.—Transport measurements [18,19] suggest

that the orthodox edge models [2–4] do not hold even for
relatively simple QH states. Specifically, experiments point
to the presence of upstream mode(s) at the edge of a bulk
1=3 state. Motivated by this surprising finding, here we
study the edge structure of the ν ¼ 1=3 Laughlin state as a
function of the slope of the boundary confining potential.
We find that an additional incompressible side strip is
nucleated for sufficiently smooth potentials. Such a con-
figuration allows the coarse-grained electronic density to
follow the confining potential, while at the same time
facilitating the formation of gapped QH states locally. Our
analysis reveals that the filling factor of this side strip
depends on the slope of the confining potential. For a
moderate slope, a ν ¼ 1=3 side strip arises while for a
sufficiently small slope the side strip is described by
ν ¼ 1=5. The latter structure supports three gapless chirals:
an e=3 downstream mode and a counterpropagating pair of
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e=5 modes. Subsequent renormalization, driven by inter-
mode interactions and disorder-induced-tunneling among
the downstream e=3 and upstream e=5 modes, may lead
to the emergence of an upstream neutral mode, and may
account for the observations of Refs. [18,19]. We also
discuss additional experimental manifestations for the
reconstructed edge structures. We expect that edge stripes
with more complex structure may arise upon fine-tuning
the interplay between interaction and confining potential.
Detailed investigations along these lines, including in
engineered geometries [69,70], is left to future Letter.
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