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Superfluid 4He (He II) is a widely studied model system for exploring finite-size effects in strongly
confined geometries. Here, we study He II confined in millimeter-scale channels of 25 and 50 nm height at
high pressures using a nanofluidic Helmholtz resonator. We find that the superfluid density is measurably
suppressed in the confined geometry from the transition temperature down to 0.6 K. Importantly, this
suppression can be accounted for by rotonlike thermal excitations with an energy gap of 5 K. We show that
the surface-bound excitations lead to the previously unexplained lack of finite-size scaling of suppression
of the superfluid density.
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Physical descriptions of condensed matter typically
implicitly assume infinite sizes of the studied samples.
When surfaces, finite sizes, or restricted geometries are
considered, however, novel behaviors often emerge. These
range widely across the field of condensed matter, e.g., the
quantum hall effect in 2D electron gas [1–3], conducting
surface states in topological insulators [4], or the topological
phase transition in the 2DXY model [5,6]. Finite-size effects
play a significant role in, e.g., technologically relevant
quantum dots [7] or properties of nanoparticles [8], where
magnetic phase transitions can be strongly altered or even
completely suppressed compared to the bulk material [9] or
novel collective behaviors can emerge [10,11]. Similarly, in
superfluid 3He, surface scattering of Cooper pairs can lead to
stabilization of novel superfluid phases [12,13].
Finite-size effects become especially important near

phase transitions, where the coherence length diverges
[14]. The superfluid phase transition in 4He is one of the
most closely studied model systems thanks to the high
achievable purity of the medium and relative lack of
parasitic effects due shape or interaction with confining
walls [15]. Indeed, the most accurate experimental deter-
mination of a critical exponent occurred in 4He in a
microgravity environment [15]. A detailed understanding
of the superfluid transition in 4He is not only useful for tests
of modern phase transition theories [15], but also for
systems in the same universality class [16].
Because of the ability of superfluid helium (He II) to

easily flow in most strongly confined systems, the super-
fluid transition is a popular model system for the study of
finite-size effects near the phase transition. The superfluid
order parameter is the macroscopic wave function Ψ,
related to the superfluid density as ρs ¼ jΨj2 [17], which
vanishes at the walls [18]. This results in suppression of
superfluid density in confined geometries, which, for 2D
crossover, is expected [14] to follow

ρsc
ρ

¼ ρsb
ρ

½1 − XðltνÞ�; ð1Þ

where X is a universal function, ρ is the total density, ρsc
and ρsb are the superfluid densities in the confined
geometry and bulk, respectively, t ¼ 1 − T=Tλ is the
reduced temperature (Tλ is the bulk transition temperature),
l ¼ D=ξ0 is the reduced system size withD the thickness of
the slab, ξ0 the low-temperature coherence length, and ν ≈
0.67 is the correlation length critical exponent.
For He II in the 2D limit, as the critical temperature Tc is

approached, the superfluid density vanishes discontinu-
ously [19] at the Kosterlitz-Thouless (KT) transition
[5,6,20]. The KT transition was tested to a high degree
of accuracy [21], however, the scaling behavior given by
(1), is not observed experimentally and the reason for the
breakdown is not known [14,22–24]. Breakdown of finite-
size scaling was also observed in thermal resistivity [25].
This is in contrast with good agreement of finite-size
scaling of the specific heat above Tλ [25–27]. Note that
the scaling near the phase transition in 3D and 2D is
connected via hyperscaling relations [15], anomalous
behavior in He II thus requires close attention.
Here, we observe the suppression of superfluid density in

fully confined helium slabs with 25 and 50 nm confinements
probed using an on-chip nanofluidic Helmholtz resonance,
where tuning the bulk excitation spectrum, coherence length,
and the transition temperature is possible by changing the
pressure. We observe the suppression for temperatures of
0.6 K toTλ due to rotonlike excitationwith energy gap of 5K
(independent of confinement or pressure) that is localized
near the walls. We find that the suppression of the superfluid
density at different confinements and pressures, which,
notably, does not follow finite-size scaling (1), can be fully
accounted for by pressure and confinement dependence of
the roton wave vector. The helium slabs exhibit the KT
transition, which indicates that the coherence length reaches
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a significant fraction of the confinement close to the
transition [5]. In particular, the nature of the superfluid
suppression does not change between high-temperature 2D
regime, and the low-temperature 3D regime where the
coherence length is much shorter than the slab thickness,
showing that the surface excitations, rather than coherence
length effects, are the dominant process behind finite-size
effects in the studied range of parameters. This resolves the
long-standing puzzle of breakdown of finite-size scaling in
superfluid 4He.
We measure the superfluid fraction ρs=ρ using the fourth

sound resonance method [12,28–30]. The fourth sound
resonance is set up in a nanofluidic Helmholtz resonator,
Figs. 1(a) and 1(b), where He II is confined to a thin volume
enclosed by a quartz substrate (see Ref. [30] for fabrication
details). Here, the resonator differs from previous designs
[12,31] by using two separate circular volumes (“basins,”
confinement D0 ≈ 700 nm) interconnected through a
strongly confined central channel (confinement D1 ≈ 25
or 50 nm). The nanofluidic volume is connected to a
surrounding pressurized bath via four inlets. This geometry
supports two Helmholtz modes, whose pressure amplitude
is shown in Fig. 1(b), which differ in the relative phase of
the pressure oscillating in the two basins. In the funda-
mental mode (frequency ω0), the pressure oscillates in the
two basins in phase, whereas in the second Helmholtz
mode (frequency ω1) the pressure in the basins oscillates
with a 180° phase shift. The temperature dependence of the
two modes is shown in Fig. 1(c), where the color indicates
the magnitude of one quadrature of the response.

Normalizing by the zero-temperature frequencies ω0ð0Þ
and ω1ð0Þ, we get for the superfluid fraction of the bulk
(see Supplemental Material [32] for derivation)

ρsb
ρ

¼ ω2
0ðTÞ

ω2
0ð0Þ

; ð2Þ

and for the confined channel

ρsc
ρ

¼ ω2
1ðTÞ − ω2

0ðTÞ
ω2
1ð0Þ − ω2

0ð0Þ
: ð3Þ

The above expressions neglect the temperature dependence
of the total density, which varies by 0.6% from 0 K to Tλ

[37]. Experimentally, the lowest attainable temperature was
0.6 K, which was used in place of the zero-temperature
limit (for bulk He II at saturated vapour pressure, ρs=ρ >
99.99% at 0.6 K [37]).
Since no measurable deviations from bulk behavior are

expected for the 700 nm confinement further than 1 mK
from the transition temperature [14,28], we use the super-
fluid fraction determined using the fundamental mode as an
in situ thermometer calibrated against the bulk superfluid
fraction calculated using the HEPAK data [38]. We drive
both resonances sufficiently weakly to avoid turbulent
nonlinear response [31].
The helium motion is driven and detected using parallel

plate capacitors deposited in the device basins, which are
wired in a tuned capacitance bridge circuit allowing
sensitive detection of pressure fluctuations inside the basin.

(d)(c)(a)

(b)

FIG. 1. (a) The confined volume of the nanofluidic Helmholtz resonator. The two circular basins are connected to a pressurized 4He
bath via four inlet channels and are interconnected via the strongly confined central channel (see Ref. [32] for AFM images). The basins
form parallel plate capacitors (electrodes not shown) used for both sensing and forcing the Helmholtz modes. (b) Pressure amplitude of
the two Helmholtz modes used in the study. Note that the fundamental (symmetric) mode shows zero pressure gradient across the
strongly confined channel making only the second (antisymmetric) mode sensitive to the superfluid density in the strong confinement.
(c) Temperature dependence of the two modes for 50 nm central channel confinement and P ≈ 1 bar, measured with the one-basin
protocol. (d) The three measurement protocols (see Ref. [32] for more detailed description). The “δC” box represents a bridge circuit that
measures differential capacitance between one of the basins and a reference capacitor [the one-basin (i) and crosstalk (iii)] or between
the two basins [the antisymmetric (ii)]. The coloring of the basin indicates the applied electrostatic force driving the Helmholtz mode:
white—not forced, red—forced, blue—forced with a 180° phase shift.
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We check the robustness of the measured superfluid
densities using three different experimental protocols
shown in Fig. 1(d). With the one-basin protocol (i), both
modes are excited and detected using only one basin and
the two modes show no relative phase shift. With the
antisymmetric protocol (ii), only the second Helmholtz
mode is driven and observable below the critical temper-
ature Tc of the confined channel. Above Tc, the two basins

become decoupled and the fundamental mode frequency is
observed, since the mode is degenerate with respect to the
phase of the pressure oscillation in the two basins. Finally,
the crosstalk protocol (iii) separates the drive and detection.
Below Tc we observe both modes with approximately 180°
phase shift and above Tc no response is observed (see
Ref. [32] for details).
The temperature dependence of the superfluid density in

the transition region for the 25 and 50 nm confinements at
approximately 1 bar is shown in Fig. 2. Shown by dotted
horizontal lines are the expected universal jumps for the
two confinements in superfluid density at the KT transition
[19], which agree well with our data. The universal jump
has been experimentally verified in helium films [39,40],
and to a lesser degree also in fully confined geometries
[14,29,41,42].
The ratio of the confined and bulk superfluid densities is

shown in the inset of Fig. 2 as a function of scaling variable
D1=νt. According to the scaling relation (1), the data should
fall on a universal locus. As in previous experiments [14],
this is not the case.
Instead, we interpret the suppression of superfluid

density as an enhancement of normal fluid density ρn ¼
ρ − ρs via surface-bound thermal excitations. The density
ρn is determined by the spectrum of thermal excitations
εðkÞ [43], with the dominant contribution above approx-
imately 1 K due to the roton minimum, where

εrotðkÞ ¼ Δþ ℏ2ðk − k0Þ2
2m� : ð4Þ

Here, Δ=kB ≈ 9 K, k0 ≈ 2 Å−1, and m� ≈ 0.14m4, with m4

the mass of 4He atom, for bulk helium [44]. The resulting
roton contribution to the normal fluid density in two
dimensions is [43,45] (in units of mass per area)

FIG. 2. Superfluid density as a function of reduced temperature
in the transition region. The confinement of the central channel of
the resonator is shown in the legend. The confined superfluid
density is calculated using (3) and the black points show the bulk
superfluid density for the corresponding device calculated using
(2). Thick dotted horizontal lines indicate the expected KT jump
[19]. The error bars are calculated as the standard deviation of a
set of measurements with different protocols (i)–(iii) and different
drive amplitudes. Inset: ratio of confined and bulk superfluid
densities as a function of the scaling variable according to (1).
Note that our data do not follow a universal scaling, as has been
previously observed [14].

(a) (b) (c)

FIG. 3. (a) Normal fluid density enhancement for helium slabs with 25 and 50 nm confinements. (b) Temperature dependence of the
normal fluid density enhancement as a function of pressure for 25 nm confinement. The black dashed lines in (a),(b) are linear fits to (5),
the roton gap is given by the slope of the line. (c) Data from panels (a) and (b) scaled with gðP;DÞ ¼ D−1ð1þ P=P�Þ½1þ ðD�=DÞ3�
with P� ¼ 25 bar and D� ¼ 25 nm (see text).
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ρ2Dn ðTÞ ¼ ℏk30m
�1=2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2πkBT
p exp

�

−
Δ
kBT

�

: ð5Þ

The normal fluid density enhancement, Δρn ¼ ρsc − ρsb, is
shown in Fig. 3(a) for the two confinements and pressure
P ≈ 1 bar and in Fig. 3(b) for several P ∈ ½1; 25� bar for the
25 nm confinement as a function of inverse temperature.
Plots in Figs. 3(a) and 3(b) are scaled in a manner such that
a relation of the type of Eq. (5) appears as a straight line
with the slope equal to −Δ=kB. The temperature depend-
ence in Figs. 3(a) and 3(b) shows excellent agreement with
(5) in the full temperature range. Despite the fact that the
shown data cover more than an order of magnitude in
ξðTÞ=D, no significant deviation from (5) is observed,
which demonstrates that the coherence length does not play
a significant role in the observed suppression of the
superfluid density.
The roton gap is found to be Δ ≈ 5 K, independent of

temperature and pressure (see Ref. [32] for additional
details), which is in agreement with previous studies with
porous materials and helium films, where a temperature
dependence of normal fluid density consistent with a roton
gap of Δ=kB ≈ 4–6 K was observed [45–47]. Excitations
below the bulk roton gap were also observed via inelastic
neutron scattering [48,49]. Numerically, it was shown in
2D and quasi-2D helium layers that the roton gap should be
significantly reduced compared to the bulk value [50], and
it was suggested that this was due to a sharper structure
function peak in 2D liquids and backflow enhancement
around the roton core [51]. It is also believed that 2D roton
excitations exist in the few helium monolayers adjacent to
the solidified layers on the substrate [47,52] and only a
weak dependence of the reduced gap on the area density
(i.e., thickness) is predicted [53,54]. However, the pressure-
independent roton gap is in contrast to past observations in
bulk [55] and porous media [56,57], suggesting that the
behavior of disordered 3D surfaces is more complex.
Adopting the standard bulk-plus-surface approach [14],

we assume that the 2D rotons are localized to a thin layer of
dense liquid adjacent to the walls. The resulting enhance-
ment of the measured 3D normal fluid density in the
confined channel is

ΔρnðTÞ ¼
2

D
ρ2Dn ðTÞ: ð6Þ

While the measured normal fluid enhancements for two
different confinements in Fig. 3(a) clearly differ only by a
scaling constant, (6) predicts scaling Δρn ∝ D−1 which
does not collapse the data. Similar to the effect of the
confinement, a change in pressure only rescales the normal
fluid enhancement by a temperature-independent constant,
as shown in Fig. 3(b) [see Ref. [32] for pressure depend-
ence of the prefactor in (5)]. Numerical calculations have
shown [54] that the 2D roton wave vector k0 depends on the

layer density approximately linearly (we neglect the weak
variation of the gap with density [53,54]). Assuming that the
density near the wall changes linearly with bulk pressure we
can write k0ðPÞ ¼ k0P þ k00PP. Retaining only the first order
in P, the normal fluid enhancement should scale as
Δρn ∝ ð1þ P=P�Þ, which is found to collapse the data well
with P� ≈ 25 bar. In this light, confinement dependence can
be interpreted as a decrease in density in the boundary region
as the separation between the walls increases. Indeed, the
pressure at distance z from the wall, outside of the first few
solidified layers, varies approximately as PðzÞ ¼ Pþ α=z3,
where P is the bulk pressure and α depends on the substrate
[45,58]. This results in k0ðDÞ ≈ k0D þ k00DD

−3 and
Δρn ∝ ½1þ ðD�=DÞ3�D−1, which does collapse the data
for D� ≈ 25 nm. The overall confinement and pressure
dependence can thus be described as Δρn ∝ gðP;DÞ with
gðP;DÞ ¼ D−1ð1þ P=P�Þ½1þ ðD�=DÞ3�, which is shown
in Fig. 3(c). Since only two confinements are presently
available, different relations could equally well describe the
data, such as k0 ∝ D−1=6 or many others. The scaling with
gðP;DÞ is appealing, however, since it describes pressure
and confinement dependence in a unifiedway, as variation of
the fluid density close to the wall.
The exact understanding of the roton behavior in confined

slab geometry (e.g., calculation of D� and P�) will require
numerical calculations of the excitation spectrum for con-
finements in the range of tens of nanometers, which are
within reachofpresent-day computational resources [59–61].
Nevertheless, the important observation stemming from the
present data is that the suppression of superfluidity in 2D
confined geometries is dominated by surface excitations,
specifically 2D rotons, rather than coherence-length effects
as was previously assumed [14]. Even a relatively weak
dependence of the roton wave vector on the confinement is a
natural explanation of the breakdown of finite-size scaling in
confined thin slabs of superfluid 4He. Interestingly, since the
growth of the coherence length near Tλ is terminated by the
KT transition (or the smallest dimension of the system itself),
it is questionablewhether a regimeof coherence length scaling
is ever obtained in real systems. Finally, we also note that the
breakdown of scaling due to surface effects was considered
also in Ref. [23], although the 2D rotonwas not identified and
the inclusion of the wall attraction on Tλ leads to even greater
discrepancy with the experiment [62,63].
In conclusion, using a nanofluidic Helmholtz resonator

capable of in situ comparison of bulklike and strongly
confined behavior of superfluid helium we have shown that
the dominant mechanism of suppression of the superfluid
density in planar confined geometry are rotonlike quasi-
particles with an energy gap of 5 K localized near the wall.
This appears to be the dominant mechanism of ρs sup-
pression for both 25 and 50 nm confinements for a wide
range of pressure and temperature, up to only a few
millikelvin below Tλ. A relatively weak dependence of
the roton minimum on the confinement naturally explains
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the lack of coherence-length scaling which was a long-
standing unresolved puzzle [14].
Finite-size effects in confined superfluid helium remain

an area of active research [14,24,41,64,65] due, in part, to
the ability of modern nanofabrication methods to confine
liquid helium to precisely engineered geometries. The
general assumption that the confining walls provide simply
a termination for the macroscopic wave function [14] is
shown to be incomplete. Surface-bound excitations have a
strong effect on the dynamics of the confined superfluid,
which will likely play a role in future precision tests of
modern phase transition theories [15] or novel quantum
applications of thin helium layers [66,67].
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