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Nonlinear wave focusing originating from the universal modulation instability (MI) is responsible for the
formation of strong wave localizations on the water surface and in nonlinear wave guides, such as optical
Kerr media and plasma. Such extreme wave dynamics can be described by breather solutions of the
nonlinear Schrödinger equation (NLSE) like by way of example the famed doubly-localized Peregrine
breathers (PB), which typify particular cases of MI. On the other hand, it has been suggested that the MI
relevance weakens when the wave field becomes broadband or directional. Here, we provide experimental
evidence of nonlinear and distinct PB-type focusing in standing water waves describing the scenario of two
counterpropagating wave trains. The collected collinear wave measurements are in excellent agreement
with the hydrodynamic coupled NLSE (CNLSE) and suggest that MI can undisturbedly prevail during the
interplay of several wave systems and emphasize the potential role of exact NLSE solutions in extreme
wave formation beyond the formal narrow band and unidirectional limits. Our work may inspire further
experimental investigations in various nonlinear wave guides governed by CNLSE frameworks as well as
theoretical progress to predict strong wave coherence in directional fields.
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The emergence of strongly localized waves in nonlinear
dispersive media is an actively investigated field of research
across wave physics [1–5]. While excluding any external
effects on a wave system, extreme wave formations in
unidirectional wave guides can be explained either as a
result of unstable nonlinear wave interaction [6,7], or the
linear superposition principle [8,9]. Both mechanisms have
been intensively studied in laboratory environments and the
ocean [10,11]. The modulation instability (MI) is a non-
linear wave focusing mechanism [12,13], which has been
proven to be present in complex sea states, such as crossing
seas [14–16], however being less dominant compared with
wave systems with a single wave vector due to the violation
of both critical assumptions, namely unidirectionality and
narrow band energy level [17,18].
Then again, it has been recently conjectured that there is

an increase of probability of rogue wave formation in
coupled two-wave systems compared with an uncoupled
directional wave field [19]. A coupled nonlinear
Schrödinger (CNLSE) framework was already derived
for water waves in the ’80s [20] and is nowadays
considered a fundamental dynamical system for the study
of complex, coherent, directional, and rogue wave dynam-
ics in various physical media [21–25].
In this Letter, we provide experimental evidence of

nonlinear wave focusing in standing wave fields using
the Peregrine breather (PB) [26] as a referenced nonlinear

rogue wave and special MI model evolving in one of two
counter-propagating wave systems. It is shown that
Peregrine-type unsteady packets on finite and zero back-
ground can distinctly evolve in the presence of a counter-
propagative regular wave field without any noticeable
disturbance nor disintegration of coherence during wave
focusing and defocusing. The experimental results are in
excellent agreement with the hydrodynamic CNLSE.
Moreover, we can confirm nonlinear focusing in such
simplified but representative configuration by means of
direct numerical simulations of the governing water wave
equations using the high-order spectral method (HOSM)
for potential flows.
The nonlinear interaction of standing waves involving an

incident wave field characterized by the complex ampli-
tude ψ ð1Þðx; tÞ with wave number κð1Þ ¼ ðk; 0Þ interacting
with the reflected waves ψ ð2Þðx; tÞ with wave number
κð2Þ ¼ ð−k; 0Þ, and propagating along the space coordinate
x, can be described by the CNLSE [20,21]
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The angular frequency ωðiÞ and wave number κðiÞ are
connected through the deep-water linear dispersion relation

ωðiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
gjκðiÞj

q
, i ¼ 1, 2 with g being the gravitational

acceleration, while the CNLSE parameters read as

cg ¼
ω

2k
; δ ¼ −

k
ω2

; ν ¼ −k3: ð2Þ

The standing water surface elevation describing the inter-
action between the incident wave field ψ ð1Þ and opposing
wave system ψ ð2Þ to the first order of approximation is
calculated by means of the complex envelope following the
expression

ηðx; tÞ ¼ 1

2
ðψ ð1Þðx; tÞ exp½iðkx − ωtÞ�

þ ψ ð2Þðx; tÞ exp½−iðkxþ ωtÞ� þ c:c:Þ: ð3Þ

Here, c.c. denotes the complex conjugation, and we
emphasize the weakening of the bound wave contributions
in standing wave systems in contrast to the unidirectional
wave evolution. Our wave modeling will be restricted to the
CNLSE, described by the set of equations in Eq. (1);
nonetheless, we would like to also highlight that a higher-
and fourth-order CNLSE can be applied to two wave
systems with different wave frequencies or directions [27].
We investigate the possibility of nonlinear wave focusing

in a standing wave field, which is a special case of crossing
wave systems with a crossing angle of π, by using the PB
model as an incident wave field ψ ð1Þ and a regular wave
envelope of the same amplitude for ψ ð2Þ. We recall that the
PB is a doubly localized solution of the unidirectional
nonlinear Schrödinger equation (NLSE) [26], which has
been so far observed in optics, water waves, and plasma
[28–30]. That said, this solution describes the nonlinear
stage of modulation instability in the case of infinitely long
perturbation [31,32] and has a rational growth. In fact, it
can be approached by either Akhmediev [33,34] or
Kuznetsov breathers [35], and so far has not been discussed
in the context of collinear waves. Its counterpart on zero
background is also known as the degenerate soliton [36].
Since most of the state of the art wave flumes do not have

two wave generators on opposing sides, one possibility to
allow for wave train collisions is to make use of the wall at
the opposite side of the wave generator as a reflective
mirror for long-crested waves [37]. Indeed, the absence of
wave energy absorbing beach in a perfectly aligned flume
permits a full reflection and thus, the formation of standing
waves. Such an adjusted and adopted set-up configuration
can be viewed in Fig. 1.
The facility operates a piston-type wave paddle to

generate boundary conditions in a form of surface elevation
time series. The tank has the dimensions 30 × 1 × 1 m3, the
water depth is set to be 0.75 m, and eight resistive wave

gauges with a sampling rate of 32 Hz are used to measure
the water surface elevation. The accurate controlled gen-
eration of the wave field allows the reiteration of the
experiments with different wave gauge placements to
ensure a high resolution also along the waves’ propagation
direction [4].
Since we are interested in the interaction of an incident

PB wave field with a regular wave train with opposing
wave vector, a dynamic head-on interaction which we will
refer to as standing PB, we simply select a sufficiently long
realization of the PB solution in time to guarantee the
propagation of the unperturbed regular wave to the wall and
back, before the wave paddle launches the small and
localized Peregrine-specific modulation. We refer to
Refs. [29,38] for the construction of the dimensional
Peregrine boundary conditions. In our experiments we
chose the amplitude to be a ¼ 0.01 m for two carrier
steepness values ak ¼ 0.09 and ak ¼ 0.10, which corre-
sponds to a difference in wavelength of 0.07 m. The
respective values of the wave frequency can be computed
using the linear dispersion relation ω ¼ ffiffiffiffiffi

gk
p

. Note that the
steepness values of ak ¼ 0.10 represent the experimental
threshold value before the onset of wave breaking, as
observed in our facility. Because of the limited length of
our wave flume, considerably reducing the value of wave
steepness would not allow us to start our experiments from
a small amplitude modulation of the unstable incident wave
field. The boundary conditions have been defined to expect
the maximal wave compression to be 16 m from the wave
generator. The results of the experimental campaign,
accounting for 184 measurements along the longitudinal
direction for each realization, together with the associated
CNLSE predictions, are shown in Fig. 2.
The numerical CNLSE simulations have been carried out

for the same wave parameters and boundary conditions as
the laboratory experiments for validations purposes.
A pseudospectral approach and the fourth-order Runge-
Kuttamethod have been adopted for the integration in space.
The wave tank measurements show an excellent agree-

ment with the CNLSE dynamics: the PB remarkably
evolves in standing wave states without any signs of

FIG. 1. Sketch of the wave flume setup as installed at the
University of Sydney after removing the artificial beach installa-
tion to enable full wave reflection. The piston-type wave
generator on the right end generates long-crested unidirectional
waves. The glass wall at the opposing end acts as a wave reflector.

PHYSICAL REVIEW LETTERS 129, 144502 (2022)

144502-2



disintegration while keeping its coherence. A video show-
ing this intriguing hydrodynamics is provided in the
Supplemental Material [39]. Moreover, the characteristic
amplitude amplification of four in this collinear case is also
reached at the expected location in the water wave tank.
This wave interaction can be also confirmed when studying
the respective bispectral evolution; see Fig. 3.
Here, the decomposition of incident and reflected wave

constituents in the bispectra, which are estimated from the
Fourier components [40], prove that the extreme wave
focusing only occurs for incident waves, dominated by the
PB dynamics. To be more precise, the spectral broadening,
which is an indicator of physical wave focusing, occurs
only in the incident wave field, as in Figs. 3(c) and 3(d). On
the other hand, the energy of the counterpropagating waves
remains steady; see Figs. 3(e) and 3(f). We can also notice
that the second harmonic energy weakens when the stand-
ing wave field has been fully developed.
Note that the variations in surface wave profiles are very

sensitive to the single gauge location. On a node point, the
amplitude of the standing regular wave field is zero [41]. It
is also worth mentioning that the PB did not have any
influence in the destabilization of the regular opposing
wave field. This persistence may be partly explained by the
form of the CNLSE [Eq. (1)], which supports conservation
of integrals

R∞
−∞ jψ jj2dt for j ¼ 1, 2, so that the nonlinear

exchange terms in Eq. (1) lead to wavenumber corrections
only. The impossibility of energy exchange between two
counterpropagating planar deep-water wave systems due to
nonlinear four-wave interactions beyond the narrow
band approximation was recently emphasized [42,43].
Nonetheless, the generation of collinear opposite waves
was observed in fully nonlinear hydrodynamic simulations
in Ref. [44].

In the following we investigate the evolution of the PB
counterpart on zero background [36,45], i.e., the degenerate
soliton solution, in the presence of a counterpropagative
regular wave field. Because this particular NLSE solution
has finite length construction on a zero background, the
standing wave patterns appear only locally during the
interaction with the opposing wave field. Experimental
data and respective CNLSE simulations are displayed
in Fig. 4.
Since we do have a sufficiently good resolution in the

space of dx ¼ 0.11 m, we can reconstruct the spatial
profile from the measured time series. Note that since
cg ¼ ðΩ=KÞ ¼ ω=ð2kÞ, Ω being the modulation frequency
and K the modulation wave number, the number of
oscillations in a space series is half that in a time series
Nx ¼ ðk=KÞ ¼ 1

2
ðω=ΩÞ ¼ 1

2
Nt. Furthermore, the surface

elevation profile in a standing wave field is very sensitive to
the measurement location.
Indeed, an excellent agreement can be noticed between

laboratory experiments and numerical simulations, sug-
gesting an elastic collision between the regular envelope
and degenerate soliton [43] and by that confirming once
again that the CNLSE framework may have an extended
applicability range beyond the physical limitations techni-
cally limiting its exploitation.
Next, we extend our proof of concept validation study in

considering a fully nonlinear water wave framework by
numerically solving the Euler equations using the HOSM
[46,47], which resolves up to 7-wave interactions in our
simulations. This approach does not only allow for con-
sideration of the wave evolution for a longer time and
distance than at disposal in experimental wave facilities,
but also provides a higher reliability compared with the

FIG. 2. Top (a) and (b) Experimental observation of two
standing PBs as measured by the wave gauges. Bottom (c)
and (d) Results of numerical CNLSE simulations starting from
the same boundary conditions as the laboratory experiments. Left
(a) and (c) Wave parameters a ¼ 0.01 m and ak ¼ 0.09. Right
(b) and (d) Wave parameters a ¼ 0.01 m and ak ¼ 0.10.

FIG. 3. Spectral evolution of the standing Peregrine breathers,
reported in Fig. 2. (a) Computed for the measured sur-
face elevation for the carrier parameters a ¼ 0.01 m and
ak ¼ 0.09. (c) Incident PB wave dynamics isolated from (a).
(e) Opposing wave train as isolated from (a). (b) Computed for
the measured surface elevation for the carrier wave parameters
a ¼ 0.01 m and ak ¼ 0.10. (d) Incident PB wave dynamics
isolated from (b). (f) Opposing wave train as isolated from (b).
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weakly nonlinear CNLSE approach. Figure 5 shows a
corresponding and particular case study, which has been
experimentally studied and reported in Figs. 2(a) and 2(c),
i.e., the case of the Peregrine breather on finite background.
Because of the increase of the physical domain, the only
difference is that the maximal wave focusing is expected to
appear after 35 m of propagation while in the experiment
only after 16 m. The initial condition at t ¼ 0 is specified in
the form of two long trains with the carrier wave steepness
ak ¼ 0.09 and amplitude a ¼ 0.01 m, and which travel
toward each other. The rightward moving train is produced
from the analytic PB solution; the inoculating perturbation
is characterized by a steepness less than 0.11.
The pseudocolor in Fig. 5(a) represents the evolution of

the surface displacement envelope, which is produced from
two dozen simulations when various phase combinations
were assigned to the initial wave trains. Hence, the
envelope corresponds to the phase averaging of the upper
enveloping surface. Only a part of the simulated domain is
shown. The target focusing time according to the exact
NLSE PB solution is about 90 wave periods; see the dashed
black lines.
The snapshot of the maximum wave, which is very close

to the breaking onset, is given by the black curve. Note that
the deviations of the maximal envelope compression
location are less significant in the wave flume because
of the shorter propagating distance considered, a constraint
imposed by the wave generator frequency range and the
limited length of state of the art wave facilities.

The strongly nonlinear simulations reproduce all the
main features of the localized standing wave patterns as
observed in the laboratory environment, particularly the
clean and quasiundisturbed extreme wave focusing within
the incident PB group. At the same time, the long evolution
reveals some distinctions. In contrast to the weakly non-
linear framework, the strongly nonlinear simulation results,
which include the physical effects of higher-order terms,
correspond to slightly faster movement of the growing
modulation and noticeably longer focusing time [48].
Besides, a minor asymmetry of the emerged large wave
group is clearly seen before and after the maximal wave
focusing.
The evolution of the corresponding maximum wave

amplitude is displayed in Fig. 5(b) by the red color. It is

FIG. 5. Evolution of a PB in standing waves with the carrier
steepness ak ¼ 0.09 as simulated by the HOSM by arranging two
dozen phases allowing for the reconstruction of a wave envelope.
(a) The surface displacement envelope kη is shown by the
pseudocolor. The surface displacement profile of the highest
focused wave is displayed in black while the dashed black lines
point out the location of maximal envelope compression, both
according to the analytic PB solution. The magenta parallelogram
shows the area where the maximum wave amplitude is evaluated.
The coordinate and time are normalized with the dominant wave
length λ and period T, respectively. (b) Evolution of the maxi-
mum wave amplitude in the HOSM simulations and according to
the analytic PB solution of the NLSE. The filled areas correspond
to the intervals between crest and trough amplitudes, while the
solid curves depict their simple means.

FIG. 4. (a) Evolution of a standing degenerate soliton for
a ¼ 0.01 m and ak ¼ 0.11. (b) Corresponding CNLSE simu-
lations. (c) Comparison of the maximal temporal surface profile
(top line) with the CNLSE prediction (bottom line). (d) Com-
parison of the maximal interpolated spatial surface profile (top
line) with the CNLSE prediction (bottom line). The dashed line
corresponds to the respective wave envelope profile, which has
been extracted from the experimental data using the Hilbert
transform.
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evaluated within the area bounded by the magenta contour
in Fig. 5(a), which has been introduced to reduce the effect
of emerging large modulations at the edges of the colliding
wave trains. This dependence is compared with the result
of similar strongly nonlinear numerical simulations of the
PB when the opposite wave train is absent (blue color) and
with the exact analytic PB solution (black curve). The
differences between the red and blue curves correspond
well to the amplitude of the opposite wave train at
ak ¼ 0.09, confirming once again the noninfluence of
the oppositely propagating regular wave train on the
focusing dynamics of the modulationally unstable wave
packet. Considering the significantly longer fetch com-
pared with the laboratory experiments, the strongly non-
linear localized focusing of Peregrine breathers on top of
progressive or standing waves occurs later than predicted
by CNLSE and results in significantly larger focused
waves. This is a behavior which has been also quantified
in the unidirectional NLSE case [48,49]. It is also interest-
ing to note in Fig. 5(b) that the focusing delays seem to be
the same for both the unidirectional (blue curves) and
collinear case (red curves).
In conclusion, we have reported experimental evidence

of quasiunperturbed PB hydrodynamics in standing waves.
The same has been observed for the degenerate soliton,
which is the counterpart of PB on zero background. Our
results confirm that breather solutions of the NLSE can be
considered to model and describe extreme wave local-
izations in nonintegrable systems [50,51]. Since experi-
ments are always subject to dissipative effects, we believe
that the role of NLSE solitons and breathers can be
extended to a wider range of complex systems [52–54].
We also anticipate that our experimental work will motivate
further studies to investigate the role of breathers for
standing wave conditions in nonlinear dispersive media
as well as to determine their function in crossing seas and
vector nonlinear fiber-analog systems.
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